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Abstract—The success of dynamic verification techniques for
confirming the absence of bugs in concurrent programs rests on
their ability to systematically address the interleaving space aris-
ing because of the nondeterminism. However, existing dynamic
verification engines suffer from the problem of scalability due
to the size of the reachable state space that grows exponentially
as the number of parallel entities increases. The second front
on which the dynamic verification technique struggles is the
dependence on the test cases to drive the program, thus being as
efficient as the quality of the test cases. Lastly, any verification
technique suffers from the lack of a significant benchmark of bugs
to prove its worth. This work tries to improve the area of dynamic
verification concerning the limitations as mentioned above. We
utilize the worthiness and popularity of constraint solvers and
establish our work in the realm of concurrent programs.

Index Terms—concurrency, deadlock detection, test generation,
communication deadlocks

I. INTRODUCTION AND MOTIVATION

With the advancements in multi-core hardware technology

and distributed systems, parallel programming applications

have become an essential requisite to manipulate large data

and to facilitate multi-tasking of jobs. Ensuring the correctness

of these software is a challenging task due to nondetermin-

ism which is a common spirit amongst the applications of

multiple parallel programming paradigms. On one extreme,

we have formal verification techniques like theorem proving

and model-checking which are not scalable, and on the other

extreme, we have testing techniques that can not be used to

guarantee a lack of errors. Dynamic verification is a lucrative

trade-off between testing and formal verification in terms of

coverage and scalability. However, we observe the following

shortcomings:

1) it requires repeated executions of the application (multiple

restarts) to explore the state-space corresponding to an

input and, thus, does not scale for large programs,

2) it explores the schedule space corresponding to a concrete

test case and is as good as the provided test cases,

3) the assessment of the bug detection tools is limited by

the small benchmark data sets.

Explicit-state dynamic verifiers can exhaustively analyze

concurrent programs for the absence of concurrency bugs such

as deadlocks and assertion violations under a fixed input.

However, they require the applications to be run repeatedly

to explore all interleavings. New promising techniques like

predictive analysis that make use of constraint-solving do ad-

dress the problem of program re-runs. Still, they alone can not

be applied to the programs where the shared or communicated

data between multiple executing entities influence control-flow

decisions (multi-path executions). The first part of our research

aims to leverage predictive analysis to garner the benefits of

dynamic verification but improving on the scalability front, as

mentioned in our first observation.

Our second observation states that even though dynamic

verification techniques provide guarantees about the absence

of errors for a specific execution, their effectiveness depends

entirely on the quality of the test cases. The second part of

our research work is a step in this direction. We improve the

effectiveness of dynamic verification by synthesizing relevant

test cases. The requirement of automated test synthesis tech-

niques is orthogonal to the detection techniques and can be

used as the first phase in dynamic verification tools.

Bug detection is a well-researched area that has given

many static, dynamic, and hybrid tools and techniques to

detect concurrency errors. However, the bug detection tools

are evaluated for their worth on a limited set of benchmarks

gathering which requires a lot of effort and time. Moreover,

the value of any individual dataset drops over time as tools

adapt to it. Hence, there is a need to automatically synthesize

bugs in the code to eradicate the problems mentioned above.

We propose this work as the third improvement in the process

of creating reliable and worthwhile dynamic verification tools.

Hence, we focus on providing solutions to these interesting,

hard, and impacting problems:

1) Can we combine constraint-solving and dynamic verifica-
tion to make the latter more scalable to prove the absence
of deadlocks in concurrent programs?

2) Can we strategically synthesize intelligent test cases
which can drive the dynamic verification engines to
explore correct schedule state space?

3) Can we synthesize realistic and deep bugs in concurrent
programs to assess the quality of dynamic verification
tools on a large number of subjects?

II. PROGRESS

We have attempted to expound the first two problem

statements; the third problem is proposed in section V. We

first present an overview of the technique designed for the
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deadlock detection (published [15]) problem and then the

test case synthesis problem. Both approaches use constraint

solving at heart.

A. HERMES: Scalable Deadlock detection [15]

We explore the first problem in the context of the Message

Passing programming paradigm. Message Passing Interface

(MPI) is the pioneer standard for distributed systems to

communicate. Communication deadlocks in MPI programs

is one of the prominent problems and it has been studied

extensively in the past [28]. Due to the asynchronous nature

and wildcard primitive calls in this paradigm, the prevalent

nondeterministic communication of data can affect the control-

flow of the program (e.g., when the communicated data to a

wildcard receive is used in a subsequent branch instruction

of the program). Programs with the pattern mentioned above

are termed as multi-path programs [32], and they significantly

affect the scalability of existing verification techniques.

Our technique combines the strengths of dynamic verifica-

tion and trace verification techniques, which provides scalabil-

ity and multi-path coverage over these techniques, respectively.

Our hybrid method which discovers deadlocks in multi-

path MPI programs exhaustively explores the executions of the

program under a fixed input as follows: (i) it obtains a concrete

run ρ of the program via dynamic analysis (via a scheduler

that orchestrates a run); (ii) it encodes symbolically the set of

feasible runs obtained from the same set of events as observed

in ρ such that each process triggers the same control-flow

decisions and executes the same sequence of communication

calls as in ρ (note that the encoding captures the entire set

of runtime matches of communication events from ρ); (iii) it

checks for violations of any property (in our case, communi-

cation deadlocks); and (iv) if no property is violated, it alters

the symbolic encoding to explore the feasibility of taking an

alternate control flow path which is different from ρ. In case

of such feasibility, it initiates a different concrete run [15].

Consider the program shown in Figure 1. It is a nonde-

terministic, multi-path, and deadlock-free program. The non-

colored lines illustrate the pseudo-code of the program. The

nondeterministic matching choice of R1 governs the execution

of one of the multiple control flow branches.

Our approach statically discovers the code locations where

the received data or message tag (a field in MPI send and

receive calls that serve as a unique marker for messages) are

used to branch at conditional statements. At these locations,

we instrument certain calls to a scheduler (shown in blue color

in Figure 1). The scheduler schedules the MPI calls of the pro-

gram according to the MPI semantics and drives the execution.

The scheduler is also responsible for building a partially or-

dered happens-before relation between these calls. At runtime,

the instrumented code communicates the predicate expression

in the branching instruction to the scheduler. Based on a trace

ρ the symbolic encoding is generated from the execution of the

program with instrumented code. This formula encodes all the

semantically possible schedules of events observed in ρ, which

Process 0 Process 1
Recv(*, x); //R1 Send(P0, 10); //S1

if (x==10) Process 2
Recv(*, y); //R2 Send(P0, 10); //S2

toScheduler(‘x==10’); Process 3
else if (x==20) Send(P0, 30); //S3

Recv(*, y); //R3
toScheduler(‘x==20’);

else if (x==30)
Recv(*, y); //R4
toScheduler(‘x==30’);

Recv(*, z); //R5

Fig. 1: Instrumented non single-path program

follow the same control-flow decisions as made in ρ. A Satis-

fiability Modulo Theories (SMT) solver is used to solve this

formula, which checks for the violation of the safety property.

In the example shown in Figure 1, Process 0 executes

the first control flow branch if R1 matches with either S1 or

S2. If there is no property violation for this SMT formula, we

verify another control flow path that may have been taken if

R1 had matched with some other send.

To this effect, we want to change the path condition

obtained from the trace to reschedule another execution

through an unvisited control-flow. Hence, we alter the path

condition (in a typical symbolic execution style) and execute

the program again, so that it follows the path corresponding

to the altered path condition. To force the scheduler to follow

a different control-flow branch, we may also have to force a

wildcard receive call to match with a send call that sends data

different from the send call that matched before. We repeat

this process until all the paths in the program are exhausted.

In the context of the above example, in the second execution,

R1 must match S3, and it must avoid matching S2 because

S2 is sending the same data as S1 (S1 had already matched

with R1 in the first execution).

The example program has six possible interleavings across

multiple control flow paths. Our technique executes the pro-

gram only twice to cover all of them. It thus shows the

contrasting difference from trace verification, which does not

provide full path coverage and from dynamic verification,

which executes the program as many times as there are

possible interleavings.

B. REVELIO: Test Case Synthesis

We seek solution to the test case synthesis problem in the

context of multi-threaded Java programs. We present a novel

approach to synthesize test cases for exposing communication

deadlocks in these programs. A multi-threaded system is said

to be caught in a communication deadlock when one of the

threads is suspended because of a wait call, and none of the

other threads can send a notify signal to wake it, so the

system does not proceed [9], [12].

The technique to synthesize test cases for efficient schedule

space navigation is implemented in a prototype tool called

REVELIO. The approach has two key steps: (i) finding two dis-

tinct single-threaded execution traces and determining whether

by combining these traces, a wait-notify communication

deadlock can be exposed, and (ii) if the bug could indeed
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be manifested, then assembling these execution traces under

specific input parameters to form a multi-threaded test case.

Combining two separate sequential traces requires finding a

common starting state from where two threads can spawn,

eventually allowing the defect to manifest.

REVELIO’s Trace Extractor component executes every

non-private API of a class under test (CUT) with a symbolic

execution engine [16] so that the paths leading to a wait or

a notify call can be encountered. The explored traces along

with the path conditions are stored in internal data structures.

From this set of traces, the Match Predictor component

selects those pairs of traces that are compatible based on

the data-types of their caller objects. A pair of traces with

data-type compatible caller objects of wait and notify is

eligible to be invoked from a single multi-threaded test case

because they potentially comply with the communication

protocol of the library. From the data-type compatible pairs of

traces, we select those pairs that have the potential to expose

a bug. The algorithm leverages an SMT solver to ascertain

such pairs of traces. An encoding of the data-type compatible

pair of traces (as a first-order logic formula) is shipped to a

solver. The result of the solver determines whether there is a

chance that the input traces can be combined into a test case.

If the solver returns SAT, then the set of methods is deter-

mined that must be invoked before the creation of threads such

that a program state with the necessary environment is reached

for manifesting the bug. We refer to these methods as auxiliary
methods. Finding these auxiliary methods is the job of the

component Context Setter. The last step is to create the test,

which will invoke the found method call sequences from two

threads. Synthesizer is responsible for generating such a test

case. Post-factum validations of synthesized test are performed

using the model checker JPF [35] in component Verifier.

III. RELATED WORK

Deadlock detection: Deadlock detection in message-passing

programs is an active research domain with a rich body of

literature. ISP [34] and DAMPI [36] are dynamic verifiers

that enumerate all relevant executions of a program under

a given input by rerunning the program. While ISP has a

centralized scheduler, DAMPI has a distributed one.

Predictive trace analysis for multi-threaded C/C++ programs

is another popular area of work. The central idea in these

techniques is to encode the interleavings of program execution

in a first-order logic formula [2], [37]. The work in [2]

motivated the predictive trace analysis work for MPI, MCAPI,

and CSP/CCS programs [5], [10], [11], [19], [32]. We base our

encoding rules on the encoding presented by Forejt et al. [32],

but their technique is restricted to single-path programs.

To improvise it for multi-path MPI programs, we executed

the program multiple times with different path condition from

the earlier runs as in Concolic Testing [3], [27]. However, a fair

comparison of HERMES with concolic execution techniques

cannot be performed since HERMES does not consider every

conditional statement to be included in the path condition.

HERMES uses data-aware analysis to prune irrelevant control-

flow branches of the program.

CIVL [18] is an intermediate language to capture con-

currency semantics of a set of concurrency dialects such as

OpenMP, Pthreads, CUDA, and MPI. The back-end verifier

can statically check properties such as functional correctness,

deadlocks, and adherence to the rules of the MPI standard.

CIVL creates a model of the program using symbolic execu-

tion and then uses model checking. HERMES creates a model

of a single path of the program and uses symbolic encoding

to verify that path of the program.

There has been much research in the area of deadlock

detection of not just MPI programs, but multithreaded

programs also [9], [12].

Test synthesis: A recent survey by Terragni et al. classified

test synthesis techniques into three major categories: 1.

Random-based, 2. Coverage-based, 3. Sequential-test based

[31]. Whichever the category, the generated test cases can be

divided into two parts. The part which is common to all the

threads and is assembled before invoking the threads is called

the prefix and the part which is a spawned thread that calls one

of the public API methods is called the suffix. Random-based

techniques generate test cases by randomly appending any

suffixes to a prefix with random input parameters but without

any specific intuition [20], [22]. These tools can generate as

many tests as specified by the user. The random nature of the

technique often generates, albeit fast, redundant tests, which,

therefore, wastes verification resources.

Coverage-based techniques are goal-oriented and improve

over random-based methods. These techniques aim to achieve

high interleaving coverage for which they pre-compute the

coverage requirements based on a coverage-driven heuristic

[4], [30]. For example, the technique proposed by Lu et al. [4]

tries to find and engage those method pairs in the test, which

have been infrequently paired up before in the test-generation

process. Their technique does not focus on a particular

kind of concurrency bugs. The advantage of coverage-based

techniques is that they restrict the generation of redundant

tests. The disadvantage is that they rely on a heuristic, which

might give false information (especially in case of statically

computed) or might miss coverage requirements.

Sequential-test based techniques utilize sequential test cases

provided with the library or the sequential tests generated

with tools such as Randoop [21]. Samak et al. present a

series of works to synthesize multi-threaded test cases for

exposing atomicity violations [25], resource deadlocks [24],

and races [26]. Sequential tests are not always adequate to

exercise parallel constructs in the code. The wait-notify
constructs are almost always guided by conditions expressed

over the variables which have to be succinctly initialized.

Moreover, each of their work is aimed at a specific type of a

concurrency bug and none target communication deadlocks.

IV. RESULTS

To answer the first problem statement, we set the evaluation

of HERMES [13] in the context of C/C++ MPI programs
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and compared it against the state-of-the-art verification tools

(Mopper, Aislinn, ISP, and CIVL) to assess its efficiency

and effectiveness. We used the FEVS test-suite [29] and

benchmarks from prior research papers [1], [8], [33], [38]. On

most single-path benchmarks, the performance of HERMES is

comparable to Mopper and considerably better than the other

state-of-the-art explicit-state model checkers without compro-

mising on error-reporting. Benchmark 2D Diffusion ex-

hibits a complex communication pattern and a high degree of

nondeterminism, which leads to a huge M+. Hence, symbolic

analysis tools did not perform well for such benchmarks.

Evaluation with multi-path programs required us to compare

HERMES with all tools except Mopper, since Mopper is

constrained to work with only single-path programs. The basis

for comparing against ISP was the number of times a program

is executed. In contrast, the basis for comparing with other

tools was the time taken to complete the verification. The

results indicate that when the number of processes increases,

the growth in execution time is relatively reasonable in HER-

MES in comparison with ISP and Aislinn. The scalability of

HERMES regarding the number of processes comes from the

fact that it prunes out the redundant paths and explores only

the feasible ones.

For the second research question, we evaluated REVELIO

[14] on twelve classes that are part of the real-world con-

current Java libraries. We gathered half of these subjects by

exploring the issue repositories of these libraries and others

from the literature [9], [12], [17]. These libraries profusely

use wait-notify calls to communicate.

We compared our tool with general-purpose tools for Java

programs that are available for the research community: a

random-based test synthesizer, ConTeGe [22], and a coverage-

based test synthesizer, CovCon [4].

We compared REVELIO with ConTeGe and CovCon based

on their ability to synthesize a successful test (B) and the time

they take to produce those tests. A successful test is the one

that exposes a communication deadlock. REVELIO can syn-

thesize successful tests for all twelve subjects as compared to

ConTeGe, which was successful for one of them and CovCon,

which was not successful in capturing any wait-notify
error (under the chosen settings), but found thread-safety

violations of different kinds for three of the subjects. REVELIO

did not take more than 180 seconds for any of the subjects.

In comparison, ConTeGe ran out of 600 seconds for four of

the subjects. For the rest of the subjects, it terminated in less

than this time frame and found no violations. For one of the

issues, it crashed. Similar is the case with CovCon.

The number of compatible pairs of traces that exhibited

a concurrency error was very less, considerably lesser than

ConTeGe and CovCon, which generated thousands of tests.

This precision can be attributed to the fact that our test

synthesis approach is directed and goal-oriented. Although

the encoding scheme depends on the over-approximate set of

variable bindings, it does well in practice to search precisely

for the candidate pairs of traces.

V. PROPOSED WORK

There has been an extensive effort in developing static,

dynamic, and hybrid techniques to detect concurrency errors,

namely races, order violations, atomicity violations, and dead-

locks in concurrent programs [6]. Researchers test their bug

detection or verification tools on a limited set of benchmarks.

These benchmarks are generally taken from previous research

papers, or bug repositories are explored to find bug reports

that can be used for evaluating the appropriate use of the

technique developed. Digging bug repositories is a time and

effort consuming task, nonetheless inevitable. The survey by

Fu et al. shows that most of the literature on concurrency bug

avoidance, exposing, detection, and fixing focus on a total of

just nine C/C++ libraries [6]. This indicates that more diversity

in terms of bugs in the benchmarks is desired.

These benchmarks only provide information about the bugs

that the detection tools can detect, but not the information

about the bugs they miss. Moreover, the value of any individual

dataset drops over time as tools adapt to it. Hence, there is a

need to automatically synthesize bugs in the code to eradicate

the problems mentioned above.

Roy et al. [23] proposed a technique to synthesize bugs in

sequential programs. These bugs are injected deep inside the

code by instrumenting an Error Transition System (ETS) that

they find using a constraint-based approach. The idea is to

instrument intelligent predicates in the code that can constrain

the input, which can trigger the bug.

We take inspiration from this work to synthesize concur-

rency bugs into multithreaded programs. The main difference

that separates multithreaded programs from sequential pro-

grams is the nondeterminism, which gives rise to multiple

schedules for a single input, and a concurrency error can

manifest in either of these interleavings. To synthesize a bug

deep inside a concurrent multithreaded program, we not only

have to tighten the input space at each state of the ETS, but

also the interleaving space. This strategy will ensure that the

bug detection tools are given an appropriate challenge and a

fair chance to prove their worth.

The fault injection techniques such as Safire [7] focuses on

injecting the instruction-based fault model in the system. They

inject soft errors in the program by flipping a random bit in a

random register. This bit-flipping introduces a small variation,

and the error cascades to the instruction and the processor.

This approach is unguided. In contrast to this, we are working

towards systematically synthesizing intelligent, deep, and re-

alistic bugs in the program. Specifically, we need to have the

following necessary qualities in our bug synthesis technique:

1) the bug must manifest on a real input,

2) it should be rare, that means it should only manifest on

some of the interleavings for a particular input,

3) it should be randomly distributed in the state space so

that it does not favor a particular detection strategy.
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