
Fix that Fix Commit: A real-world remediation
analysis of JavaScript projects

Vinuri Bandara†‡, Thisura Rathnayake†‡, Nipuna Weerasekara†‡,
Charitha Elvitigala§†, Kenneth Thilakarathna‡, Primal Wijesekera‡‡, Chamath Keppitiyagama‡

§Bug Zero, †SCoRe Lab, ‡University of Colombo School of Computing, ‡‡University of California, Berkeley
{vinurib, thisura, w.nipuna}@scorelab.org,

charitha@bugzero.io, primal@berkeley.edu, {kmt, chamath}@ucsc.cmb.ac.lk

Abstract—While there is a large body of work on understand-
ing vulnerabilities in the wild, little has been done to understand
the dynamics of the remediation phase of the development cycle.
To this end, we have done a timeline analysis on 118K commits
from 53 of the most used JavaScript projects from GitHub to
understand the provenance and prevalence of vulnerabilities in
those projects. We used a vulnerability detector (CodeQL) to
filter commits that introduced vulnerabilities and the commits
that fixed a prior vulnerability. We found that in 82% of the
projects, a commit fixing a prior vulnerability, in turn, introduced
one or more new vulnerabilities. Among those projects, on
average, 18% of the commits intended to fix vulnerabilities, in
turn, introduced one or more new vulnerabilities. We also found
that 50% of the total vulnerabilities found in those projects
originated from a commit meant to fix a prior vulnerability,
and 78% of those vulnerabilities could have been avoided if they
were to use proper internal testing. We provide critical insights
into how proper internal testing can avoid a significant portion
of vulnerabilities, increasing organizations’ security posture.

Index Terms—Software Security, Vulnerability Analysis, Vul-
nerability Remediation, Security Testing

I. INTRODUCTION

Despite recent advancements in vulnerability detection tools

and best practices, a stream of data breaches and exploits have

been observed. We believe that the real reason relies not only

on vulnerability discovery techniques but also on vulnerability

remediation’s success. Public resources such as MITRE Cor-

poration’s CVE [2] database and the National Vulnerability

Database (NVD) [6] are providing valuable references and

resources for a successful remediation phase. The question,

however, remains whether developers are making the most of

those public resources.

Recent literature on vulnerability remediation found that

there are severe issues in the remediation phase that nullify

any vulnerability discovery progress to find security vulner-

abilities [10], [16]. Li et al. found that not all vulnerability

fixes fix the intended vulnerability; it takes more than one

commit to fix the vulnerability. Alomar et al. found that many

leading industry security practitioners are worried that a host

of reasons impede successful vulnerability remediation, and

lack of proper attention from the management and lack of

developer knowledge to fix a vulnerability are leading causes.

The literature on vulnerability analysis lacks any work on

understanding this issue in the real world, and except for very

minimal work, the research community is only waking up to

learn these issues in the wild. As a research community, we

need a proper measurement study before exploring potential

solutions to this issue. To that end, we propose a novel

automated vulnerability analysis to filter commits responsible

for introducing vulnerable codes and filter commits that fix

existing vulnerabilities in the code.

We analyzed 53 JavaScript projects found on GitHub. We

based the study on JavaScript because of its popularity among

developers1, but the proposed framework is language agnostic.

The proposed pipeline can longitudinally analyze a project’s

vulnerability introduction and fixing patterns as time-series

analysis. This gives a holistic view of how projects manage

vulnerabilities and the efficacy of vulnerability remediation.

We found that in 82% of the analyzed projects, a fixing

vulnerability has introduced more vulnerabilities to the code

one-fifth of the time. Overall, 78% of the found vulnerabilities

were publicly disclosed at the introduction; hence a naive

internal scan would have prevented them from the code-base.

The proposed work contributes to the following:

1) A novel technique to longitudinally analyze vulnerability

management in projects.

2) To the best of our knowledge, we provide the first

analysis of quantification of vulnerability remediation

issues at scale.

3) Outline the importance of proper internal testing to avoid

a significant portion of vulnerabilities and increase the

overall security of the project.

II. RELATED WORK

In one of the early works, studying vulnerability analysis,

Frei et al. discuss the lifecycle of a vulnerability from a

security researcher’s or a malicious actor’s perspective [11].

They state that the vulnerability discovery date is mostly

unknown to the public, and the vulnerabilities exist before

being discovered. The issue here for the developers is that

they have to discover the vulnerabilities before the malicious

actors can discover it. However, our data suggest that the

landscape has changed significantly now that a sizable portion

of issues could have been prevented if they were to use proper

testing. Prechelt et al. also suggested that the current state of

1https://insights.stackoverflow.com/survey/2020

187

2020 IEEE 20th International Working Conference on Source Code Analysis and Manipulation (SCAM)

2470-6892/20/$31.00 ©2020 IEEE

the art repository mining techniques are not adequate to study

vulnerability inducing commits [22].

Source code analysis to detect vulnerabilities have been

studied in the past [12], [14], [20]. These authors have pro-

posed methods to identify vulnerabilities in the codebase using

patterns described in MITRE Corporation’s Common Weak-

ness Enumeration. Another related project has discussed the

challenges of finding commits pushing vulnerabilities using

the mining data from source control repositories [13]. How-

ever, our methodology goes one step beyond to understand

specific security vulnerabilities introduced in each commit.

Version controlling data is used to analyze the changes in

a codebase and find the vulnerability introductions [9], [15],

[20]. The commit log and the commit messages are also mined

to understand the intention and if the commit has fixed any

bugs. The work by Peguero et al. [19] also uses the source

code and version controlling data for identifying the cross-

site scripting vulnerabilities in JavaScript frameworks. We

are using the Git version controlling system and the GitHub

platform to mine the commit data such as commit message,

commit author, and commit hash of a specific repository.

However, we are not focusing on the commit messages to find

whether the commit has done any fixing of vulnerability or not.

We are focusing on the CodeQL analysis result for a specific

commit version to identify whether the commit has fixed a

vulnerability or the commit has introduced a vulnerability.

Prior work has looked into the remediation phase both

in general software engineering [24], [26] and in specific

software security domains [16], [17], [21]. Meneely et al.

have studied commits that have introduced vulnerabilities and

likely reasons behind those vulnerabilities, such as lack of

knowledge [17]. Li et al. have conducted a large scale study on

security patches and found that not all patches have fixed the

vulnerability, and there is a significant lapse of time between

public disclosure of a vulnerability and the time it took to

fix the said vulnerability [16]. In both cases, their findings

highlight the need for an effective vulnerability remediation.

Recent work on vulnerability pipeline in organizations has

also found that many organizations have focused more on

vulnerability discovery but less on the remediation, which is

a grave concern [10]. They found that management is likely

to have a false sense of security without proper remediation.

We like to measure this observation’s prevalence in the wild

by analyzing code and commits in public repositories.

III. METHODOLOGY

Our main objective is to understand the flaws in vulnerabil-

ity remediation through source code and repository analysis.

We detail our methodology in this section.

A. Selection of JavaScript repositories

We selected the repositories with at least 500 commits since

the analysis needs a substantial list of commits for a particular

repository. The minimum threshold enables us to carry out

longitudinal analysis of the commits. We randomly selected

53 JavaScript repositories from combining three publicly avail-

able lists that list most dependent upon JavaScript packages234.

Each of these repositories has more than two authors and has

a substantial amount of current users. We are in the process

of analyzing all the projects mentioned in those resources, but

in this paper, we present the first 53 projects analyzed so far.

B. Analysing GitHub Commits

Vulnerabilities in a codebase can be analyzed either by man-

ual inspection or by automated inspection [12]. For JavaScript

applications, detecting vulnerabilities can be done based on

specific patterns. Such patterns can be found in Open Web

Application Security Project [7] and the Common Weakness

Enumeration (CWE) [3]. For instance, by analyzing the code-

base, the developers or testers can identify specific Cross-Site

Scripting (XSS) attacking vectors, sources, and sinks.

Since the manual analysis for vulnerabilities is inefficient

and not scalable, we used CodeQL [1], which is an open-

source tool distributed by GitHub. It is an automated variant

analysis tool that identifies the variants of security vulner-

abilities and generic software bugs in languages such as

JavaScript, TypeScript, Python, C, C++, C#, and Go. CodeQL

is based on the QL [8] query language, and it uses the known

vulnerabilities as seeds to find similar issues in the codebase.

Using CodeQL, we can list the vulnerabilities in a repository

at a particular point in time. Therefore, we run CodeQL for all

the commits found in each of the 53 JavaScript repositories.

For each of these commits, we then use the GitHub API [4] to

extract its date, commit message, commit hash and the author’s

details (name, username and email).

C. Security vulnerability extraction

The result from the above step contains all the issues

that CodeQL identified by analyzing a given commit and an

example of such an issue is shown in Figure 1. The identified

issue in Figure 1 is a Invalid prototype value. We need to

identify which of the CodeQL issues has an associated CWE

reference number – only the security vulnerabilities have a

CWE reference. The CodeQL references were scraped from

its website [5] and stored in a JSON file. Listing 1 shows

the respective CWE reference related to Invalid prototype
value. We also downloaded the CWE database5 to obtain

the published date of a given CWE. From here onwards,

vulnerability means any issue CodeQL detected with one or

more CWE references.

Intro commit is the commit CodeQL observes a vulnerability

for the first time in a codebase. It is the commit responsible

for the vulnerable code. We define Fix commit as the commit

responsible for fixing a given vulnerability. We developed an

Automated Analysis Pipeline, which integrates all the steps

starting from getting all git commits up to analyzing using

2https://www.npmjs.com/browse/depended
3https://gist.github.com/anvaka/8e8fa57c7ee1350e3491
4http://bit.ly/hackernoon-36
5https://cwe.mitre.org/data/csv/699.csv.zip

188

Fig. 1: An example output from CodeQL analysis

{” l i n k ” : ” h t t p s : / / h e l p . semmle . com / wik i / d i s p l a y
/ JS / I n v a l i d + p r o t o t y p e + v a l u e ” ,

”name” : ” I n v a l i d p r o t o t y p e v a l u e ” ,
” d e s c r i p t i o n ” : ”An a t t e m p t t o use a v a l u e t h a t

i s n o t an o b j e c t o r ’ n u l l ’ a s a p r o t o t y p e
w i l l e i t h e r be i g n o r e d or r e s u l t i n a

r u n t i m e e r r o r . ” ,
” i d ” : ” j s / i n v a l i d −p r o t o t y p e−v a l u e ” ,
” k ind ” : ” problem ” ,
” s e v e r i t y ” : ” e r r o r ” ,
” p r e c i s i o n ” : ” h igh ” ,
” recommendat ion ” : ” F ix t h e p r o t o t y p e

a s s i g n m e n t by p r o v i d i n g a v a l i d p r o t o t y p e
v a l u e . ” ,

” r e f e r e n c e s ” : [”CWE−704”] }

Listing 1: A CodeQL vulnerability with its CWE reference

CodeQL and finally saving the results as CSV files. The

algorithm is shown in Algorithm 1.

Algorithm 1: Analysis Pipeline

Data: JavaScript repositories

Result: CSV output file of CodeQL analysis

1. Select JavaScript repository

2. Get all the Git commit hashes of the selected

repository

3. Get all the commit author data from the selected

repository

for commit in Commits do
1. Checkout the commit

2. Create CodeQL database for the checked out

version of the repository

3. Analyse the created CodeQL database using the

CodeQL tool

4. Select all CodeQL issues with a CWE reference

5. Get the published date for the given CWE from

the CWE database

6. Write the result file into a CSV file

IV. ANALYSIS

We have analyzed 53 JavaScript projects using our auto-

mated analysis pipeline. The pipeline has processed 118,023

commits from those 53 projects. CodeQL found 5,046 se-

curity vulnerabilities among those 118K commits. CodeQL

categorizes severity of vulnerabilities into errors, warnings and

recommendations. Out of the commits analyzed, we found

541 errors, 4,231 warnings, and 274 recommendations. At

the time of analysis, on average, there were 10 unresolved

security weaknesses in all of the projects – there were, on

average, 95 security weaknesses found in each project. We

observed that, on average, developers had taken 88 days to

fix a security weakness. In the remainder of this section, we

present a finer-grained analysis highlighting inefficacies found

in vulnerability remediation on JavaScript projects.

The focus of this study is to highlight the importance of

source code analysis for understanding the efficacy and current

status of vulnerability remediation. Prior work has filtered se-

curity patches based on commit messages and analyzed higher-

level factors such as their success rate, time taken to react to a

vulnerability, etc [16]. Our novel methodology, however, lets

us collect data at a finer-grained level to understand better

insights and gain a holistic view.

A. Bad Fixes

At the heart of the vulnerability remediation is fixing a

vulnerability. The success of the entire vulnerability analysis

of an organization depends on how quickly and successfully

a given vulnerability is fixed. Alomar et al. [10] found that

many industry experts have voiced concerns about the lack

of success in fixing bugs due to a variety of reasons such as

the lack of knowledge on fixing a given vulnerability, staffing

or budget issues, lack of proper attention to remediation, and

third-party dependencies.

To quantify this argument, we used our novel automated

pipeline to filter out commits that have fixed a vulnerability

and to understand the success of the remediation. Fix commit
is a commit that is responsible for removing a vulnerability

from the code base; hence we believe that one of the main

objectives of that commit is to fix a prior vulnerability. Li et

al. found that in some cases, there multiple attempts to fix

a vulnerability [16]. In our analysis, we only count the final

attempt that fixed the vulnerability ignoring prior unsuccessful

attempts. Hence, the numbers we present could be a lower

bound to the issues we raise.

B. Developer’s Role

A critical question in this issues is to understand factors that

push developers to introduce new vulnerabilities in the pro-

cess of fixing another vulnerability. Answering that question

requires significant working hours to analyze code changes.

Understanding why a fix went wrong is also answering the

question of developers’ role in this eco-system. There is a

rich line of work on understanding developers, security testers,

security advice on the internet [23], [25]. Literature lacks work

on understanding why developers fail to fix vulnerabilities.

We, however, manually inspected ten randomly picked in-
tro+fix commits. When manually inspecting these ten commits,

we identified seven commits where the author has fixed the

189

vulnerability, and, part of that fix has introduced another

vulnerability because the author has either renamed the file

containing the vulnerability or refactored the vulnerable code

to another file. Upon inspecting two other commits, which

from the random sample of intro+fix commits, we identified

an instance where the author tried to fix it by moving the

vulnerable piece of code from the initially identified vulnerable

file to another file as a modified function. Which, in return,

resulted in another vulnerability. The remaining commit con-

tained no relationship between its fix and the newly introduced

vulnerability. While these commits won’t give us a the full

picture, this manual analysis shows that inability to properly

fix a vulnerability could be tip of the ice among host of

security related developer issues.

Our automated pipeline can delve into more developer

centric statistics on this issue. Based on our analysis, we

found that in some projects, as much as 5% of developers

are responsible for intro+fix commits introducing more vul-

nerabilities. Out of all the intro+fix commits, 80% of the

time, the intro commit and the intro+fix commit that was

supposed to fix the original vulnerability were pushed by the

same developer. This is a good sign in terms of developers

taking ownership of the code that caused the vulnerability in

the first place. However, further investigation is required to

better understand why they could not fix the vulnerable code

properly, fixing their own mistakes. Among the developers

responsible for intro+fix commits, 6.8% of them have pushed

such code changes to multiple projects – it is imperative to

take necessary steps to understand this phenomenon and find

approaches to help developers to write secure code.

C. Security Posture

Alomar et al. found that many organizations lack a properly

defined vulnerability remediation framework [10]. Such a

framework would help testers and triagers of vulnerability

reports to prioritize new vulnerabilities to fix them based

on business requirements and predefined set of rules. They

have also mentioned that the lack of proper internal testing

before production or, bug bounty program, would make testing

approach less effective.

We compared the published data of CWEs and the date of

the intro commit that pushed the vulnerable code to check

whether the vulnerable code could have been avoided. We

found that 78% of the time, developers have pushed a publicly-

disclosed vulnerability to the codebase. We also found that, on

average, projects have repeated 75% of vulnerabilities. This re-

iterates the above fact that even naive internal testing could

have avoided a significant portion of vulnerabilities. From a

software engineering perspective, proper development tools

could have also helped the developer find those weaknesses

before pushing the changes to avoid costly security testing or

costlier security breaches.

We also found that 50% of the time, developers pushed a

fix while there were other high severity weaknesses in the

codebase. While this could happen due to many legitimate

reasons such as high severity weaknesses could take longer to

fix or they might have followed the chronological order of the

weaknesses. However, if none of the above two reasons are

applicable, then the organizations should have a mechanism

to prioritize weaknesses to fix.

V. DISCUSSION

This study’s main objective is to showcase the feasibility of

using the source code analysis to answer some of the critical

security questions at the intersection of software engineering

and software security. Based on the results presented in this

paper, we show that issues recently raised in the literature on

vulnerability remediation can be quantified. This quantification

has many implications on software security, software develop-

ment tools, and internal security testing. We present a brief

discussion on future research avenues along those lines.

Recently Alomar et al. found that vulnerability remediation

not only lacks proper attention but also can mute any progress

made in vulnerability discovery techniques [10]. Their study

participants mentioned that fixing a vulnerability could be as

hard as finding them for reasons such as lack of knowledge,

lack of details with the vulnerability report, etc. Our quan-

tification of the remediation process has shown that fixing a

given vulnerability one-fifth of the time has gone from bad to

worse by introducing more vulnerabilities to the codebase. The

literature lacks any quantifications on this issue, and lack of

data makes it hard to prove this issue and encourage developers

to be more secure in development.

Our novel source code analysis pipeline can provide in-

teresting insights into other aspects of the above-mentioned

vulnerability remediation issue. Source code analysis will

reveal more insights into hidden patterns behind failed vulner-

abilities fixes. While we only manually examined ten intro+fix
commits, more work is needed to understand patterns and

possibly figure out the reasons behind those failures. In seven

out of ten manually-analyzed intro+fix commits, the code

supposed to fix a prior vulnerability has directly contributed

to a new set of vulnerabilities.

In the manual analysis, we found out that seven out of

ten intro+fix commits have been created because the commit

author has changed the file name or has refactored the code.

The vulnerability in one file is identified as fixed, and a new

vulnerability is introduced in the new file. Moving forward, we

have to devise ways to detect code refactoring automatically.

That will reduce incorrect labeling of commit fixes.

Understanding finer grained failure patterns in the code will

helpt to understand developer failure. Prior work has looked

into writing secure code and getting security to advise on the

web [23], [25]. Our work brings out a different avenue on

understanding why developers fail to fix vulnerabilities. It is

an important question to investigate to find a practical solution

to the remediation issues. Source code analysis will be at the

center in understanding current failure patterns before reaching

out to developers to understand their side of the stories.

Understanding the impact of using proper tools to avoid

pushing buggy code is important. The literature on software

security is filled with new security vulnerabilities, but little has

190

been studied from the software development side on how to

deploy these techniques to help developers to write secure code

and avoid vulnerabilities in the first place. We found that 78%

of all discovered security vulnerabilities were publicly known

at the time of the commit. If the developers had proper tools

to scan the code changes, costly release fixes or data breaches

could have been avoided.
Another critical aspect of the source code analysis is un-

derstanding and quantifying the security posture of an organi-

zation. The capability maturity model in software engineering

defines different levels based on the maturity of the software

development processes [18]. We envision quantifiable security

issues we uncover from source code analysis can be used to

define a maturity model for an organization. Observations such

as lack of proper internal security testing, lack of processes

to avoid the repeated occurrence of the same vulnerability,

and proper developer training can be used to understand and

potentially rate the organizations for their maturity.
We believe that the public has much to gain from our

automated analysis; hence we have opened our analysis to the

public through a real-time dashboard displaying our analysis6.

We envision this to grow to cover a significant portion of

public repositories; hence, the public can be informed about

many public repositories’ security posture. We also envision

incorporating developer statistics per user and project, giving

developers the incentive to be conscious in writing code.
We presented a novel automated pipeline to uncover In-

tro commits, and Fix Commits. This approach can be used

to answer many timely-needed research questions such as

quantifying vulnerability remediation issues, understanding

remediation failures, understanding developer failures in fixing

vulnerabilities, etc. We believe most of these new directions

will bring the research community a step closer to help

organizations to have a secure development culture.

REFERENCES

[1] “CodeQL for research.” [Online]. Available:
https://securitylab.github.com/tools/codeql

[2] “Common Vulnerabilities and Exposures.” [Online]. Available:
https://cve.mitre.org/index.html

[3] “Common Weakness Enumeration.” [Online]. Available:
https://cwe.mitre.org/

[4] “GitHub REST API.” [Online]. Available:
https://docs.github.com/en/rest

[5] “JavaScript queries.” [Online]. Available:
https://help.semmle.com/wiki/display/JS/

[6] “National Vulnerability Database.” [Online]. Available:
https://nvd.nist.gov/

[7] “OWASP top ten.” [Online]. Available: https://owasp.org/www-project-
top-ten/

[8] “QL language.” [Online]. Available: https://help.semmle.com/QL/ql-
handbook/about-the-ql-language.html

[9] M. Alohaly and H. Takabi, “When do changes induce software vulnera-
bilities?” in 2017 IEEE 3rd International Conference on Collaboration
and Internet Computing (CIC). IEEE, 2017, pp. 59–66.

[10] N. Alomar, P. Wijesekera, E. Qiu, and S. Egelman, “”you’ve
got your nice list of bugs, now what?” vulnerability discovery
and management processes in the wild,” in Sixteenth Symposium
on Usable Privacy and Security (SOUPS 2020). USENIX
Association, Aug. 2020, pp. 319–339. [Online]. Available:
https://www.usenix.org/conference/soups2020/presentation/alomar

6https://apd.niweera.gq

[11] S. Frei, M. May, U. Fiedler, and B. Plattner, “Large-scale vulnerability
analysis,” in Proceedings of the 2006 SIGCOMM Workshop on
Large-Scale Attack Defense, ser. LSAD ’06. New York, NY, USA:
Association for Computing Machinery, 2006, p. 131–138. [Online].
Available: https://doi.org/10.1145/1162666.1162671

[12] Q. Hanam, F. S. d. M. Brito, and A. Mesbah, “Discovering bug
patterns in javascript,” in Proceedings of the 2016 24th ACM
SIGSOFT International Symposium on Foundations of Software
Engineering, ser. FSE 2016. New York, NY, USA: Association
for Computing Machinery, 2016, p. 144–156. [Online]. Available:
https://doi.org/10.1145/2950290.2950308

[13] K. Hogan, N. Warford, R. Morrison, D. Miller, S. Malone, and J. Purtilo,
“The challenges of labeling vulnerability-contributing commits,” in 2019
IEEE International Symposium on Software Reliability Engineering
Workshops (ISSREW). IEEE, 2019, pp. 270–275.

[14] N. Imtiaz, B. Murphy, and L. Williams, “How do developers act on static
analysis alerts? an empirical study of coverity usage,” in 2019 IEEE 30th
International Symposium on Software Reliability Engineering (ISSRE),
2019, pp. 323–333.

[15] S. Kim, T. Zimmermann, K. Pan, and E. J. J. Whitehead, “Automatic
identification of bug-introducing changes,” in Proceedings of the
21st IEEE/ACM International Conference on Automated Software
Engineering, ser. ASE ’06. USA: IEEE Computer Society, 2006, p.
81–90. [Online]. Available: https://doi.org/10.1109/ASE.2006.23

[16] F. Li and V. Paxson, “A large-scale empirical study of security patches,”
in Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, 2017, pp. 2201–2215.

[17] A. Meneely, H. Srinivasan, A. Musa, A. R. Tejeda, M. Mokary,
and B. Spates, “When a patch goes bad: Exploring the properties
of vulnerability-contributing commits,” in 2013 ACM/IEEE Interna-
tional Symposium on Empirical Software Engineering and Measurement.
IEEE, 2013, pp. 65–74.

[18] M. C. Paulk, B. Curtis, M. B. Chrissis, and C. V. Weber, “Capability
maturity model, version 1.1,” IEEE software, vol. 10, no. 4, pp. 18–27,
1993.

[19] K. Peguero, N. Zhang, and X. Cheng, “An empirical study of the
framework impact on the security of javascript web applications,” in
Companion Proceedings of the The Web Conference 2018, ser. WWW
’18. Republic and Canton of Geneva, CHE: International World Wide
Web Conferences Steering Committee, 2018, p. 753–758. [Online].
Available: https://doi.org/10.1145/3184558.3188736

[20] H. Perl, S. Dechand, M. Smith, D. Arp, F. Yamaguchi, K. Rieck, S. Fahl,
and Y. Acar, “Vccfinder: Finding potential vulnerabilities in open-source
projects to assist code audits,” in Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security, 2015, pp. 426–
437.

[21] V. Piantadosi, S. Scalabrino, and R. Oliveto, “Fixing of security vul-
nerabilities in open source projects: A case study of apache http server
and apache tomcat,” in 2019 12th IEEE Conference on Software Testing,
Validation and Verification (ICST). IEEE, 2019, pp. 68–78.

[22] L. Prechelt and A. Pepper, “Why software repositories are not used
for defect-insertion circumstance analysis more often: A case study,”
Information and Software Technology, vol. 56, no. 10, pp. 1377–1389,
2014.

[23] E. M. Redmiles, S. Kross, and M. L. Mazurek, “How i learned to be
secure: a census-representative survey of security advice sources and
behavior,” in Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security, 2016, pp. 666–677.

[24] G. Rodrı́guez-Pérez, G. Robles, A. Serebrenik, A. Zaidman, D. M.
Germán, and J. M. Gonzalez-Barahona, “How bugs are born: a model
to identify how bugs are introduced in software components,” Empirical
Software Engineering, pp. 1–47, 2020.

[25] D. Votipka, K. R. Fulton, J. Parker, M. Hou, M. L. Mazurek,
and M. Hicks, “Understanding security mistakes developers
make: Qualitative analysis from build it, break it, fix it,”
in 29th USENIX Security Symposium (USENIX Security 20).
USENIX Association, Aug. 2020, pp. 109–126. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity20/presentation/votipka-
understanding

[26] Z. Yin, D. Yuan, Y. Zhou, S. Pasupathy, and L. Bairavasundaram, “How
do fixes become bugs?” in Proceedings of the 19th ACM SIGSOFT sym-
posium and the 13th European conference on Foundations of software
engineering, 2011, pp. 26–36.

191

