
The Role of Implicit Conversions in Erroneous
Function Argument Swapping in C++

Richárd Szalay, Ábel Sinkovics, Zoltán Porkoláb
Department of Programming Languages and Compilers

Faculty of Informatics, Eötvös Loránd University
Budapest, Hungary

szalayrichard@inf.elte.hu, {abel,gsd}@elte.hu

Abstract—Argument selection defects, in which the program-
mer has chosen the wrong argument to a function call is
a widely investigated problem. The compiler can detect such
misuse of arguments based on the argument and parameter
type in case of statically typed programming languages. When
adjacent parameters have the same type, or they can be converted
between one another, the potential error will not be diagnosed.
Related research is usually confined to exact type equivalence,
often ignoring potential implicit or explicit conversions. However,
in current mainstream languages, like C++, built-in conversions
between numerics and user-defined conversions may significantly
increase the number of mistakes to go unnoticed. We investigated
the situation for C and C++ languages where functions are defined
with multiple adjacent parameters that allow arguments to pass
in the wrong order. When implicit conversions are taken into
account, the number of mistake-prone function declarations
significantly increases compared to strict type equivalence. We
analysed the outcome and categorised the offending parame-
ter types. The empirical results should further encourage the
language and library development community to emphasise the
importance of strong typing and the restriction of implicit
conversion.

Index Terms—static analysis, function parameters, argument
selection defect, type safety, strong typing, error-prone constructs,
C++ programming language

I. INTRODUCTION

In statically typed programming languages, each parameter

of a function is given a type, and the compiler is responsible

for ensuring that only expressions of the expected type are

given as argument.1 Unfortunately, the detection mechanisms

in compilers are defeated if multiple parameters are declared

adjacent to each other with the same type. A swap of adjacent

arguments at a call site slips through semantic checks as

the types of the swapped arguments still match the inter-

face specified. Given a function fn(int x, int y), both

fn(1, 2) and fn(2, 1) are valid calls. In addition, due

to implicit conversions that are possible in various mainstream

programming languages, such as C++, fn(1.5, 3) is also

a valid call, even though the function is not directly taking

This work presented in this paper was supported by the European Union,
co-financed by the European Social Fund in project EFOP-3.6.3-VEKOP-16-
2017-00002.

1In line with the literature of the field, we will refer to formal parameters
appearing in functions’ declarations and definitions as parameters, while the
expressions from which actual parameters are calculated will be referred to
as arguments.

floating-point values. Developers often use the identifier name

of the parameter to convey semantic information about the

values expected in place of a parameter. While research has

been done on understanding natural language for multiple

aspects of the software, including identifiers names [1]–[3], the

semantic information conveyed by the identifiers themselves

are not considered by virtually any compilers of mainstream

languages.

Various issues might arise in case the developers inade-

quately pass arguments to functions and do not get a diagnostic

about it from the compiler. Run-time issues might cause

unexpected results and incorrect execution which could lay

hidden unless extensive functional and integration testing is

performed, or worse, a trouble report is raised by users or

customers affected by the issue. Inadequately typed function

parameters hinder the program’s maintainability, as any devel-

opment or understanding effort is set back by questioning why

a particular expression was passed to a particular parameter

even though the types match. These issues are hard to identify

within traditional development pipelines, unless, on top of

testing the program’s behaviour, tools specific to these cases

are employed. Several tools considering the names of argu-

ments and parameters are discussed in Section II. However, by

employing language features, the programming interfaces of

software projects can be made more resilient against argument

selection defects.

We sampled the Internet for results of argument swaps

reported to cause issues. Such a case was an argument swap

issue in the GCC compiler’s implementation to a particular

architecture had two integer arguments of the same type re-

versed in a subtraction [4]. While not C++ code, a mixed string

replace issue was found hidden in LLVM’s build system [5].

Regular expression libraries commonly take the needle and

haystack parameters as just strings, and as such, allow for

such issues to go undetected by the compiler. In addition, in

the Mozilla Firefox browser, a function taking a number and a

boolean was called with the arguments reversed [6]. However,

in this case, the two parameters did not have the same type.

C and C++ allow for implicit conversions between types, the

risks of such argument swaps are not investigated in earlier

literature.

In this paper, we present an automatic static program anal-

ysis rule that diagnoses function definitions that contain mul-

192

2020 IEEE 20th International Working Conference on Source Code Analysis and Manipulation (SCAM)

2470-6892/20/$31.00 ©2020 IEEE

tiple adjacent parameters which have the same type. Targeting

definitions instead of call sites has the benefit that it warns

the developers for an error-prone interface already during the

function’s development. The main additional contribution is

that we also consider potential implicit conversions from one

parameter’s type to the other – a problem which was not

evaluated in previous literature. The rule can be applied with

minimal effort, as it only uses the source code, and no domain-

specific information is required from the user. Our particular

implementation was developed on top of the LLVM/Clang

Compiler Infrastructure project. Given the reliance on a well-

known compiler, the analysis can be integrated directly into

active development, assuming the project can be compiled with

Clang.

We measured open-source C and C++ projects of various

scale and domain to obtain results on how function interfaces

might be misused. We found that considering implicit conver-
sions between the parameters’ types, the number of potential

mistakes increases markedly. Implicit conversions are a feature

of the language that is generally never warned about by the

compiler, further allowing potential misuses to go unnoticed.

Although our analysis is applicable for investigating existing

projects, the main goal of the rule is to prevent the creation

of possibly error-prone code constructs early on in a project’s

design phase.

This paper is organised as follows. We discuss prior litera-

ture related to the topic of function parameters and argument

selection defects in Section II. We define and detail the main

target of our analysis rule, type-equivalent parameter ranges in

Section III. Implicit conversions as a language feature and their

theoretical effects on the results are presented in Section IV. In

Section V, we discuss our empirical findings on various open-

source projects. Potential solutions to the problem are given

in Section VI. Restrictions of this research are mentioned in

Section VII. Conclusions are drawn in Section VIII.

II. RELATED WORK

The fact that compilers do not give any semantic worth

to human-written identifiers had been identified as an issue

of code comprehension and refactoring efforts. Several works

discuss how poorly chosen identifier names, including formal

function parameters, hinder code comprehension [7]. Multiple

kinds and contexts of identifier names have been studied in [8].

A paper by Caprile and Tonella [9] discusses how function

names are constructed, and that semantic information – lost

to compilers and purely syntactic tools – is encoded in the

name. Their subsequent work in [10] proposes a method for

automatically standardising identifier names. Selecting good

arguments to function calls has been studied by Zhang et

al. [11]. They showed an automated technique, Precise, which

suggests arguments at a call site based on a database of calls

to the same library from other existing code.

The problem of a potential mismatch between formal pa-

rameters and passed arguments slipping through the semantic

checks of the compiler had also been studied before. Pradel

and Gross [12] emphasise the power of type checking systems

with regards to finding anomalies in arguments passed to

function calls. The anomaly manifests as multiple arguments

of compatible types passed out of order. They developed an

automated tool that requires no additional knowledge apart

from the source code of the project itself. It works by

gathering information of all call sites for each function. If

argument names at a particular call site are unlike than all

other call sites, a warning is issued. They have analysed their

approach on a sizeable real-life corpus of Java applications

and found good precision for the detection of anomalies. A

subsequent paper [13] expands upon the previous work by

applying their tool for finding anomalies on more Java and C

programs, showing that the problem is not restricted to just

Java. The authors improved the accuracy of their method.

They also included an additional feature in their tool that

searches insufficiently named parameters. Parameters’ names

are deemed insufficient if most calls to a function agree on a

particular nomenclature, but it differs from the names of the

parameters themselves.

Liu et al. [14] investigated the connection between formal

parameter names and the names of arguments passed, and

concluded in their empirical study that the similarity in most

cases takes the two extremities: either very high (almost or

precisely the same), or very low (dissimilar). Their study

was run on 60 real-world Java programs. They also studied

their approach for two use cases: for suggesting renames of

misnomers inferred from the call sites, and for selecting a

different argument at a call site, with high precision. This work

compares arguments at one call site with the parameters of the

called function, and most parts work across all arguments of

the function with no regards to type. The suggestion of better

matching arguments does consider type conformity.

Extending these works, Rice et al. [15] have integrated an

automated check for argument mismatches to their develop-

ment pipeline at Google Inc. and evaluated their implementa-

tion on substantially sized corpora of Java projects spanning

200 million lines of code, including proprietary and open-

source. They measured the relative power of string distance

functions by hand labelling a test set of ∼ 4000 pairs of

argument–parameter names to fine-tune the distance functions’

thresholds. The paper discusses 84 true positive findings on

real projects, one of which was a severe security vulnerability

that had laid dormant for more than two years. They also found

that the probability of an argument selection anomaly increases

quickly once a method has more than 5 parameters. Similar

approaches using string distance functions were implemented

in [16], [17] to warn about potential swapped arguments for

function calls with the help of compiler tools for C and C++

projects.

Our approach is similar to the works of Pradel, Liu, and Rice

in using accurate semantic information obtained from com-

pilers. However, their works contain an explicit precondition

that arguments and parameters must be named, or calculated

from the surrounding context in some fashion. This is a severe

restriction, as it excludes all function calls where literals are

passed, such as fn(1, 2). Butler et al. [18] described means

193

to extract meaningful identifier names from Java source code.

These works fall into the same domain as our paper, but they

all attempt at warning developers for mistakes already made,

whereas our paper suggests taking a defensive design and

leverage the type system.

The most notable case in the C and C++ world where

name-based analysis is insufficient is from the “memset bug
family”. The function’s signature is void* memset(void*
buf, int value, size_t num). It sets num bytes in

the provided buf buffer to the given value. While there

are plenty of issues related to memset, one particular to our

paper is the potential to swap the two numeric arguments, that

is, to call the function as memset(&t, sizeof(T), 0),

which will result in no changes. No argument names appear

in this swapped call, and even if a heuristic “names” the

second argument size, the name of the second parameter

is distinct from “size”. A memset-related bug fix pops up

recurringly, and it is such a problematic interface with a high

chance of misuse that dedicated analysis rules [19], [20] exist

to match memset’s case specifically. While it is unlikely that

a standard library function dating back several decades will

ever be changed, a highlight of type-based analysis is that

it can warn immediately for a potentially offending function,

prompting a potential clarification of the design. Our approach

would warn about this in the code that defines memset.

There are several works in the literature that discuss the

automated, tool-driven synthesis of type constraints. Guo et

al. [21] detail how run-time interaction between variables

can be used to infer similarities in the concept represented

by some variables, and thus unite these variables to have a

common, shared type. Hangal and Lam [22] propose a tool

that automatically corrects errors in Java programs related to

dimensionality – e.g. using an integer variable representing a

square number (such as area) for a scalar (such as length)

parameter. This tool does interprocedural context-sensitive

analysis and infers possible dimensions or units for variables

from their usage points. RefiNym [23] is an automated un-

supervised learning tool that models the flow of values and

expressions from one variable to the other and suggests more

fine-grained types based on the information gathered.

These works may, in the future, serve as further steps to take

for making software more type-safe. Combining our analysis

and previous works discussed, one can obtain a set of “pain

points” on which these inferring tools can target.

Chrono, the C++11 standard library for representing time

and duration, is related to our work in terms of leveraging the

type system to express and enforce dimensions and similar

to [22]. Chrono can be viewed as a solution that aimed to solve

some issues discussed in this paper for a particular domain.

Other solutions that enforce dimensionality through the type

system also exist for physical units [24].

The problem applies to other mainstream programming

languages with varying degree. For example, in Scala the set

of possible implicit conversions is broader than in C++ as Scala

allows implicitly converting the instance before member access

is performed [25], [26]. On the other hand, Rust supports no

notion of implicit conversions [27], [28].

Several well-known guidelines, restrictions, and domain-

specific spin-offs for C or C++ such as MISRA C [29] or the

SEI-CERT secure coding guidelines [30] contain rules that

guard against implicit conversions of numbers in any context,

not specific to function parameters.

III. TYPE-EQUIVALENT PARAMETER RANGES

We extend the scope of the problem discussed in previous

works regarding swapped or badly ordered arguments to

signatures of the called functions. There are a few critical

differences in the language’s workings and the compilation

process when Java (for which most of the related work

has been done) and C++ is compared. One difference is the

existence of separate compilation [31] in C++: the compiler

is restricted to the information contained in the translation
unit – the source file and all headers and modules included –

of the current source file being compiled; unlike Java, which

compiler is allowed to read other source files’ contents. The

names of the parameters do not form part of the symbol table,

and as such, a header file, or for C++20 a module interface unit,

may contain only the types of the parameters. Given a function

signature int fun(int, int); it is evident that any call

to this function contains a possibility for the arguments to

be swapped, as when called with the right type, the compiler

will deem the call correct. While the above signature is correct

from the language’s perspective, such constructs are extremely

rare as developers tend to write the variable names in the

header files to be able to give the extra semantic information

that is conveyable through identifier names [32].

The issue from passing arguments that are type-equivalent

in a potentially harmful order is not in itself a novel finding.

When faced with possibilities of misuse and anti-patterns,

teams, project or a broader community of developers tend

to create rules of thumb or guidelines. One such guideline

for C++ is the C++ Core Guidelines, drafted initially and cu-

rated by the creator of C++, Bjarne Stroustrup. This guideline

contains a rule named “Avoid adjacent unrelated parameters
of the same type” [33]. To our knowledge, there were no

free and open-source automated tools that check for possible

violations of this rule before. The meaning of two param-

eters being related to one another is not discussed in the

guidelines. For example, if the above fun function were

int max(int a, int b); then the parameters would be

related as swapping arguments in a call is still valid. Such a

case should not be warned about, as there is no sensible way

of resolving the “ambiguity” with changing parameter types.

We offer some heuristics to select related arguments which we

discuss in Section V.

A possibility of mixing arguments at the call site might

not be apparent at first glance. Due to language features such

as references, lifetime extension, and type aliases, a deeper

understanding of the context in which the signature appears is

necessary. While developing the static analysis rules for our

tool, we investigated the language rules to match the non-

trivial cases, such as as the one depicted in Listing 1.

194

typedef Number int;
int fn(int i, const int& iref, Number i2);

Listing 1. All three parameters of function fn are mixable with each other
at any call site, due to all three parameters binding to an argument of type
int.

Definition 1. Two parameters are mixable if there exists a
type T for which an expression of that type might bind to
both parameters’ types at a call site.

Definition 2. Given all adjacent ranges in which parameters
have mixable types with each other, the type-equivalent pa-
rameter ranges will be the longest such.

There are several language constructs in C and C++ which

require special handling when deciding whether a parameter

of a type can be mixed with another:

A. typedefs and usings

typedefs in C and C++, and the using keyword in

C++ version ≥ 11 denote type aliases. Such alias names

are interchangeable with the type referred by them. These

constructs are often employed by projects to emphasise the

different role of the same type – which is futile, as in this case,

the alias name has the same semantic power of the variable’s

identifier, and is not checked by the compiler – or to hide

platform-specific variations to a central point of a library.

B. const, volatile, restrict qualified types

Type qualifiers can be used to create variables of any type

for which the behaviour of access is changed. Qualifiers do

not extend the possible operations on a type, nor they change

the type’s representation. The C++ Core Guidelines rule in [33]

show an example where a memory copy function should take

the source parameter as const, indicating that the source

buffer should not be written to by this particular function.

However, it is possible to call such a function with two T*s,

as const only changes the behaviour inside the function.

Potential removal of qualifiers at a given call site is diagnosed

by the compiler, as a warning for C and a hard error for C++,

and as such, the bogus ordering will be made apparent to the

developer.

C. References (&, &&)

References in C++ allow creating variable symbols with

different names which all bind to the same instance in memory.

From the user’s point of view, reference variables at a point of

usage behave precisely like normal variables. We considered

the “binding power” of an expression of type T to a reference

parameter to ensure mixability is calculated correctly. A T
and a const T & parameter mix perfectly due to lifetime
extension [31], [34]. This is not true for other kinds of

references, such as non-const lvalue or an rvalue (&&) [35].

A temporary value of an expression, e.g. a function call’s

result, can not be bound to the former. A local variable which

is within its lifespan cannot be bound to the latter. Thus we

consider T & and T && as distinct types which do not mix.

struct BoundHost { BoundHost(int hostID); };
packet transmit(BoundHost host, int amount);

// Suppose two local scalars...
int H = 2130706433, s = 4096;

In C++, both orderings of arguments are valid as written.

transmit(H, s); // → 4096 bytes sent
transmit(s, H); // → 2130 million bytes sent
In Java, the conversion to BoundHost must be explicit.

// � error: "incompatible types:
// int cannot be converted to BoundHost"
transmit(H, s);

transmit(H, new BoundHost(s)); // � error!
transmit(new BoundHost(H), s);

Listing 2. Implicit user-defined conversions for C++, such as a converting
constructor can hide a possibility to select wrong order of arguments.

IV. IMPLICIT CONVERSIONS

Previous works mentioned in Section II mainly focused on

Java. While some of the works implemented type-conformity

checks, compared to Java, in C++ there is the possibility

to create user-defined implicit conversions. The issue with

implicit conversions is depicted in Listing 2: the user may pass

two ints at a call site which gives different values depending

on the order, but the type conversion is not apparent, and no

warning is emitted.

Implicit conversions are considered by the compiler if an

expression of type T1 is to be assigned a variable of type T2,

such as in the case of T2 var = makeT1();. This can be

done if and only if there is exactly one, unambiguous implicit
conversion sequence [31], which in C++17 and C++20 consists

of the following three steps:

• At most one standard conversion sequence
• At most one user-defined conversion – executing either

a suitable converting constructor or a conversion operator

• At most one standard conversion sequence
To allow modelling implicit conversions when checking for

potentially swappable parameters, the definitions in Section III

are extended as follows:

Definition 3. Two parameters of not necessarily the same type
T1 and T2 are mixable through implicit conversions if the
implicit conversion from T1 to T2 or from T2 to T1 is possible.

Implicit mixability is not a symmetric property. As an

expression of type T is always assignable to a variable of type

T , taking T1 = T2 = T gives us Definition 1. Thus, implicit

mixability is a broader set than type-equivalent mixability.

Definition 4. Given all adjacent ranges in which parameters
are mixable through implicit conversions with each other, the
implicitly mixable parameter ranges will be the longest such.

User-defined types in C can not have member methods, and

as such, no constructors or conversions may exist. In case the

195

struct FromInt { FromInt(int); };
struct ToInt { operator int(); };
enum En { x, y, z };
void f(int i, const int& ir, double d,

ToInt ti, En e, FromInt fi);

Listing 3. Example where implicit conversions are possible between most of
the parameters for the entire function. For the two structs, only one-way
implicit conversion is possible.

analysis is done for C source files, implicit conversions will

refer to the possibility of converting any numeric value to

another. We ignore the potential numeric conversion between

pointers of any T * to an unrelated U *. This case is

diagnosed by a compiler as a warning in C and had been

made an illegal operation in C++. An example of Definition 4

is depicted in Listing 3.

A. Standard conversions

Standard implicit conversions may have up to 4 steps,

in order: lvalue transformation, numeric conversion, function
pointer conversion and qualification adjustment. At most one

of each step might be present in a standard conversion
sequence. Lvalue transformation (e.g. array-to-pointer conver-

sions) and function pointer conversion (assigning a function

pointer denoted as “may throw” to a noexcept, not throwing

function) steps are not relevant for our paper – in case these

steps were needed to take place at a parameter passing, they

will take place also if the order at a call site is swapped. Quali-
fication adjustments are handled as discussed in Section III-B.

Numeric transformations are further broken down to two

categories, promotions and conversions. The distinction be-

tween the two is that promotions preserve value, while con-

versions may truncate the value of the expression at hand.

Other aspects of this distinction – such as how overload

resolution prefers to select the function to which the argument

maps with a promotion – are not relevant for our study.

Numeric transformations refer to the rules that any integer or

floating-point number may be converted to any other integer or

floating-point number, at any point deemed necessary, giving a

two-way passage between any “number”. For C++ enums, the

enumeration constant is always convertible to an integral or

floating-point number. This is not true for scoped enumerations
(enum struct or enum class), which are not implicitly

convertible in any direction. For C enums, the conversion

from a number to the enumeration constant is also possible.

Upcasting a derived type’s pointer to the base class is also

defined as a numeric conversion.

B. User-defined conversions

User-defined conversions take the form of converting con-
structors (depicted in Listing 2) and conversion operators
(depicted in Listing 4). At most one of such method can be

executed as part of an implicit conversion attempt. By applying

the explicit keyword on a conversion method, the library

developer can specify that the method must not be part of an

struct Complex {
Complex(float Re, float Im);

};
struct Int {
int value;
Int(Complex c) { value = c.Re; }
operator Complex() const {
return Complex(value, 0);

}
};

Listing 4. Conversion operators allow for a type to define how it converts to
another type. It should be noted that passing the two arguments to Complex’s
constructor in itself contains an implicit conversion from int to float.

implicit conversion sequence. This applies to all cases where

the now-disabled conversion method would fit.

V. EVALUATION

We created a practical implementation [36] for the analysis

built on top of the open-source LLVM/Clang compiler infras-

tructure [37], which allowed us to find and report occurrences

of the problem automatically. The implementation works by

checking function definitions in the project and calculating

whether two parameters could be mixed at a call site based

on their type. These diagnostics reports are written in a user-

friendly way, and thus, the checker can be easily integrated

into continuous integration (CI) systems. The analysis rule is in

the process of being reviewed and accepted into the upstream

Clang code at the time of writing this paper. A sample of

open-source projects was analysed from medium to large scale,

encompassing various domains from system tools to machine-

learning image processing libraries. The system requirements

of the analysis is consistent with other compiler-based tools,

taking 10 to 60 seconds for each project – excluding LLVM

itself, which took 33 minutes – on a 24-core system.2

A. How many functions are affected?

A detailed breakdown of the number of functions that have

mixable adjacent parameters based on the parameter types

is shown in TABLE I. We compared different configurations

corresponding to different levels of relaxation in the rules.

Users of the analysis can toggle between these relaxations to

fine-tune the strictness.

We only considered and evaluated findings from functions

which are defined in files of the project analysed – functions

from headers included as “system headers”, usually those from

third-party libraries, are ignored. Similarly, we ignored all

findings that are of functions taking pairs of iterators, which is

a common cause of two adjacent parameters being swappable

with each other.3 Typed variadic functions are treated with

their variadic parameter counted as a single parameter.

2Most of the time spent is for the compiler’s semantic analysis, which is
irrespective of our specific rule, which needs parsed representation first.

3At the time of writing, a proposal labelled Ranges is on track for inclusion
into the next release of C++, currently set to be C++23, which will allow
replacing pairs of same-type iterators with a single parameter.

196

TABLE I
DETAILED BREAKDOWN FOR THE NUMBER OF FUNCTIONS MATCHED, ACROSS VARIOUS CONFIGURATIONS.

Lang. Project Functions
considered

N (Normal) CV (Section III-B) Imp (Section IV) CV ∪ Imp

T
(total)

R
(without
related)

T +
vs. N R T +

vs. N R T +
vs. CV

+
vs. Imp R

C

curl [38] 875 134 73 153 19 84 210 76 138 229 76 19 149
git [39] 5 721 1 428 626 1 477 49 654 1 610 182 771 1 660 183 50 798
netdata [40] 780 236 110 119 18 119 304 68 173 320 66 16 181
PHP [41] 6 310 1 272 644 1 306 34 659 1 515 243 831 1 548 242 33 846
Postgres [42] 9 506 2 705 1 314 2 817 112 1 365 3 721 1 016 2 116 3 837 1 020 116 2 167
Redis [43] 2 834 589 242 628 39 257 700 111 332 744 116 44 351
TMux [44] 1 043 250 108 261 11 113 300 50 158 308 47 8 163

C++

Bitcoin [45] 1 969 422 146 440 18 156 723 301 313 745 305 22 326
guetzli [46] 165 81 35 84 3 37 83 2 39 91 7 8 46
LLVM/Clang [37] 36 804 7 635 2 638 7 714 79 2 677 9 376 1 734 3 754 9 592 1 869 214 3 865
OpenCV [47] 11 760 5 162 2 175 5 456 294 2 300 6 064 895 2 903 6 352 889 288 3 032
ProtoBuf [48] 2 038 339 128 343 4 129 424 85 198 433 90 9 204
Tesseract [49] 1 841 754 331 758 4 332 850 96 428 857 99 7 431
Xerces [50] 1 655 492 196 508 16 200 555 69 241 671 163 116 299

• In Normal mode, only exact type-equal ranges are

matched, with typedefs and references (Sections III-A

and III-C) always diagnosed.

• CV mode allows mixing types that only differ in their

qualifiers (Section III-B), e.g. int, const int
• Imp mode enables calculating and considering implicit

conversions (Section IV), e.g. double, int
• In CV ∪ Imp mode, both relaxations are enabled, e.g.

the following are mixable: double, const int

Unfortunately, there are functions which cannot be reason-

ably changed to guard against swaps. In accordance with the

C++ Core Guidelines rule [33] we implemented some heuristics

to filter out functions where only related parameters are

mixable. These are our heuristics – the Guideline at the time

of writing this paper does not detail what predicates should

be used. We defined the following criteria for relatedness:

• Parameters which appear in the same expression – such as

an assignment, a comparison, a function call – together,

such as f(a, b), which takes care of the most common

case of direct relatedness, such as the max function.

• Parameters which are passed to another function’s same

parameter, but on different code paths, such as f(a) and

f(b), which filters out forwarding or dispatching.

• Parameters which are returned inside the function on

different code paths. This also helps filter out dispatchers,

and selector functions which return one or the other of

their parameters based on program state.

Users may toggle relatedness-checking for their project as

they see fit. When two, otherwise mixable, parameters are

deemed to be related, the equivalency set (see Definition 2)

is split. The R columns in TABLE I indicate the number of

functions that are still mixable, despite related parameters. On

average, a 40% reduction of report count was achieved, which

is beneficial in an industrial setting where analyses necessarily

let false negatives slip through for the benefit of culling false

positives [51]–[53] and allowing developers to spend their time

better.

2 3 4 5 ≥ 6
1

10

100

1,000
857.43

129

34.14

7.14

9.8

1,034.86

207.14

67.57

21.29 21.17

range length

n
u

m
b

er
o

f
fi

n
d

in
g

s
(a

v
g

.)

2 3 4 5 ≥ 6
1

10

100

1,000

1,924.57

302.43

117.57

31.83
43.2

2,243.57

465.57

179.14

56.86
71.29

n
u

m
b

er
o

f
fi

n
d

in
g

s
(a

v
g

.)

Fig. 1. Count of findings by length of mixable adjacent parameter range,
averaged across the analysed projects. Filled columns depict normal mode,
striped columns depict CV and implicit modelling turned on. The above
picture is for C; the below is for C++ projects.

197

TABLE II
NUMBER OF REPORTED RANGES HAVING A PARTICULAR LENGTH FOR C AND C++ PROJECTS. THE max. COLUMN INDICATES THE LONGEST FINDING, IF

≥ 6. N - NORMAL MODE, CI - CV AND implicit conversions CONSIDERED (SEE SECTIONS III-B, IV)

Project 2 3 4 5 ≥ 6 (max.)
N CI N CI N CI N CI N CI N CI

curl [38] 125 212 12 19 5 8 1 2
git [39] 1 337 1 521 145 214 50 65 2 6 3 6 6 7
netdata [40] 206 264 37 56 10 16 5 9 9 15 12 12
PHP [41] 1 085 1 263 221 294 33 56 4 12 6 8
Postgres [42] 2 510 3 112 371 714 108 269 26 93 31 88 9 20
Redis [43] 535 626 75 103 14 32 5 21 1 5 6 7
TMux [44] 204 246 42 50 19 27 7 6 5 7 7 7

Bitcoin [45] 345 623 82 107 14 39 3 8 1 5 6 7
guetzli [46] 75 71 17 18 8 9 1 4 2 7
LLVM/Clang [37] 7 191 8 571 764 1 258 194 375 58 127 29 77 13 13
OpenCV [47] 4 461 4 789 1 056 1 604 513 687 118 226 157 371 20 21
ProtoBuf [48] 315 369 23 54 5 15 1 3 7 7 10 11
Tesseract [49] 652 678 123 156 58 85 10 26 22 36 11 11
Xerces [50] 433 604 52 62 31 44 4 1 6

B. How long are the mixable ranges?

Reports of ranges of length 2 are the most prevalent across

all projects and configurations, making up more than half of

the total findings. These results are consistent with findings

in related works (see Section II) [13], [15], [17] employing

name-based analysis to find ordering issues, where single

adjacent arguments’ swaps were the majority of noteworthy

findings. Exact counts of findings for each project for normal

– most restrictive – and CV & Implicit – least restrictive –

configurations are shown in TABLE II. The average number

of findings of a particular length is depicted in Fig. 1. We

plotted the values of C and C++ separately due to the broader

set of what is considered implicit conversions in C++. While

it is natural from the rules of the languages that relaxing the

“equal type” predicate and searching for longest subranges

result in longer ranges being matched or adjacent ranges being

joined together, the order of increment between most and least

restrictive configurations shows a powerful creep towards more

lengthy function signatures.

C. How different types contribute to the issue?

Another interesting result of our measurements is the

distribution of types that are involved in the findings. We

have investigated the parameter ranges reported and hand-

categorised the types into the following categories:

1) Fundamental numeric types are all fundamental, built-in,

“keyword” numeric types, including integers, floating-

point numbers and enumerations.

2) Custom numeric refers to other types of a single numeric

nature, such as custom precision integers (e.g. int512).

3) C arrays refer to C-style array expressions, such as

int T[].

4) Buffers refer to all types of type-erased (void*) or tem-

plate (arrayRef<T>) wrappers over buffers, including

files, and sockets, and arrays of std::byte.

C,N C,CI C++,N C++,CI
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Fundamental numeric Custom numeric C array

Buffers String Framework

Project-specific

Fig. 2. Relative cardinality of type categories. Pointers/references of T
counted as T. Uncategorised refers to user types that are specific to the project.
(N - normal mode, CI - CV and implicit conversions considered)

5) Strings refer to all parameters that take char*,

std::string or types related to string operations (like

std::string_view, etc.). We admit here that it is not

trivial to distinguish directly from the signature whether

a char* is used for a string or for a buffer of byte-sized

elements.

6) Framework types are all standard (C standard or C++ STL)

types that do not fit into the previous categories, and

every type that comes from a well-known framework

198

the project depends on – such in Bitcoin’s [45] case,

Qt.
7) The last category labelled Project-specific, is the “catch-

all” bucket where every other type – mostly user types

– are put.

Pointers or references of a type in category S are calculated

as category S. It should be noted that a non-pointer and a

pointer is never reported as mixable for clarity of results, even

for C where numbers and pointers are mixable with each other,

as compiler warnings cover this case. The relative number of

types involved in the findings for a particular configuration is

depicted in Fig. 2.

Fundamental numeric and uncategorised categories being

the two largest across the evaluation follows natural expecta-

tions. The authors were surprised that the size of the former

increases markedly for C and considerably for C++ when

implicit conversions are reported, showing that there is a

corpus of functions similar in nature to f(int a, double
b).

Our findings confirm that the level of detail in projects’

types seem insufficient to prevent misuse through poorly cho-

sen arguments. This marks the need for tools to help prevent

the mistakes happening by considering implicit conversions in

addition to type equivalence. One such tool could be name-

based analysis (see related works in Section II). However, there

are cases where name-based analysis might be inapplicable.

D. Details on noteworthy findings

A typical cause of lengthy findings is numerous bool
parameters, such in the case of LLVM/Clang’s [37] function

AnalysisDeclContextManager taking 12 toggles. Sev-

eral other functions like WriteSecHdrEntry, resolve-

Relocation take ∼ 10 numeric parameters with no restric-

tion or semantic information to be inferred from the type.

OpenCV [47] uses the types InputArray and

OutputArray as wrappers to indicate whether their

functions take input or output parameters. These types can

be constructed, according to the documentation, deliberately

from seemingly all major data structures used in the project in

an implicit fashion and should “never be used directly”.4Due

to the subtype relation OutputArray <: InputArray
holding between the classes and the copy constructor not

being explicitly deleted, there is an implicit conversion

possible from Output to Input. There are several

functions with large sets of mixable arguments resulting from

this “type erasure”: cv::rectify3Collinear takes 8
InputArrays, then a numeric type, then 4 InputArrays

and 7 OutputArrays. All matched “type-erased” arguments

have names akin to generic arguments, such as Rmat12,

Qmat. The relatedness heuristics in Section V-A break these

long ranges up to adjacent ranges of 4 or less parameters.

In PostgreSQL [42], the longest result is a function named

TypeCreate that has 20 numeric parameters adjacently.

4Quote from the documentation of cv::_InputArray in [47]: “The class
is designed solely for passing parameters. That is, normally you should not
declare class members, local and global variables of this type.”

Other functions – such as rrdset_create_custom –

do not distinguish between the various string-like arguments

received, accepting any const char*s. There are similar

matches in Tesseract OCR [49] of functions with ≥ 9 adjacent

numeric arguments. Relatedness heuristics did not filter these

extremely long cases.

VI. POTENTIAL SOLUTIONS

In the following, we will overview a few solutions that

could prove useful to disallow badly ordering similarly typed

arguments. Some of the solutions are useful in industrial-

scale projects if the developers consistently implement it,

while some are theoretical for the general situation, with

implementations existing for specific use cases.

A. Declaring forbidden overloads

The issue of implicit conversions can be side-stepped in

C++ by explicitly creating overloads that are marked with

the = delete; specifier. For example, given functions

void f(int) = delete; and void f(long) {},

calling f(42); will resolve to the deleted overload as op-

posed to performing an implicit conversion, and a compile

error will be emitted.

While theoretically such a system would disable the issue

with implicit conversion, generating all possible overloads for

all possibly affected functions is a daunting task. In addition,

it would result in code bloat by having O(n2)−1 disallowing

declarations for each pair of overloads present.

B. Explicit type aliases

One possible solution to badly ordered arguments is to make

the adjacent types incompatible with each other. An example

of wrapping two ints can be seen in Listing 5. This technique

is commonly called an explicit type alias or a semantic typedef
and works by creating a wrapper type over the wrapped type

and providing wrap and unwrap methods. There is no run-

time performance drawback of the technique, as all major

compilers optimise the relevant calls away. Once the types

of parameters are succinctly distinct, any mixed arguments

will be immediately reported by the compiler as an error. This

makes the conversion explicit in the code, similar to what is

required in Java (see Listing 2). Given the additional function

calls being optimised out and due to value semantics, the size

and behaviour of the semantic typedef instance are the same as

the single variable contained within, with no additional steps to

take at destruction. This is not the case for Java, where the heap

allocation is done, and the boxing types cause a performance

hit [54].

Semantic typedefs offer an easy and straightforward solution

but cause an explosion in the number of types visible in scope,

which may hurt compilation time and lessen development

productivity [55]. Built-in support for such language elements

is part of neither C nor C++. Other languages, such as Haskell

support a similar notion via the newtype directive. There

had been proposals [56], [57] to include opaque typedefs
for C++ but these have not make it into the language yet.

199

void drawBad(int width, int height);

struct Width {
int value;

// For C++:
explicit Width(int v) : value(v) {}
explicit operator int() const {

return value;
}
int operator()() const {
return value;

}
};
struct Height { /* Analogous. . . */ };

void draw(Width w, Height h) {
int wi1, he1 = w.value, h.value;

// Obtaining values in C++:
int wi2, he2 = w(), h();
int wi3 = (int)w, he3 = (int)h;

}

// � error: no implicit conversion
// from 'int' to 'Width'
draw(1, 2, RED);
// � compile error, type mismatch
draw(Height{2}, Width{1}, RED);
draw(Width{1}, Height{2}, RED); // � Works!

Listing 5. Transformation from the same type to a semantic typedef or
wrapping type disables mixing, potential implicit conversion and misuse at a
call site.

Similarly, Baráth and Porkoláb [58] discusses a wrapper class

over numeric conversions. The LLVM project, in which several

functions take multiple boolean parameters adjacent to each

other (see Section V-D) have been using comments to indicate

which parameter is assigned a literal value, and community

members have suggested implementing wrappers around such

instances [59].

Function signatures might commonly repeat identifier-

like phrases, such as f(ShouldFlip flip,
ShouldStretch stretch). What is more, looking

at the function declaration might not offer enough clarity –

except for a potential heuristic that lets developers assume

bool parameters from a ShouldXXX – for more complex

cases, resulting in excess navigation to the wrapper type’s

definition.

C. Strong typing

A particular issue with wrapping types is that their usage

solves only the problem of adjacent argument mix-ups. Apart

from argument-forwarding functions, the developers would al-

ways wrap and then unwrap the value, and within the business

logic of the program, the wrapped type would be used. Strong

#include <chrono>
using namespace std::chrono;
using namespace std::literals;

// Bad: prone to bad order of arguments.
bool submit_at_1(
int year, int month, int day,
int hour, int minute, int second);

// Bad: "Seconds" is not descriptive.
bool submit_at_2(double seconds);

bool submit_at_good(
time_point<system_clock, seconds> T) {

auto DLDay = 2020y / Aug / 14;
auto DLSecond = 24h - 1s; // = 86 399 sec
auto AOEDeadline = zoned_time(
"Etc/GMT+12", DLDay + DLSecond);

return T ≤ AOEDeadline.get_sys_time();
}

int main() {
// Order of arguments mixed up.
submit_at_1(11,59,59,2020,8,14);
// Semantically incorrect, yet compiles.
submit_at_2(get_milliseconds());

// � compile error: no conversion.
submit_at_good(2020);

submit_at_good(system_clock::now());
}

Listing 6. Comparing traditional, not safe versions with using stronger types
and type-safe “strong” literals for representing time and deadlines with the
chrono library. Program execution shows as exit status whether the deadline
has not been hit yet. (‘+’ sign in timezone name is inverted according to ISO
standards, “Etc/GMT+12” indicates UTC-12.)

typing [60], in which the expressive capabilities of the type

system and types used in the program is increased, has been

investigated for their effect on language design [61] and as

method to increase type coherence for persistent systems [62]

and to prevent security vulnerabilities in web applications [63].

A more actionable solution to the issue is to increase

the type safety of the project by introducing user types

and relying on the compiler to find type non-conformance

violations. It is very likely that there are hidden invari-

ants [55], [64], [65] behind most of the int or char* pa-

rameters, that are checked somewhere during execution. Such

cases could be transformed into types that ensure invariants.

One such invariant could be that a numeric value must be

within a specific range, narrower than the fundamental type

would allow. Expressing this is possible in Ada with the

Range Lower..Upper of Integer syntax [66]. An-

other case could be if there exist specific patterns a string-like

parameter must adhere to, e.g. it is a time code or a name.

200

Using stronger – from the compiler’s perspective user-defined

– types will immediately make adjacent parameters of different

invariants non-mixable.

While strong typing is a powerful solution in theory, user

and library developer-friendly generic language elements are

not widely researched. We plan to investigate the solutions in

detail as part of future work.

D. Strong literals, strong dimensions

While a generic, “one size fits all” strong typing solution

is not yet created in practice, some libraries offer elaborate

solutions with regards to units and dimensions. The most

notable example is Chrono [67], which was introduced in

C++11. Chrono applies strong types and safe conversions with

regards to date and time operation by employing C++ template

metaprogramming. In C, and pre-C++11, the only way to

represent time was to use the time_t type, which precision

and exact definition was left to the implementation to specify.5

Chrono introduced the representation of various clocks and a

versatile way of dealing with time precision. Most importantly,

instead of a single – potentially floating-point – argument

representing “the” time, the concepts of hour, minute, etc. was

added. User-defined literals6 allow expressing these concepts

in an easily readable way, such as 2020y. Listing 6 shows

an example of a “deadline checking” program. The deadline

itself is immediately readable due to the use of user-defined
literals. Employing various other features of C++, the expressive

capabilities of the code is further increased. Building upon the

foundations and success of Chrono, various other libraries,

such as one for physics dimension calculations [24] exist.

VII. THREATS TO VALIDITY

Due to restrictions in the Clang static analysis framework,

language constructs related to templates were not wholly

modelled in our study. We opted to emit the warnings at

the point of definition, as the location where any “fix” might

be applied is the definition’s source file. This presented a

challenge for templates as they are defined with generic code

often in header files, while concrete instantiations are done

by the compiler [68]. We diagnose only primary templates
and explicit template specialisations and provide no warning

for cases similar in nature to template<T, U> f(T, U)
instantiated by a call f(1, 2);. For this instantiation, T and

U are both int, but for the primary template, T and U are

distinct placeholder types.

Another case not modelled accurately and thus ignored

from the analysis is when the adjacent parameters’ types’

equivalence of convertibility may only be proved through

dependent names. The function depicted in Listing 7 contains

5It was not a requirement pre-C11 for this type to be a floating-point
number. While most implementations settled for representing time since the
UNIX epoch – either in seconds or milliseconds integer, or seconds floating-
point –, this was not mandatory either.

6In this context, user-defined refers to the literal not being defined by the
core language itself (such as 0.5f), but rather loaded from the code being
compiled – even if the code for such literals come from the Standard Template
Libarary.

template <typename T> struct vector {
typedef T value_type;
typedef const T & const_reference;

};
template <typename T>
void g(typename vector<T>::const_reference,
const typename vector<T>::value_type &);

Listing 7. A case of type-equivalent adjacent parameters through dependent
types for function g not modelled by the analysis. In many cases, the two
parameters have the same type (const T &). However, this depends on how
vector<T> is defined, there could be explicit specialisations.

the possibility of mixing up the two parameters, but this is not

diagnosed.

These issues are only causing false negatives, and do not

pose a threat to the already found functions discussed in

Section V. We plan to work with the open-source community

to refactor the framework in a way that diagnosing these cases

will be possible and accurate in the future.

Furthermore, changes in the library version in the package

manager and the development environment might change

which functions are compiled in a project, and thus which

functions are analysed.

VIII. CONCLUSION

Similarly typed parameters of functions allow for potential

misuse at call sites. These cases might go unnoticed as the

match of the types of arguments to their parameters is the

only requirement written in language specifications. Unless

extensive testing or analysis tools are employed, a real is-

sue affecting the program’s behaviour remains hidden. The

proliferation of coarse-grained types requires the usage of

descriptive identifier names, which may only be understood

by humans and experimental tools, not the mainstream devel-

opment pipeline elements.

In this paper, we presented an analysis method that detects

type-equivalent and type-similar adjacent parameter ranges.

We showed that the usage of various language features, most

importantly implicit conversions, increases the potential of

misuse markedly. The rule can immediately warn when a

function definition is found to be a carrier for potential misuse.

The analysis rule is developed on top of the LLVM/Clang

Compiler Infrastructure project’s static analysis framework,

and as such, could easily be integrated into a development

pipeline. Various integrated developer environments (IDEs),

such as Eclipse [69] or CLion [70] already integrate, or

through the Language Server Protocol [71] allow integrating

analysis tools into the same views where code is written.

While our discussion focused primarily on C and C++

programming languages, the idea can be applied to other

languages where implicit conversions might be prevalent,

such as in Scala. We hope that the empirical results further

encourage the language and library development community

to emphasise the importance of finer-grained, stronger types,

and the restriction of implicit conversions.

201

REFERENCES

[1] R. Pandita, X. Xiao, H. Zhong, T. Xie, S. Oney, and A. Paradkar,
“Inferring method specifications from natural language api descriptions,”
in Proceedings of the 34th International Conference on Software
Engineering, ser. ICSE ’12. IEEE Press, 2012, p. 815–825. [Online].
Available: http://dl.acm.org/doi/10.5555/2337223.2337319

[2] M. P. Robillard, E. Bodden, D. Kawrykow, M. Mezini, and T. Ratchford,
“Automated api property inference techniques,” IEEE Transactions on
Software Engineering, vol. 39, no. 5, pp. 613–637, May 2013. [Online].
Available: http://ieeexplore.ieee.org/document/6311409

[3] H. Zhong, L. Zhang, T. Xie, and H. Mei, “Inferring resource
specifications from natural language api documentation,” in Proceedings
of the 2009 IEEE/ACM International Conference on Automated Software
Engineering, ser. ASE ’09. USA: IEEE Computer Society, 2009, p.
307–318. [Online]. Available: http://doi.org/10.1109/ASE.2009.94

[4] andreser. (2017) _subborrow_u64 argument order
inconsistent. Free Software Foundation - GNU GCC. Accessed
2019-12-16. [Online]. Available: http://gcc.gnu.org/bugzilla/show bug.
cgi?id=81294

[5] M. Storsjö. Fix accidentally swapped input/output pa-
rameters of string(REPLACE). The LLVM Foundation.
Accesssed 2019-12-16. [Online]. Available: http://reviews.llvm.org/
rGe16434a0497bdb2da587390171a496b56f1c41b6

[6] M. Capella. (2016) Suspicious code with probably reversed parms
in call to IsSingleLineTextControl(bool, uint32_t).
Mozilla. Accessed 2019-11-23. [Online]. Available: http://bugzilla.
mozilla.org/show bug.cgi?id=1253534

[7] A. Peruma, “Towards a model to appraise and suggest identifier names,”
in 2019 IEEE International Conference on Software Maintenance and
Evolution (ICSME), Sep. 2019, pp. 639–643. [Online]. Available:
http://ieeexplore.ieee.org/document/8918988

[8] S. Butler, M. Wermelinger, Y. Yu, and H. Sharp, “Exploring
the influence of identifier names on code quality: An empirical
study,” in 2010 14th European Conference on Software Maintenance
and Reengineering, March 2010, pp. 156–165. [Online]. Available:
http://ieeexplore.ieee.org/document/5714430

[9] B. Caprile and P. Tonella, “Nomen est omen: analyzing the language
of function identifiers,” in Sixth Working Conference on Reverse
Engineering (Cat. No.PR00303), Oct 1999, pp. 112–122. [Online].
Available: http://ieeexplore.ieee.org/document/806952

[10] ——, “Restructuring program identifier names,” in Proceedings 2000
International Conference on Software Maintenance, Oct 2000, pp.
97–107. [Online]. Available: http://ieeexplore.ieee.org/document/883022

[11] C. Zhang, J. Yang, Y. Zhang, J. Fan, X. Zhang, J. Zhao, and
P. Ou, “Automatic parameter recommendation for practical api usage,”
in Proceedings of the 34th International Conference on Software
Engineering, ser. ICSE ’12. Piscataway, NJ, USA: IEEE Press,
2012, pp. 826–836. [Online]. Available: http://dl.acm.org/citation.cfm?
id=2337223.2337321

[12] M. Pradel and T. R. Gross, “Detecting anomalies in the order
of equally-typed method arguments,” in Proceedings of the 2011
International Symposium on Software Testing and Analysis, ser. ISSTA
’11. New York, NY, USA: ACM, 2011, pp. 232–242. [Online].
Available: http://doi.acm.org/10.1145/2001420.2001448

[13] M. Pradel and T. R. Gross, “Name-based analysis of equally typed
method arguments,” IEEE Transactions on Software Engineering,
vol. 39, no. 8, pp. 1127–1143, Aug 2013. [Online]. Available:
http://ieeexplore.ieee.org/document/6419711

[14] H. Liu, Q. Liu, C.-A. Staicu, M. Pradel, and Y. Luo, “Nomen est omen:
Exploring and exploiting similarities between argument and parameter
names,” in 2016 IEEE/ACM 38th International Conference on Software
Engineering (ICSE), May 2016, pp. 1063–1073. [Online]. Available:
http://ieeexplore.ieee.org/document/7886980

[15] A. Rice, E. Aftandilian, C. Jaspan, E. Johnston, M. Pradel,
and Y. Arroyo-Paredes, “Detecting argument selection defects,”
Proceedings of the ACM on Programming Languages, vol. 1,
no. OOPSLA, pp. 104:1–104:22, Oct. 2017. [Online]. Available:
http://doi.acm.org/10.1145/3133928

[16] J. Varjú. (2016) Suspicious call argument checker. source code.
The LLVM Foundation. Accessed 2019-12-27. [Online]. Available:
http://reviews.llvm.org/D20689

[17] ——, “Felcserélt függvényhı́vási paraméterek detektálása statikus el-
emzés segı́tségével (Detecting swapped arguments in function calls with

static analysis),” Master’s thesis, Eötvös Loránd University, Faculty of
Informatics, 2017.

[18] S. Butler, M. Wermelinger, Y. Yu, and H. Sharp, “Improving
the tokenisation of identifier names,” in ECOOP 2011 – Object-
Oriented Programming, M. Mezini, Ed. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2011, pp. 130–154. [Online]. Available: http:
//link.springer.com/chapter/10.1007/978-3-642-22655-7 7

[19] Google, Inc. (2009) CppLint rule: “runtime/memset”. Accessed 2019-
12-16. [Online]. Available: http://github.com/google/styleguide/blob/
gh-pages/cpplint/cpplint.py

[20] R. N. Kovács. (2017) Clang-Tidy rule: “bugprone-suspicious-
memset-usage”. The LLVM Foundation. Accessed 2019-12-
16. [Online]. Available: http://clang.llvm.org/extra/clang-tidy/checks/
bugprone-suspicious-memset-usage.html

[21] P. J. Guo, J. H. Perkins, S. McCamant, and M. D. Ernst, “Dynamic
inference of abstract types,” in Proceedings of the 2006 International
Symposium on Software Testing and Analysis, ser. ISSTA ’06. New
York, NY, USA: ACM, 2006, pp. 255–265. [Online]. Available:
http://doi.acm.org/10.1145/1146238.1146268

[22] S. Hangal and M. S. Lam, “Automatic dimension inference and
checking for object-oriented programs,” in 2009 IEEE 31st International
Conference on Software Engineering, May 2009, pp. 155–165. [Online].
Available: http://ieeexplore.ieee.org/document/5070517

[23] S. K. Dash, M. Allamanis, and E. T. Barr, “Refinym: Using names
to refine types,” in Proceedings of the 2018 26th ACM Joint Meeting
on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering, ser. ESEC/FSE 2018. New
York, NY, USA: Association for Computing Machinery, 2018, p.
107–117. [Online]. Available: http://doi.org/10.1145/3236024.3236042

[24] M. Pusz. (2019, May) Implementing physical units library for C++.
presentation. C++Now (formerly BoostCon). Accessed 2019-12-27.
[Online]. Available: http://youtube.com/watch?v=wKchCktZPHU

[25] Tour of Scala: Implicit Conversions. EFPL and Lightbend, Inc.
Accessed 2020-01-07. [Online]. Available: http://docs.scala-lang.org/
tour/implicit-conversions.html

[26] G. A. Nagy and Z. Porkoláb, “Performance issues with
implicit resolution in Scala,” in Proceeedings of the 10th
International Conference on Applied Informatics, ser. ICAI ’17.
Eger, Hungary: Eszterházy Károly University, jan 2017, p.
211–223. [Online]. Available: http://icai.uni-eszterhazy.hu/icai2017/
uploads/papers/2017/final/ICAI.10.2017.211.pdf

[27] Rust by Example §5.1 “Casting”. Rust Programming Language.
Accessed 2020-01-07. [Online]. Available: http://doc.rust-lang.org/
rust-by-example/types/cast.html

[28] Rust by Example §6.1 “From and Into”. Rust Programming
Language. Accessed 2020-01-07. [Online]. Available: http://doc.
rust-lang.org/rust-by-example/conversion/from into.html

[29] Motor Industry Software Reliability Association, MISRA-C: 2012:
Guidelines for the Use of the C Language in Critical Systems.
HORIBA MIRA, 2019. [Online]. Available: http://books.google.hu/
books?id=PnoMxQEACAAJ

[30] Carnegie Mellon University Software Engineering Institute. (2016)
INT02-C: Understand integer conversion rules. Accessed 2020-07-
13. [Online]. Available: http://wiki.sei.cmu.edu/confluence/display/c/
INT02-C.+Understand+integer+conversion+rules

[31] ISO/IEC JTC 1/SC 22, ISO/IEC 14882:2017 Information technology
— Programming languages — C++, version 17 (C++17). Geneva,
Switzerland: International Organization for Standardization, dec. 2017.
[Online]. Available: http://iso.org/standard/68564.html

[32] D. Lawrie, C. Morrell, H. Feild, and D. Binkley, “What’s in a name?
a study of identifiers,” in 14th IEEE International Conference on
Program Comprehension (ICPC’06), June 2006, pp. 3–12. [Online].
Available: http://ieeexplore.ieee.org/document/1631100

[33] (2017) §i.24 “Avoid adjacent unrelated parameters of the
same type” in the C++ Core Guidelines. online article.
Standard C++ Foundation. Version 0.8, accessed 2019-12-28.
[Online]. Available: http://github.com/isocpp/CppCoreGuidelines/blob/
v0.8/CppCoreGuidelines.md#Ri-unrelated

[34] R. Kovács, G. Horváth, and Z. Porkoláb, “Detecting C++ lifetime
errors with symbolic execution,” in Proceedings of the 9th Balkan
Conference on Informatics, ser. BCI’19. New York, NY, USA:
Association for Computing Machinery, 2019. [Online]. Available:
http://doi.org/10.1145/3351556.3351585

202

[35] S. Meyers, Effective Modern C++: 42 specific ways to improve your use of
C++11 and C++14. Sebastopol, California, USA: O’Reilly Media, 2015.
[Online]. Available: http://oreilly.com/library/view/effective-modern-c/
9781491908419/

[36] Whisperity. (2019, 10) Add cppcoreguidelines-avoid-
adjacent-parameters-of-the-same-type check. source code.
The LLVM Foundation. Accessed 2020-01-07. [Online]. Available:
http://reviews.llvm.org/D69560

[37] The LLVM Foundation. (2001-) Clang: a C language family frontend
for the LLVM compiler infrastructure. Version 9.0 (0399d5a),
accessed 2019-12-30. [Online]. Available: http://clang.llvm.org

[38] D. Stenberg et al. (1996-) curl. Version 7.67.0 (2e9b725),
accessed 2019-12-30. [Online]. Available: http://curl.haxx.se

[39] L. Torvalds et al. (2005-) git. Version 2.24.1 (53a06cf), accessed
2019-12-30. [Online]. Available: http://git-scm.org

[40] Netdata Corporation. (2013-) Netdata. Version 1.19.0 (5000257),
accessed 2019-12-30. [Online]. Available: http://my-netdata.io

[41] The PHP Group. (1999-) PHP: Hypertext preprocessor. php-src
version 7.4.1 (b1a8ab0), accessed 2019-12-30. [Online]. Available:
http://php.net

[42] The PostgreSQL Global Development Group. (1996-) PostgreSQL.
Version 12.1 (578a551), accessed 2019-12-30. [Online]. Available:
http://postgresql.org

[43] S. Sanfilippo et al. (2006-) Redis. Version 5.0.7 (4891612),
accessed 2019-12-30. [Online]. Available: http://redis.io

[44] N. Marriott et al. (2007-) tmux. Version 3.0 (bbcb199), accessed
2019-12-30. [Online]. Available: http://github.com/tmux/tmux

[45] S. Nakamoto, The Bitcoin Core Developers et al. (2009-) Bitcoin.
Version 0.19.0.1 (1bc9988), accessed 2019-12-30. [Online].
Available: http://bitcoincore.org

[46] Google, Inc. (2016) guetzli. Version 1.0.1 (a0f47a2), accessed
2019-12-30. [Online]. Available: http://github.com/google/guetzli

[47] Xperience AI. (2019-) OpenCV. Version 4.2.0 (bda89a6), accessed
2019-12-30. [Online]. Available: http://opencv.org

[48] Google, Inc. (2008-) Protocol buffers. Version 3.11.2 (fe1790c),
accessed 2019-12-30. [Online]. Available: http://developers.google.com/
protocol-buffers/

[49] R. Smith, Google, Inc. et al. (2006-) Tesseract OCR engine.
Version 4.1.0 (5280bbc), accessed 2019-12-30. [Online]. Available:
http://github.com/tesseract-ocr/tesseract

[50] The Apache Software Foundation. (1999) Xerces C++. Version
3.2.2 (71cc0e8), accessed 2019-12-30. [Online]. Available: http:
//xerces.apache.org

[51] P. Emanuelsson and U. Nilsson, “A comparative study of industrial static
analysis tools,” Electronic Notes in Theoretical Computer Science, vol.
217, pp. 5 – 21, 2008, proceedings of the 3rd International Workshop
on Systems Software Verification (SSV 2008). [Online]. Available:
http://sciencedirect.com/science/article/pii/S1571066108003824

[52] P. Godefroid, “The soundness of bugs is what matters (position
statement),” in BUGS’2005 (PLDI’2005 Workshop on the Evaluation
of Software Defect Detection Tools), 2005. [Online]. Available:
http://cs.umd.edu/∼pugh/BugWorkshop05/papers/11-godefroid.pdf

[53] S. Heckman and L. Williams, “A systematic literature review of
actionable alert identification techniques for automated static code
analysis,” Information and Software Technology, vol. 53, pp. 363–387,
04 2011. [Online]. Available: http://sciencedirect.com/science/article/
abs/pii/S0950584910002235

[54] Y. Chiba, “Redundant boxing elimination by a dynamic compiler for
java,” in Proceedings of the 5th International Symposium on Principles
and Practice of Programming in Java, ser. PPPJ ’07. New York,
NY, USA: Association for Computing Machinery, 2007, p. 215–220.
[Online]. Available: http://doi.org/10.1145/1294325.1294355

[55] J. Sillito, G. C. Murphy, and K. De Volder, “Asking and answering
questions during a programming change task,” IEEE Transactions on
Software Engineering, vol. 34, no. 4, pp. 434–451, July 2008. [Online].
Available: http://ieeexplore.ieee.org/document/4497212

[56] W. E. Brown, “Toward opaque typedefs for C++1y,” ISO/IEC
JTC1/SC22/WG21, The C++ Standards Committee (ISOCPP) proposals,
Tech. Rep., 01 2013. [Online]. Available: http://open-std.org/jtc1/sc22/
wg21/docs/papers/2013/n3515.pdf

[57] ——, “Function aliases + extended inheritance = opaque typedefs,”
ISO/IEC JTC1/SC22/WG21, The C++ Standards Committee (ISOCPP)
proposals, Tech. Rep., 09 2015. [Online]. Available: http://open-std.
org/jtc1/sc22/wg21/docs/papers/2015/p0109r0.pdf

[58] A. Baráth and Z. Porkoláb, “Life without implicit casts: Safe
type system in C++,” in Proceedings of the 7th Balkan Conference
on Informatics Conference, ser. BCI ’15. New York, NY, USA:
Association for Computing Machinery, 2015. [Online]. Available:
http://doi.org/10.1145/2801081.2801114

[59] D. Greene. (2019) Provide a semantic typedef class and operators.
The LLVM Foundation. Accessed 2019-11-15. [Online]. Available:
http://reviews.llvm.org/D66148

[60] B. Meyer, “Ensuring strong typing in an object-oriented language
(abstract),” in Conference Proceedings on Object-Oriented Programming
Systems, Languages, and Applications, ser. OOPSLA ’92. New York,
NY, USA: Association for Computing Machinery, 1992, p. 89–90.
[Online]. Available: http://doi.org/10.1145/141936.290558

[61] O. L. Madsen, B. Magnusson, and B. Mølier-Pedersen, “Strong
typing of object-oriented languages revisited,” in Proceedings of
the European Conference on Object-Oriented Programming on
Object-Oriented Programming Systems, Languages, and Applications,
ser. OOPSLA/ECOOP ’90. New York, NY, USA: Association
for Computing Machinery, 1990, p. 140–150. [Online]. Available:
http://doi.org/10.1145/97945.97964

[62] A. Kemper and G. Moerkotte, “A framework for strong typing
and type inference in (persistent) object models,” in Database
and Expert Systems Applications, D. Karagiannis, Ed. Vienna:
Springer Vienna, 1991, pp. 257–263. [Online]. Available: http:
//link.springer.com/chapter/10.1007/978-3-7091-7555-2 43

[63] W. Robertson and G. Vigna, “Static enforcement of web application
integrity through strong typing,” in Proceedings of the 18th
Conference on USENIX Security Symposium, ser. SSYM’09. USA:
USENIX Association, 2009, p. 283–298. [Online]. Available: http:
//dl.acm.org/doi/10.5555/1855768.1855786

[64] M. Barnett, R. DeLine, M. Fähndrich, K. R. M. Leino, and W. Schulte,
“Verification of object-oriented programs with invariants,” Journal of
Object Technology, vol. 3, no. 6, pp. 27–56, 2004. [Online]. Available:
http://jot.fm/issues/issue 2004 06/article2.pdf

[65] T. Roehm, R. Tiarks, R. Koschke, and W. Maalej, “How do
professional developers comprehend software?” in Proceedings of
the 34th International Conference on Software Engineering, ser.
ICSE ’12. IEEE Press, 2012, p. 255–265. [Online]. Available:
http://dl.acm.org/doi/10.5555/2337223.2337254

[66] International Organization for Standardization and International
Electrotechnical Commission, ISO/IEC DIS 8652: information
technology — programming languages — their environments and
system software interfaces, programming language Ada, language and
standard libraries, draft, version 5.0, 1 June 1994, IR-MA-1363-4, ser.
Draft international standard. Cambridge, MA, USA: Intermetrics, Inc.,
1994. [Online]. Available: http://iso.ch/cate/d22983.html

[67] B. Schäling, The Boost C++ libraries. XML Press, 2014, accessed
2020-03-07. [Online]. Available: http://theboostcpplibraries.com

[68] D. Vandevoorde, N. M. Josuttis, and D. Gregor, C++ Templates: The
Complete Guide (2nd Edition), 2nd ed. Addison-Wesley Professional,
2017.

[69] (2001) Eclipse IDE - C/C++ development tooling (CDT). The
Eclipse Foundation. Accessed 2020-01-06. [Online]. Available: http:
//projects.eclipse.org/projects/tools.cdt

[70] CLion - a cross-platform IDE for C and C++. JetBrains, Inc. Accessed
2020-01-06. [Online]. Available: http://jetbrains.com/clion

[71] Microsoft Corporation. (2015) LSP: Language server protocol.
Microsoft Corporation. Accessed 2020-01-06. [Online]. Available:
http://microsoft.github.io/language-server-protocol

203

