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Abstract—Ansible, a popular Infrastructure-as-Code platform,
provides reusable collections of tasks called roles. Roles are often
contributed by third parties, and like general-purpose libraries,
they evolve. As such, new releases of roles need to be tagged
with version numbers, for which Ansible recommends adhering
to the semantic versioning format. However, roles significantly
differ from general-purpose libraries, and it is not yet known
what constitutes a breaking change or the addition of a feature
to a role. Consequently, this can cause confusion for clients of a
role and new role contributors. To alleviate this issue, we perform
an empirical study on semantic versioning in Ansible roles to
uncover the types of changes that trigger certain types of version
bumps. We collect a dataset of over 70 000 version increments
spanning upwards of 7 800 Ansible roles. Moreover, we design a
novel structural model for these roles, and implement a domain-
specific structural change extraction algorithm to calculate struc-
tural difference metrics. Afterwards, we quantitatively investigate
the state of semantic versioning in Ansible roles and identify the
most commonly changed components. Then, using the structural
difference metrics, we train a Random Forest classifier to predict
applicable version bumps for Ansible role releases. Lastly, we
confirm our empirical findings with a developer survey. Our
observations show that although most Ansible role developers
follow the semantic versioning format, it appears that they do
not always consistently follow the same rules when selecting the
version bump to apply.

Index Terms—Ansible; Infrastructure as Code; Semantic Ver-
sioning; empirical study; mining software repositories

I. INTRODUCTION

Ansible is a popular Infrastructure-as-Code (IaC) tool for

automatically deploying and configuring large-scale infras-

tructures. Ansible developers create playbooks containing a

series of tasks, which can be automatically executed on a

collection of hosts to obtain the desired infrastructure. These

tasks may include installing a database driver, configuring

a web server, etc. Such tasks can often be reused across

playbooks, e.g., installing a database driver is often a similar

process, regardless of usage context or platform.

To promote reuse and composition, Ansible offers roles,

which, in their most basic form, are a series of reusable tasks.

In addition, it hosts Galaxy, an online registry containing

upwards of 20 000 roles, contributed by third-party developers,

which users can include into their playbooks. Roles often make

extensive use of variables, so that its clients can parametrise its

behaviour. For example, a role that installs a database driver

could be parametrised to change the version of the installed

software, specific configuration values for the driver, etc.

The “as Code” suffix in IaC does not merely signify that

its files are written in textual form and interpreted by a

machine. Instead, it encompasses every process surrounding

regular source code, such as collaboration, version control,

and importantly, evolution. Consequently, like general-purpose

libraries, Ansible roles evolve over time, e.g., bugs get fixed,

variables are added, tasks get refactored, etc. Thus, roles need

to be versioned, so that new releases can be made available.

To denote role versions, Ansible recommends role devel-

opers to use the well-known Semantic Versioning (SemVer)1

format (i.e., major.minor.patch). The SemVer specification

states when each part of the version number ought to be

incremented. Major version bumps are reserved for backwards-

incompatible changes, whereas minor bumps should be applied

when new features are added to the software’s interface. Patch

bumps should be carried out if the release does not change the

interface, and contains only bug fixes, refactoring, etc.

However, these rules are designed for general-purpose li-

braries, and do not readily apply to Ansible roles. The first

SemVer specification requires that the software has a public

API, whereas the concept of APIs in Ansible roles is not

formally defined. Moreover, although Ansible recommends the

SemVer format, it makes no mention of its rules, opening up

possibilities for developer practices to diverge. Consequently,

this may lead to confusion for clients and developers alike.

In this paper, we aim to uncover developer practices regard-

ing the versioning of their Ansible roles. We are particularly

interested in the changes that trigger a certain version bump

type. A better understanding of these changes would be

beneficial to the clients of a role to identify potential costs in

updating an installed role, as well as for new role developers

to align their role versioning with established practices.

There have been multiple studies investigating IaC (e.g.,

[1]–[4]). However, these consider end users of IaC tools and

snapshots of their files. To the best of our knowledge, we are

the first to investigate a new side of IaC ecosystems, namely

reusable roles, as well as the evolution of IaC files. More

specifically, this paper makes the following contributions:

1https://semver.org/
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• We collect a dataset containing upwards of 7 800 roles,

80 000 role versions, and 70 000 version increments.

• We design and implement a novel hierarchical model

of Ansible role structure, and use it to develop a novel

domain-specific structural change extraction algorithm.

• We carry out quantitative and qualitative studies to shed

light on role developer practices regarding SemVer.

• Finally, using the extracted structural changes, we de-

velop a classifier to predict the applicable SemVer version

bump type for a new role release.

The dataset we have collected is available at

https://doi.org/10.5281/zenodo.4039514. Additionally, our

tools for analysis are available in a replication package found

at https://doi.org/10.5281/zenodo.4040647.

II. RELATED WORK

In this section, we summarise a selection of research on

Infrastructure as Code and Semantic Versioning, and highlight

key differences with our work.

A. Infrastructure as Code

Infrastructure as Code is an emerging research domain, with

an increasing number of works published each year [5]. Indus-

trial IaC practitioners often face the challenge of identifying

defects in their files [1]. As a result, a large proportion of

existing work on IaC has focused on defect prediction and

detection. One such topic is verifying semantic requirements of

IaC files [6]–[8]. Other researchers have focused on syntactical

properties, metrics, smells, and detection rules to highlight

potential problems [2]–[4], [9], [10]. For example, Rahman

and Williams [9] construct defect prediction models using 10

source code properties. Sharma et al. [10] propose a catalogue

of 24 design and implementation smells for IaC code. Van

der Bent et al. [3] define and empirically validate a suite of

maintainability metrics for Puppet code. Building upon this,

Dalla Palma et al. [4] propose a suite of 46 metrics for Ansible.

The aforementioned studies focus on defects in IaC files

created by end users of IaC tools. Moreover, they only consider

snapshots of such IaC files, and mostly remain on a syntactical

level. On the contrary, we focus on reusable IaC files created

by community contributors, an understudied part of the IaC

ecosystem. Specifically, we look at the evolution of such files,

rather than snapshots. Instead of focusing on the syntactical

level, we mainly consider the structure of these reusable IaC

files, making our approach less sensitive to coding styles.

B. Semantic Versioning

The semantic versioning specifications are commonly rec-

ommended by package managers to denote the kind of changes

in new releases of software packages. Because of its impor-

tance, SemVer has been subjected to many research studies.

Raemaekers et al. [11] investigated the usage of SemVer in

Java libraries on Maven Central over a seven-year period. They

found that library maintainers did not respect SemVer (e.g., a

third of minor releases introduced a breaking change), and that

the adherence to SemVer increases only marginally over time.

1 - hosts: localhost
2 vars:
3 base_name: "main"
4 remove_log_file: no
5 tasks:
6 - name: Compile the LaTeX file.
7 command: "pdflatex {{ base_name }}.tex"
8 - name: Remove log file, if enabled.
9 file:

10 path: "{{ base_name }}.log"
11 state: absent
12 when: remove_temp_files | bool

Listing 1: An example of an Ansible playbook.

Bogart et al. [12] performed case studies on three software

ecosystems (i.e., Eclipse, CRAN, and npm) to understand how

developers make decisions about changes and their costs.

They found that the three ecosystems differ significantly in

their practices and policies. The same researchers conducted a

survey about common practices among over 2 000 developers

in 18 ecosystems [13]. They observe that maintainers generally

try not to perform a breaking change, with most develop-

ers across all ecosystems reporting less than one breaking

change a year. Maintainers commonly bundle multiple break-

ing changes together to avoid disruptions. Finally, they observe

that the frequency of breaking changes is higher in some

ecosystems (npm, Rust) than others (Perl, CRAN, Eclipse).

Decan et al. [14] empirically studied SemVer compliance in

four ecosystems (Cargo, npm, Packagist, and Rubygems) by

analysing package dependency constraints. They find that the

proportion of compliant dependency constraints increases over

time in all ecosystems, and identify factors that influence the

degree of compliance. Similarly, Dietrich et al. [15] studied

over 70M dependencies in 17 package manager ecosystems,

found that many ecosystems support flexible versioning prac-

tices, and that the adoption of SemVer is increasing in some.

III. ANSIBLE PRIMER

Ansible is a popular infrastructure-as-code platform used to

automate the deployment and configuration of multi-machine

infrastructures. Although it is mainly intended as a tool to

quickly set up a group of remote machines called hosts, it can

equally be used to set up a local machine, e.g., for on-boarding.

Ansible uses YAML as a domain-specific language for its

infrastructure configuration files. As such, most of its concepts

are defined as key-value pairs in YAML files. There are various

concepts in Ansible, e.g., inventories and plugins, which are

outside of the scope of this primer. Furthermore, many of

Ansible’s elements accept a vast range of keywords, most of

which will be omitted from this primer. Instead, we focus

on two core concepts, namely the playbook, containing the

infrastructure definition, and roles, which are reusable Ansible

components, frequently contributed by third-party developers.

A. Playbooks

Ansible’s flagship concept is the playbook, a central defi-

nition of the process of deploying and configuring complex

infrastructures on a group of machines. Listing 1 depicts a

playbook that compiles LaTeX files. Playbooks contain plays,
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each describing the configuration of a group of hosts. The

example defines one play, targeting the local machine (line 1).

Playbooks may define multiple plays, e.g., one to configure

database servers, and another to set up a load balancer.

Each play has its own set of variables, defined as key-

value pairs (lines 2–4). Variables can be used in template

expressions, enclosed by double braces (e.g., line 7), which

are evaluated lazily. These variables can be used inside of

the play’s tasks, of which our example defines two (lines 6–

7, 8–12). Tasks are executed in sequential order, and each

execute a single action. For example, the first task executes

command, which runs the pdflatex program (line 6). The

second task uses the file action to ensure a file is absent

from the file system. The path to the file, and the desired

state, are given as the action’s arguments (lines 10–11). Tasks

can also be executed conditionally by specifying a condition

using the when keyword (line 12). Other keywords exist to

adjust the control-flow semantics of a task, such as loop,

which iteratively executes a task for each item in a list.

Besides plays, variables, and tasks, Ansible offers two more

important concepts. Blocks can be used to group tasks or other,

nested blocks, and also offer exception handling mechanisms.

A handler is a special type of task that can be used to react

to changes made by a task. A task can notify a handler, which

registers the handler to be executed at the end of the play. If

not notified, a handler is not executed.

B. Roles

Ansible provides roles, an abstraction for multiple reusable

IaC files containing tasks, variables, handlers, etc. Although

similar to plays, roles ought to be generic to be reused across

playbooks. When a role is imported into a play, the tasks,

handlers, and variables defined in its files are embedded into

the play as if they were part of the play itself. Since roles

consist of multiple files, they follow a strict directory structure,

with subdirectories for each element type. Each of the subdi-

rectories must contain a main.yml file, which Ansible loads

by default, but the subdirectory may be omitted if unused.

Subdirectories can contain supplementary files, which can be

loaded through special actions by the role’s tasks.

The following are standard directories for roles.

• Files in the tasks directory contain the role’s blocks

and tasks, whereas the handlers directory contains the

role’s handlers.

• Files in the defaults and vars directories contain

default variables and role variables, respectively. The

difference between these variables is their precedence.

Role variables are difficult to override as a user, and

are therefore often used as constants. Contrarily, default

variables are much easier to override, and serve as the

means for the user to parametrise the role’s behaviour. To

avoid confusion, we shall name role variables “constant

variables” throughout the remainder of this paper.

• The files and templates directories contain re-

sources for the role to use, such as configuration files.

Files in the latter can be parametrised by the role’s

TABLE I
OVERVIEW OF THE COLLECTED DATASET.

Stage #Roles #Authors #Versions #Incr.

Role discovery 24 620 5 979 N/A N/A
Role collection 23 681 5 665 N/A N/A
Version extraction 7 823 1 891 80 997 72 559
Struct. model constr. 7 248 1 779 72 642 64 542

client using variables. These directories do not require

the main.yml file.

• Finally, the meta directory’s main file contains metadata

for the role, such as author, description, license, etc. It

also lists the platforms with which the role is compatible,

and any other roles on which this role depends. These

dependencies are executed before the role itself is. This

directory can contain other files, but they are ignored.

To ease the discovery of third-party roles, Ansible provides

Galaxy2, a central registry currently containing over 20 000
open-source, reusable roles provided by the community. Since

roles can evolve over time, they should also be versioned, and

Galaxy provides version information such that its users can

install specific role versions. To import versions, Galaxy scans

the role’s git repository for tags matching the SemVer format.

It thereby recommends using the SemVer format to denote

versions, however, this is not a strict requirement. Moreover,

this applies only to the format, and Ansible does not provide

guidelines stating when each type of bump should be applied.

IV. METHOD AND DATA EXTRACTION

To investigate the versioning of Ansible roles, we gathered a

dataset of 7 823 unique Galaxy roles written by 1 891 unique

authors, in total containing 72 599 version increments. This

section describes the pipeline used to collect this data and

extract the necessary information. Figure 1 depicts an overview

of this pipeline, while Table I summarises the dataset.

The pipeline consists of 5 stages. We first discover the

roles from Galaxy, clone their repositories, and extract their

versions. We extract syntactical difference metrics, e.g., the

number of lines inserted and deleted, for each version bump.

However, syntactical differences are sensitive to semantically-

irrelevant implementation details such as refactorings, com-

ments, and whitespace. To combat such problems, we also look

at the differences between role versions on a structural level

using a novel structural model and specialised tree differences,

described in Section V. We calculate metrics of difference,

rather than difference in metrics, for increased accuracy. For

example, although comparing the number of tasks in two

versions would reveal a net increase or decrease, it would not

reveal that a task was added, whereas another was removed.

1) Role Discovery: The first stage of our pipeline discovers

open-source roles from the ecosystem using the Galaxy role

registry. We notice that Galaxy may sometimes lack some role

versions, and may list roles which were erroneously imported

(e.g., named “test”). Therefore, we do not perform extensive

2https://galaxy.ansible.com
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galaxy.ansible.com

{ "name": "...",
"github user": "...",
"github repo": "...",
"download count": "...",
... }

{ "name": "...",
"github user": "...",
"github repo": "...",
"download count": "...",
... }

{ "name": "...",
"github user": "...",
"github repo": "...",
"download count": "...",
... }

role 1 (1.0.0, 1.1.0), (1.1.0, 2.0.0), . . .

role 2 (v1.1.1, v1.2.0), (v3.0.4, v3.0.5), . . .

role 3

role 4 (0.1.1, 1.0.0), (1.0.0, 1.1.0) . . .

. . . . . .

role 2: (v1.1.1 -> v1.2.0)

tasks/main.yml +40 -18
tasks/debian.yml +0 -7
defaults/main.yml +3 -0
...

role 1: (1.1.0 -> 2.0.0)

tasks/main.yml +40 -18
tasks/debian.yml +0 -7
defaults/main.yml +3 -0
...

role 1: (1.0.0 -> 1.1.0)

tasks/main.yml +40 -18
tasks/debian.yml +0 -7
defaults/main.yml +3 -0
...

role 1: 1.0.0 role 1: 1.1.0

−→

role 1: 1.0.0 role 1: 1.1.0

−→

role 1: 1.0.0 role 1: 1.1.0

−→

Role v1 v2 #TaskEdit . . .

role 1 1.0.0 1.1.0 1 . . .

role 1 1.1.0 2.0.0 3 . . .

role 2 v1.1.1 v1.2.0 0 . . .

. . . . . .

1 2 3 4

5a

5b

2

1 Role discovery

Role collection 4

3 Version extraction

Syntactical differencing 5b

5a Structural model construction

Structural differencing

Fig. 1. Overview of the data extraction pipeline.

filtering, although we do removed roughly 300 roles that

were marked as deprecated. Ultimately, we extracted 24 620
roles written by 5 979 unique authors, representing a complete

listing of non-deprecated roles on Galaxy as of June 12th,

2020. However, as we will see shortly, many of these roles

contain no versions, are thus irrelevant for our study, and are

therefore removed in subsequent pipeline stages.

2) Role Collection: In the second stage, we clone the git

repositories of each collected role through the GitHub URL

obtained from Galaxy. Of the 24 620 roles gathered in the

previous phase, we failed to clone the repository of 939
because they were not available, these roles are thus removed

from further processing. This reduces the size of our dataset

to 23 681 roles, contributed by 5 665 authors.

3) Version Extraction: We then move on to extracting role

versions from the cloned repositories’ tags. We extract each tag

from every role repository and retain only those that match a

lenient derivative of the SemVer format that allows an arbitrary

number of version parts (e.g., x.y, x.y.z, x.y.z.a, etc.). We allow

for non-SemVer versions to later investigate the prevalence of

the SemVer format, while still filtering out likely non-version

tags. We then sort each role’s versions in increasing order,

and pair each two successive versions together to construct a

list of version bumps. In the end, we extract 72 559 version

increments involving 80 997 unique versions across 7 823 roles

written by 1 891 authors. This significantly reduces the size of

the dataset, filtering out over 15 000 roles that contain less

than two versions, which are irrelevant for this study.

4) Syntactical Differencing: Following the third stage, our

pipeline branches into two strategies to extract difference met-

rics between successive versions. The first of these, marked as

stage 4 in Figure 1, extracts line-based difference metrics and

commits between two role versions. The line-based differences

are obtained using the git diff command, from which we

extract which files were added, deleted, moved, or edited,

as well as the number of lines inserted and deleted in each

file. Additionally, we extract these features between an empty

repository and the role’s first release, to estimate the amount

of effort needed to create the initial release of a role.

5) Structural Differencing: The second strategy to extract

difference metrics uses our structural model and differencing

algorithm (Section V). We extract a structural model from

the source code of each role version according to the bumps

gathered in stage 3 (stage 5a). Of the 72 559 version incre-

ments collected, we remove 8 018 due to syntax errors or

other parsing issues. The remaining 64 541 version bumps

are fed into our domain-specific structural differencer (stage

5b), which produces a sequence of fine-grained differences

belonging to one of 41 different change types. Then, we

produce structural difference metrics by counting the number

of occurrences of each change type.

V. STRUCTURAL MODEL DIFFERENCING

This section describes our novel structural model for Ansi-

ble roles, as well as the accompanying structural differencing

algorithm. This model and algorithm are used in the final stage

of our pipeline, described in Section IV, to extract metrics of

the difference between two role versions.

A. Structural Model

Our novel structural representation of Ansible code is a

tree of Ansible elements, such as blocks, tasks, and variables.

It is inspired by, and extracted from, Ansible’s own internal

representation of its files. This internal representation is not

ideal for our purposes since it is intended for use during IaC

file execution, rather than for static analysis. For example,

Ansible pre-loads statically imported non-main task files,

whereas dynamically included files only get parsed at runtime.

Figure 2 depicts our structural model. It is a hierarchical

structure of four main types of elements, namely files, vari-

ables, blocks, and tasks, closely following the structure of

a role, as described in Section III-B. The first level of the

hierarchy consists of a series of files, each type representing a

file in either the tasks, defaults, vars, handlers, or

meta directory. There may exist multiple files of each type,

distinguished by their name, except for metadata files.

The metadata file is a singleton, and always represents the

meta/main.yml file, if present. Our representation of a

metadata file contains exactly one meta-block, whose attributes

represent the file’s contents, e.g., platforms and dependencies.

Files in tasks and handlers, as well as their contents,

are represented near-identically, although we make a clear

distinction to represent the difference in control-flow semantics

(cfr. Section III-A). Such files are internal nodes whose

children are blocks. Blocks, in turn, have their contents, i.e.,

nested blocks and tasks, as children. In both cases, the children

are ordered by their execution order. Top-level tasks, i.e., tasks

not contained inside of a block, are placed in an implicit
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Role MetaFile

HandlersFile HandlerBlock HandlerTask

TasksFile Block Task

MetaBlock

DefaultsFile DefaultVariable

ConstantsFile ConstantVariable

Fig. 2. The condensed UML class model of the structural role model.

block for uniform representation. For blocks and tasks, we

additionally store their key-value pairs as attributes.

Files in vars and defaults are represented as constants

files and defaults files, respectively. Again, the two node types

and their children are similar, yet we make the distinction

to enforce the differences in precedence (cfr. Section III-B).

Each of these files is an internal node of our hierarchy. Their

children are leaf nodes representing the variables in the file,

which store the name and assigned value. Contrary to tasks

and handlers, we do not define an order for these children,

since their order is semantically irrelevant.

To create the structural model, we employ Ansible’s internal

parser and post-process its representation. Thus, we benefit

from the parser’s ability to transform different syntactical

styles into the same constructs. However, this also means that

roles containing syntax errors or old, now-unsupported syntax,

are rejected. Such rejections account for some of the removed

version pairs of stage 5 of the pipeline (cfr. Section IV).

B. Structural Differencing

Our structural differencing algorithm extracts a set of fine-

grained changes that represent the difference between a pair

of structural models. Rather than relying on generic tree

differencing algorithms, such as CHANGEDISTILLER [16],

GUMTREE [17], or CHANGENODES [18], we designed a

domain-specific one. Whereas the aforementioned algorithms

identify changes between abstract syntax trees, we use struc-

tural trees, which are conceptually different. Moreover, we

aim to extract specific changes that can serve as a detailed

summary of a role release, which is not possible with a

generic approach. Finally, implementing our own differencer

enables us to apply domain-specific knowledge to increase the

usability of the extracted changes, by disregarding changes

carrying no semantic relevance.

1) Change Types: Our domain-specific algorithm can pro-

duce 41 different change categories, constructed by combining

4 main change types and the element types of the structural

model. These categories are summarised in Table IV. The

table’s columns represent the 4 main change types. Additions
and removals represent changes where a node has been added

or removed in the second tree. Relocations represent changes

where a node was moved to a new position, either in the same

parent (local relocation), or to a new parent (global relocation).

Finally, edits represent changes where a node’s value was

edited. Note that each change applies to an individual node,

e.g., when an internal node is added, additions for its children

are added individually, and when an internal node is relocated,

its children are not relocated individually, since they retain the

same position in the same parent.

Table IV’s rows contain various element types, and non-

empty cells mark possible combinations of change type and

element type. All non-root node types of the model are present

as rows, except for metadata-related nodes, since these are

singletons. Instead, we represent additions and removals to

the platform and dependency sets separately, and consider any

other change to the metadata as a generic edit. The other

main change types are not applicable to the metadata. Edits

to the four remaining file types are represented by edits to its

individual children, and a relocation of a file means that its

name has changed. We make no attempt to identify renames

of variables, instead approximating such cases as an addition

and a removal, since for a user of the role, both a rename and

a removal are potentially breaking changes. As such, an edit

to a variable indicates that its assigned value has changed, but

its name remained unchanged.

2) Change Extraction: We will now describe our domain-

specific structural difference extraction algorithm. The main

challenge in extracting differences is identifying relocations of

edited elements, e.g., a task that was moved to another block

while simultaneously having its keywords edited. We also

prefer extracting relocations rather than a pair of addition and

removal, since the latter would over-approximate the number

of elements added and removed in the new structure. While

extracting relocations, we prioritise relocations to positions

that are intuitively “close” to the old position, which leads

to more intuitive changes.

At a high level, our algorithm is similar to CHANGEDIS-

TILLER [16], and works as follows. We compare the two given

structural models in a depth-first manner. For each internal

node, we compare its children and extract additions, removals,

and edits. We identify edited nodes by calculating their sim-

ilarity, which is a number between 0 and 1 inclusive, where

larger values mean more similarity, and apply a threshold of

0.5, essentially meaning that if two nodes are not at least 50%

similar, the change is represented as an addition and removal

instead. After these changes have been identified, we look for

local relocations in the direct children of the internal node by

matching nodes removed from the old subtree to nodes added

in the new subtree, again using a 0.5 similarity threshold.

Finally, we check for global relocations in a similar way, but

now also consider additions and removals of indirect children.

The major difference between our algorithm and the one

described in [16] is that ours is specific for our structural

model, which enables us to use domain knowledge to improve

its results. For example, non-hierarchical structures such as

role dependencies and compatible platforms can be compared

more easily without having to use tree traversals. Moreover,

the order of variable definitions makes no difference, and thus,

we can sort them by name to speed up the extraction of edits,

and do not have to look for relocations.

The main benefit of the domain-specificity is that it enables

us to define highly-specialised similarity metrics for each

element type. For instance, we define the similarity of files
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Fig. 3. Distribution of the number of Ansible role releases per release type,
i.e., patch, minor, major.

containing variables as the proportion of variables that are

common between both files, additionally incurring a penalty

for each variable whose assigned value differs. This penalty

allows us to distinguish between two files defining the same

set of variables with distinct values. For tasks, the similarity is

calculated in terms of the number of common keywords with

the same value. As a final example of a specialised similarity

metric, for blocks, the similarity is calculated as the average of

pair-wise similarities of its contents, with an additional penalty

for each child that would be locally relocated. Again, this

penalty allows us to distinguish two blocks that execute the

same set of tasks, but in a different order.

VI. EMPIRICAL ANALYSIS RESULTS

The research questions in this study are organized into

three parts: 1) a quantitative analysis that includes three

research questions RQ1 to RQ3; 2) a qualitative study where

we conduct surveys with Ansible role developers; and 3)

the creation of a classification model to predict the suitable

SemVer version bump for a new role release.

A. Quantitative Analysis

RQ1: How many Ansible roles use the SemVer format?

Before we can investigate the meaning of SemVer in Ansible

roles, we need to verify that their versions syntactically

adhere to the SemVer format, i.e., major.minor.patch. We

thus checked whether the role versions in our dataset (cfr.

Section IV) match this version. We found that 92.3% (77 640)

of the version numbers use this format. The remaining, non-

compliant version numbers belong to 2 008 roles, of which

1 128 roles have only non-compliant versions. All such non-

compliant versions are removed from subsequent processing.

We also checked whether there exist version numbers

with additional labels, like pre-releases (e.g., 1.0.0-alpha). We

found that only 0.83% (701) of the versions contain such

labels, belonging to 237 roles. As such, we decided to remove

these pre-release versions, since there are only a small number

of them in the dataset. Moreover, pre-releases may be unstable

and not comply with compatibility requirements3, thus, the

changes may not be representative.

Next, for every two successive versions, we identify the

type of version bump. For example, an increment of 2.1.0 to

2.1.1 is considered a patch release, whereas an increment of

2.0.z to 2.1.1 is considered a minor. Similarly, an increment

3https://semver.org/#spec-item-9
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Fig. 4. Distribution of the number of commits used to release initial, patch,
minor and major versions.

of 1.y.z to 2.1.1 would be considered a major bump. Figure 3

depicts boxen plots that show the distribution of the number

of each release type per Ansible role. It can be seen that roles

release patches more often than minors, which are in turn more

common than majors. The median number of patch, minor, and

major bumps per role are 3, 2, and 1, respectively.

These results are to be expected when software adheres to

the SemVer specifications. Patch releases contain bug fixes,

often frequent and easier to create, whereas adding new

functionality in minor releases takes more effort and thus

happens less often. Major releases contain breaking changes,

which ought to be rare.

Findings: The majority of Ansible roles use the SemVer

format. Patch releases are more common than minors, while

minors are more common than majors.

RQ2: How much effort does it take to create role versions?

RQ1 shows that patch and minor bumps are more common

than major bumps. Building upon this, in this research question

we investigate how much effort it takes to create each type

of release, i.e., the number of commits and changes that are

needed to release new versions of Ansible roles.

Figure 4 depicts the distribution of the number of commits

used to create the initial role release and a patch, minor, and

major release, from any immediately preceding release. We

observe that major releases generally require more commits

than minors, which in turn require more commits than patches,

which require only a small number of commits. Initial role

releases show higher outliers, indicating that the very first role

may require more commits than any other release. The mean

and median number of commits are 10 and 5 for majors, 8.3
and 4 for minors, 3.5 and 2 for patches, and 14.8 and 5 for the

initial release, respectively. We additionally investigated the

number of commits for each type of version transition (e.g.,

initial to patch, major to minor, etc.) but could not observe any

significant differences. This suggests that the required effort

depends on the target version rather than the former version.

Since the size of the changes in a commit may vary, we

additionally analyse line-based difference metrics for each role

release type. The distribution of the number of lines changed

(i.e., insertions + deletions) for each type of release is depicted

in Figure 5. The figure clearly shows that initial versions

require significantly more line changes than any other release.

This is to be expected, since the number of lines changed

for initial releases coincides with the total number of lines
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Fig. 5. Distribution of the number of lines changed (insertions + deletions)
in initial, patch, minor and major version bumps.

in the role itself. We further observe that there are more lines

changed in major releases than minors, and that patch releases

require the least number of line changes.

Our observations are in line with the SemVer specifications.

Major releases include breaking changes and therefore require

more maintenance to the whole role. The addition of function-

ality in minor bumps requires more changes than a bug fix in

a patch release.

Findings: Releasing new major versions of Ansible roles

requires more commits and changes than minors. Patches

require the least amount of effort of any release type.

RQ3: Which changes are made between two role releases?

As shown in Section III, Ansible roles have a specific

structure. In this research question, we investigate, for each

release type, which changes are most commonly applied to a

role. We first look into line-based changes for each directory,

after which we look into detailed structural differences.

First, without differentiating between role release types, we

identify which directories have been syntactically edited most

often. We found that only 5 of the main directories are touched

in more than 10% of the releases. These 5 directories and

the proportion of releases that changed them can be found

in Table II. We observe that tasks are the most commonly

syntactically edited component in all release types, followed

by default variables. We also found that two non-standard

directories have been touched in more than 10% of releases,

namely tests (14.7%) and molecule (12.2%), both of

which are used for testing.

Next, we investigate whether these directories are changed

in isolation or are touched simultaneously with others. Fig-

ure 6 depicts a Venn diagram of touched directories for all

releases. As can be seen in the figure, the majority of releases

touch multiple directories, suggesting that these directories are

closely related and changes to one component may trigger

changes on others. Additional analysis also showed that major

TABLE II
PROPORTION OF RELEASES THAT CHANGED FILES IN THE MAIN ROLE

DIRECTORIES, GROUPED BY RELEASE TYPE.

patch minor major all

tasks 48.1 73.0 78.0 55.3
defaults 29.0 56.4 67.9 37.2
meta 21.8 35.1 52.7 26.3
templates 16.1 32.5 37.5 20.9
vars 12.5 24.1 28.1 16.0
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Fig. 6. Proportion of Ansible role releases that changed files in combinations
of the most commonly touched directories.

releases more often touch multiple directories, whereas patch

releases more often touch a single directory in isolation. This

confirms that patches are mostly about small changes, such as

bug fixes, whereas breaking changes in major releases require

maintenance in across the role, as was observed in RQ2.

Up to now, we have solely considered syntactical differ-

ences, which may include semantically-irrelevant changes such

as refactorings. Using the changes extracted by our structural

differencing algorithm (cfr. Section V), we identify the role

element types that are changed most often in specific bump

types. Table III lists structural element types that have been

changed (added, removed, relocated, or edited) in more than

5% of all releases, along with the proportion of releases that

changed such elements. We observe that all element types

are more frequently changed in major bumps. Changes to the

default variables occur most frequently, in over half of the

major releases and over a fourth of all releases, whereas tasks

are the second most frequently changed element. Note that the

numbers in this table are all lower than the numbers provided

in Table II, showing that there exist releases which syntacti-

cally change those components without incurring structural

changes. Surprisingly, this also leads to default variables,

rather than tasks, being the most commonly structurally

changed component. We therefore looked further into these

changes and found that the most commonly performed changes

for tasks are additions (18.07% of all releases) and relocations

(17.56%), whereas for defaults, they are additions (16.12%)

and value edits (14.27%). Finally, for every release type, tasks

are more often removed than variables.

We also found that 37.27% of releases perform no structural

change at all. This can be attributed to releases contain-

ing purely syntactical refactorings, or releases that perform

changes in components that are not considered in the structural

model (e.g., files and templates, tests, etc.). Extra analysis also

showed that regardless of the type of change, major releases

perform more changes than minors or patches. Similarly,

patches only perform a small number of changes. This is in
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TABLE III
PROPORTION OF RELEASES THAT CHANGED A SPECIFIC TYPE OF

ELEMENT, GROUPED BY RELEASE TYPE.

patch minor major all

Default var. 20.93 44.17 52.63 27.46
Task 18.62 42.19 44.87 24.96
Misc. metadata 10.03 18.85 32.54 13.01
Constant var. 8.99 18.36 20.79 11.58
Block 5.68 20.58 28.44 9.99
Platforms 5.24 12.88 19.95 7.59
Tasks file 2.99 12.53 17.33 5.73

line with previous observations in RQ2.

Findings: Major releases more often change multiple role

components, whereas patches more often change a single

component. Tasks and default variables are changed most

often. Syntactical changes often incur no structural changes.

B. Qualitative Study

We contacted a number of popular Ansible role developers

to relate our findings. We selected the most downloaded roles

on Galaxy, gathered their authors, and retained only those that

had a publicly-listed e-mail address, of which there were 22.

We then contacted each of these 22 developers and asked them

the following two questions.

1) Do you follow SemVer specifications when you change
your role version number?

2) If so, which changes trigger you to do a patch, minor or
major release?

We received a reply from six of the 22 contacted develop-

ers. Of these six, four confirmed adherence to SemVer, one

confirmed but noted that they were not strict about it, the final

developer stated they use the scheme, but not the semantics.

All five developers that use SemVer state that they release

major versions in case of backwards-incompatible changes.

However, one developer admitted to not always following this

rule, e.g., in case the incompatibility is easily resolved. Four

of the five developers use minor versions to introduce new

functionality, whereas one claims to use it for internal, non-

breaking changes such as code optimisations and refactoring.

All five developers agree that patch versions should be used

for bug fixes and small changes that do not affect the user.

We further asked the developers that follow SemVer what a

backwards-incompatible change to the interface of an Ansible

role could mean. They all appear to define the API of a role

as the set of default variables and their values, and claim that

removing or renaming variables leads to breaking changes

in the API. One developer also mentions that they consider

removing support for an older operating system or application

version as a breaking change.

Findings: All surveyed developers use the SemVer version

format, but some do not follow strict rules. Developers

define the API of a role as its default variables, and consider

removing or renaming variables to be breaking changes.

C. Feature selection and classification model
Our developer survey reveals some indications of developers

following rules when incrementing role versions. However,

as we only received a reply from 6 developers, and our

dataset contains over 1 700, it is impossible to generalise

their answers. Moreover, as RQ3 shows, releases often change

multiple components of a role simultaneously, and there does

not appear to be a change type that stands out as a potential

indicator of a breaking change or the added functionality.

Therefore, in the final part of our empirical analysis, we

train a classification model to predict the type of version

bump, given the structural difference metrics described in

Section V. The dataset thus consists of the 41 structural

difference features. Our approach to selecting, training, and

evaluating our classifier follows the one proposed by Yan et

al. [19], who identify features relevant for predicting commits

that will be reverted.
1) Model Selection: Our main goal is identifying features

and combinations thereof that may indicate which type of

bump should be chosen for a new role release. Therefore, we

focus on classification algorithms with interpretable results, so

that we can inspect the decision of the resulting model. In par-

ticular, we focus on the Random Forest classifier, proposed by

Ho [20], an ensemble learning classifier which trains multiple

Decision Trees simultaneously, and uses either majority voting

or average voting to obtain the final classification. This renders

it less sensitive to noise [21], which is ideal for our purposes

since not all developers consistently follow rules, rendering the

dataset to not be the ground truth. Moreover, Random Forest

provides the importance of each feature by design, which we

can use to derive the desired indicators.
2) Feature Engineering: Feature engineering [22] is an area

of data science that analyses the relation between features

and their relevance with respect to the to-be-predicted classes.

We use this to discover which features are relevant to our

classification problem, and discard all those that are not.

Removing such irrelevant features improves the training times

and complexity of the model.
We first perform a correlation analysis [23], where we dis-

card correlated features to avoid collinearity. Using a threshold

of 0.8, we find that the addition of handler blocks and the

addition of handler files are highly correlated (0.86). As such,

we discard the addition of handler files, since intuitively,

adding a new file in the handlers directory often means

a new block will be added to this file too, whereas a block

can be added to an already-existing file.
Then, we perform an ablation study, where we compute the

impact of features on the accuracy of the model and use this

to discriminate relevant features from irrelevant ones. We use

Recursive Feature Elimination (RFE) [24] which recursively

removes x features with the lowest relevance until only n
features remain. To select the hyper-parameter n, we use

an extended approach, namely Recursive Feature Elimination

with Cross-Validation (RFECV). Specifically, we use stratified

10-fold cross-validation [25], since this works particularly well

on imbalanced datasets such as ours. RFECV iteratively tests,
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TABLE IV
OVERVIEW OF STRUCTURAL CHANGE CATEGORIES AND THE RANK AND

WEIGHT (IN PARENTHESES) OF THEIR CORRESPONDING FEATURES IN THE

CLASSIFICATION MODEL.

Addition Removal Edit Reloc.

Dependencies 13 (2.17E-3) 12 (2.71E-3)
Platforms 1 (3.78E-2) 2 (1.12E-2)
Misc. metadata 1 (5.13E-2)
Default var. 1 (1.81E-2) 1 (4.42E-2) 1 (2.83E-2) 19 (3.19E-4)
Constant var. 1 (3.50E-2) 1 (1.62E-2) 1 (1.27E-2) 10 (2.93E-3)
Default var. file 8 (3.94E-3) 14 (1.95E-3) 21 (5.00E-5)
Constant var. file 1 (1.33E-2) 3 (7.62E-3) 7 (4.67E-3)
Task 1 (1.38E-1) 1 (2.98E-2) 1 (1.05E-1) 1 (1.02E-1)
Handler task 6 (5.50E-3) 17 (9.80E-4) 1 (1.40E-2) 15 (1.86E-3)
Block 1 (6.64E-2) 1 (2.56E-2) 9 (3.06E-3) 5 (6.16E-3)
Handler block 11 (2.77E-3) 18 (6.38E-4) 23 (2.85E-6) 22 (5.47E-6)
Tasks file 1 (3.21E-2) 4 (6.93E-3) 16 (1.26E-3)

Handlers file N/A1 20 (2.81E-4) 24 (1.74E-6)
1 Valid change type, but removed through correlation analysis.

using cross-validation, which number of features maximises

a specific metric, which in our case is the accuracy of the

model, and applies RFE with the best number of features as

n. Thus, this ultimately provides us with the most relevant

features, which we summarise in Table IV. Features (i.e.,

change categories) with a ranking of 1 are part of the final

selection, the remaining features are ranked according to their

relevance, with higher ranked features being more relevant.

Of the 41 features in the dataset, 17 were selected as rele-

vant. The majority of this selection (7) are addition changes,

followed by edits (5). We further identify tasks as important

elements to predict version bumps, since all change categories

related to tasks are selected. Furthermore, default and constant

variables are also important, with most of their changes se-

lected as relevant. We also find that certain element types, such

as handlers files and default variable files, are insignificant for

the prediction, as all their features are removed.

Lastly, from each of the foldings constructed by cross-

validation, we extract the weights of the trained models and

compute the median weight of each feature. This provides

us with a metric to assess the absolute relevance of each

feature, which is also depicted in Table IV. Here, four features

stand out in relevance. The addition of default variables is the

best ranked feature with a score of 0.181, followed by task

additions (0.138), edits (0.105), and relocations (0.102).

3) Training and Evaluation of the Final Classifier: Using

the 17 features retained from the previous step, we train a

Random Forest classifier to predict the bump type for each

of the version increments in the dataset. We then evaluate

this classifier by having it predict the class for each of these

increments. Table V depicts the confusion matrix obtained

during this evaluation, where rows represent the actual bump

type, and columns represent the predicted bump type.

The classifier achieves a precision of 0.8, 0.64, and 0.83 for

patch, minor, and major releases, respectively. The accompa-

nying recall scores are 0.97, 0.28, and 0.12 respectively. As

such, when the release in actuality is a patch, the classifier

will likely predict it as such. Moreover, when it predicts a

major version, it is likely correct. This is offset by the low

TABLE V
CONFUSION MATRIX RESULT FROM THE EVALUATION OF THE MODEL.

patch* minor* major*

patch 46 223 1 472 31
minor 9 894 3 866 40
major 1 974 684 357

recall for major, meaning that although a major prediction

is likely correct, it is an under-approximation. Furthermore,

minor releases show a relatively low precision and recall, and

the confusion matrix suggests that the classifier often fails to

distinguish between minors and patches. This could suggest

that the distinction between these two bump types is rather

vague, or alternatively, that structural features are insufficient

to uncover this distinction.

Findings: The majority of structural features are irrelevant

to distinguish the three types of version bumps. Additions

of default variables, task additions, task edits, and task

relocations are the most significant features. Although our

classifier achieves high precision and recall for patch re-

leases, it struggles to distinguish minors from patches. It also

significantly under-approximates major releases, although

most of its major predictions are correct.

VII. DISCUSSION

Our findings in RQ1 show that most Ansible role developers

follow the SemVer format. Moreover, the results of RQ2 show

that the actual bump type for a release is not chosen at

random, since more severe bumps require larger amounts of

effort, which is in line with observations for general-purpose

libraries [26]. Indeed, our developer survey reveals that role

developers may follow rules to decide which type of bump

to apply, although their interpretation does not always align

with that of other developers. Moreover, they do not always

follow their own rules, and their rules do not always strictly

follow the SemVer specifications. Notably, the distinction

between patch and minor releases can be ambiguous, since

minors may include bug fixes that would otherwise be in

a patch. Furthermore, some developers admit to not always

incrementing the major version in case of a breaking change.

This is consistent with the results of our classifier, which

mainly struggles with distinguishing minors from patches, and

appears to not recognise some breaking changes that would

belong to a major exclusively.

From the qualitative study, we can extract some general

rules to distinguish the SemVer bump types for Ansible

roles. Major bumps containing breaking changes appear to

incur some reduction in the flexibility of the client, e.g., by

removing variables so that clients can customise less of the

role’s behaviour. On the contrary, minor releases provide new

functionality, often in the form of providing the client with

more flexibility, e.g., by adding new variables to customise

more of the role’s behaviour. However, these are likely over-

simplifications, as a version bump is rarely limited to changes

in one component (RQ3) and not all developers necessarily

follow such rules consistently. Nonetheless, our classifier’s
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selection of features suggests a similar idea, where the addition

and removal of tasks, blocks, and variables are selected as

important features to distinguish version types, as well as the

addition of platforms. The removal of a platform, although

not selected as a feature, is still important, as it is the highest-

ranked feature among the discarded ones. This suggests that in

addition to default variables, the platforms that the role support

form another part of its interface. These features also coincide

with the most common changes to the role (cfr. Table III).

Since developers may not all follow the same rules, our

dataset may contain incorrectly tagged versions. As such,

our classifier may pick up on incorrect rules. Furthermore,

structural changes may not always be sufficient to distinguish

release types. We therefore manually investigate a sample of

its misclassifications, applying the rules extracted from the

survey. More specifically, we sample 20 cases where a patch

was predicted while the actual bump type is a minor, and 20

cases where a minor bump was predicted whereas the actual

bump was a patch. Further, we sampled 20 false positives and

20 false negatives of major releases.

Of the 20 bumps that were incorrectly predicted to be a

major version, we find that 15 contain a reduction in flexibility,

e.g., the removal of variables. However, of the 20 major bumps

that the classifier failed to identify, we find 9 that contain a

breaking change. Most of these are removals of platforms,

which was not selected as a feature, and incrementing the

minimum Ansible version required to run the role, which is

not modelled as a feature. Of the 20 minor bumps that were

classified as patches, we found 16 that add new functionality

which our classifier did not recognise. However, of the 20

patch bumps that were classified as minors, 11 contained

additions of platforms or variables, suggesting they should

have been minor versions. This strongly suggests that the

distinction between patches and minors is not consistently

applied across authors, and as such, our classifier cannot infer

accurate rules.

Note that some breaking changes can be more severe than

others, requiring more effort from a client to resolve. In future

work, we plan to involve the clients of a role, and estimate the

breakage potential of major bumps and their costs for clients.

A. Potential Threats to Validity

The empirical nature of our research exposes its findings

to potential threats to validity. We present them following the

classification and recommendations of [27].

A threat to construct validity comes from the way we

designed the structural model. It does not consider the files
and templates directories, which could contain significant

changes. However, our developer survey suggests that the most

important changes relate to its interface, i.e., default variables.

As a threat to internal validity, we did not consider all

version bumps of Ansible roles, since we removed tagged ver-

sion numbers (e.g., pre-release 1.0.0-alpha1). This may have

partially influenced our results. However, we are interested

in stable versions only, as such, this filtering does not affect

our findings. Moreover, as discussed previously, the gathered

dataset is not the ground truth. To alleviate this issue, we used

feature elimination and majority voting to be more resistant

to noise. In addition, we manually inspected a sample of our

classifier’s misclassifications to better understand the effects.

Finally, our dataset is highly imbalanced, showing a clear bias

towards patch releases which are significantly more common.

We address this issue by using stratified cross-validation,

which maintains the distribution of the original data in the

constructed folds.
As a threat to external validity, we cannot claim that

our findings generalise to Infrastructure-as-Code projects for

platforms other than Ansible.

VIII. CONCLUSION

Like general-purpose libraries, Ansible roles need to be

versioned to provide new role releases to its clients. Although

Ansible recommends semantic versioning, it is unclear what

the meaning of patch, minor, and major releases are in roles. In

this paper, we empirically investigated the state of versioning

in Ansible roles. From a dataset of over 7 000 roles and over

80 000 versions, we found that most developers use the SemVer

scheme and that development practices are consistent with

observations in general-purpose libraries. We designed a struc-

tural model for Ansible roles, and created a domain-specific

change extraction algorithm to extract structural changes be-

tween two version of a role. We found that many syntactical

changes between releases do not incur a structural change, and

that many role releases change multiple role components. We

then trained a Random Forest classifier to predict the type of

version bump, given 41 features in the form of metrics of the

structural difference between the two versions. Its selection

of features highlights key indicators to distinguish different

version bumps, with the addition of default variables and tasks

standing out. Furthermore, the classifier’s results suggest that

the distinction between patch and minor version bumps is

often unclear, and that breaking changes do not always strictly

lead to a major version. We confirmed these findings with a

qualitative developer survey, where we question 6 popular role

developers regarding SemVer-compliance and the changes that

trigger them to do a certain release. Finally, we extracted two

general guidelines, namely that the addition of flexibility for

the client should lead to a new minor version, and conversely,

that the removal of such flexibility is a breaking change that

should lead to a major increment. However, although many

developers appear to follow such guidelines implicitly, they

do not do so consistently.
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Thung. How to break an API: Cost negotiation and community
values in three software ecosystems. In Proceedings of the 2016 24th
ACM SIGSOFT International Symposium on Foundations of Software
Engineering (FSE16), pages 109–120. ACM, 2016.

[13] Christopher Bogart, Anna Filippova, Christian Kästner, and James
Herbsleb. Survey of ecosystem values. http://breakingapis.org/survey/.
accessed: 28/10/2017.

[14] Alexandre Decan and Tom Mens. What do package dependencies tell us

about semantic versioning? IEEE Transactions on Software Engineering,
2019.

[15] Jens Dietrich, David Pearce, Jacob Stringer, Amjed Tahir, and Kelly
Blincoe. Dependency versioning in the wild. In 2019 IEEE/ACM 16th
International Conference on Mining Software Repositories (MSR), pages
349–359. IEEE, 2019.

[16] Beat Fluri, Michael Wuersch, Martin PInzger, and Harald Gall. Change
distilling: Tree differencing for fine-grained source code change ex-
traction. IEEE Transactions on Software Engineering, 33(11):725–743,
November 2007.
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