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Abstract—Genetic algorithms are an efficient mechanism to
generate unit tests. Automatically generated unit tests are known
to be an important asset to identify software defects and define
oracles. However, configuring the test generation is a tedious
activity for a practitioner due to the inherent difficulty to
adequately tuning the generation process.

This paper presents TestEvoViz, a visual technique to in-
trospect the generation of unit tests using genetic algorithms.
TestEvoViz offers the practitioners a visual support to expose
some of the decisions made by the test generation. A number
of case studies are presented to illustrate the expressiveness of
TestEvoViz to understand the effect of the algorithm configura-
tion.

Index Terms—visualization, genetic algorithms, test generation

Artifact – https://github.com/andreina-covi/ArtifactSSG

I. INTRODUCTION

Automatic test generation is a crucial area in the field of

software testing. It consists of generating executable unit test

cases from a given source code base. A wide spectrum of tech-

niques is commonly employed to generate tests, in particular

fuzzing [1], test amplification [2], and genetic algorithms [3].

The unit tests generated are a valuable asset to identify the

dead code or software defects as well as to define oracles [4].

This paper focuses on supporting the activity of test gen-

eration using genetic algorithms. EvoSuite1 [3] is a popular

genetically-based test generation tool. In this paper, we target

the execution model proposed by EvoSuite, and as such,

the scope of this paper is offering a visual support tool to
(i) understand the final result of a test generation and (ii)
comprehend the process of getting to this result.

The effort related to EvoSuite has significantly strengthened

the field of genetically-based test generation. EvoSuite is

considered a reference in the field and it has remarkable

traction by using genetic algorithms to generate tests. How-

ever, it is surprising to see that EvoSuite does not provide

1http://www.evosuite.org

much tooling for understanding and assessing how tests are

effectively generated. In particular, EvoSuite does not provide

any mechanism to precisely expose the decision made by

the genetic algorithm. As a consequence, understanding and

characterizing the genetic algorithm execution is difficult.

Such a situation may contribute to an inadequate tuning of

the unit test generation algorithm. Adequately configuring

a genetically-based test generation algorithm is difficult, in

particular, (i) determining whether some hyperparameters are
properly chosen or (ii) adequately identifying the algorithm

termination condition to end the test generation algorithm are

two notoriously challenges that practitioners must face to enjoy

generated unit tests of a good quality.

We hypothesize that the difficulties in configuring a

genetically-based test generation stem from the lack of in-
trospection mechanism related to the algorithm execution.

TestEvoViz. We propose TestEvoViz, a visual introspection

mechanism for genetically-based test generation. TestEvoViz

visually represents the execution of the test generation, with

the objective of assisting a practitioner understand decisions

made by the genetic algorithm.

Figure 1 gives an example of TestEvoViz on a generation

of unit test for the classical class Stack, describing a stack

data structure. The visualization reads from top to bottom
in which each line represents an iteration of the algorithm.

TestEvoViz provides a range of glyphs detailing some aspects

of the test generation. The figure shows that the test evolution

goes through 6 iterations.

TestEvoViz is composed of three panels. The left-most panel

indicates the contributions made for each of the 6 iterations.

The contribution of each iteration is expressed using a spark

circle [5], which summarizes three metrics related to test

coverage: a big spark circle indicates a significant contribution

of the generation in terms of covered code. The panel located

in the middle represents the evolving unit tests that contribute

to the final iteration. The right-most panel plots the evolution
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Fig. 1. TestEvoViz - Illustrating example: Test generation process for the Stack class. Left panel shows the coverage variation at project level between a
given generation and its predecessor. Each box inside the middle panel represents a generated test. Links associate each test with their parents. A strong box
border highlights tests that have greater coverage than their parents. The value of each box gives the percentage of code covered by the generated test. Inner
boxes depict methods from which their test coverage changes with regard to their parents. Right panel reports the coverage evolution along generations by
rendering the average, lowest and fittest coverage reached in each generation.

of test coverage evolution in terms of the best, average, and

worse fitness. These curves are relevant to assess the diversity

of the genetic information in the unit tests at each iteration

of the algorithm. This right-most panel indicates that the

generated tests covers 100% of the base component under test.

We have applied TestEvoViz to a number of non-trivial

examples. TestEvoViz helps us characterize the behavior of

the genetic algorithm.

Outline. The paper is structured as follows: Section II gives the

necessary background to readers unfamiliar with genetically-

based test generation; Section III describes the TestEvoViz

visualization and the introspection mechanism; Section IV

presents some examples that illustrates TestEvoViz in practice;

Section V presents some real world case studies that highlight

the benefits of TestEvoViz; Section VII gives an overview of

the works related to this paper; Section VIII concludes and

presents our future work.

II. BACKGROUND: GENETICALLY-BASED UNIT-TEST

GENERATION

A. Unit-Test Generation

A number of techniques have been proposed to automati-

cally generate tests [3], [4], [6]. In this paper, we voluntary

focus on EvoSuite [3], a testing tool suite, which uses a

genetic algorithm to generate unit tests. Unit tests are evolved

by applying genetic operation to maximize the test coverage

of a class belonging to the base application code. Such a

class represents the target component EvoSuite is generating

tests for. The coverage of the target class is considered the

fitness function that the genetic algorithm is optimizing. A

population of tests is evolved by EvoSuite using primitive

genetic operations.

Each individual of the population is a test, which is com-

posed of a number of executable source code statements.

The statements contained in each test represent the genetic

information, commonly referred to as chromosome. There are

four kinds of statements considered by EvoSuite: primitive,
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which represents a literal value (e.g., number, boolean, string),

constructor to create an object from a class of the application

under test, method call to send a message to an object, and

access field to access an object variable. After having built the

tests, another algorithm generates assertions by using values

produced by the statements.

Each test contained in an unit test is composed of an ini-

tialization code portion and a set of assertions. Figure 2 gives

an example of a test method. Test methods are generated to

maximize the execution coverage and the whole test generation

is oriented to executing the largest portion of the target class.

As such, TestEvoViz does not represent assertions.

int var0 = 0;
int var1 = 1;
Point var2 = new Point(var0,var0);
Point var3 = new Point(var1,var0);

int var5 = var2.x;
double var4 = var2.distance(var3);

primitive

statement kind

primitive

constructor
constructor
method call
access field

Generated Unit Test

assertEquals(var5,var0);
assertEquals(var4,1);

Assertion
Assertion

assertEquals(var2.toString(),”0,0”); Assertion

Fig. 2. Unit test as individual of the Population

Initial Population. First, the algorithm creates N tests, and

each test has M randomly generated statements. Each state-

ment tries to benefit from the previous statements contained in

the same test by using variables previously defined. Figure 2

gives an example of a test in which the third statement uses

the variable var0 defined in the first statement.

Evolution. Once the initial population is defined, four steps

are performed to produce a new iteration, and therefore a new

population of evolved tests, by the algorithm:

• Coverage measurement – Each test is executed and the

code coverage of that test is measured through three

different metrics, as we will see later on.

• Selection – In a given population of tests, only the better-

performing tests are evolved. The selection algorithm

determines which tests have to be evolved. Many al-

gorithms are available (e.g., ranking selection, roulette,

tournament).

• Crossover – The genetic information of two selected unit

tests are combined using the crossover genetic operation.

A crossover between two tests consists in merging their

statements to generate two new tests.

• Mutation – The tests resulting from a crossover may

be randomly altered using a mutation genetic operation.

A mutation replaces a statement with a new one or

a variation of it. Numerous mutation operators can be

applied, including changing a parameter for another (e.g.,

replacing a variable name for another or changing a prim-

itive literal value for another). Mutations are necessary to

produce diversity in the genetic information.

These operations are performed multiple times to produce a

new and evolved generation of unit tests.

B. Challenges

The complexity of the underlying genetic algorithm makes

the activity of generating test difficult and tedious for a

practitioner. In particular, a number of technical issues have

to be considered in order to properly generate unit tests of a

good quality:

• Hyperparameter tuning – A hyperparameter is a param-

eter whose value is used to control the test generation

process. Numerous hyperparameters are associated with

genetically-based test generation: statement mutation rate,

size of the population, selection algorithm, crossover rate,

just to name a few. Identifying adequate hyperpameter

values is a process that typically follows a try-and-adjust

fashion.

• Stopping the genetic algorithm – Generating unit tests

may take hours or even days for a non-trivial software

component. A central question is: When to stop the

evolution of the unit tests? This question is hard to answer

in practice. The behavior that is commonly followed by

practitioners is to maximize the number of generations

in order to reach the best result. However, it frequently

happens that most of the best-performing tests (i.e., the

ones with the a high coverage) are generated in an early

iteration. Furthermore, unit test generation is a com-

putationally intensive process and avoiding unnecessary

iterations has a significant practical impact.

These two problems cannot be easily solved. The coming

section presents TestEvoViz, which alleviates these problems

by providing to practitioners essential information about the

test generation algorithm execution.

III. TESTEVOVIZ

We propose TestEvoViz, a visual approach to represent the

generation of unit tests using genetic algorithms. TestEvoViz

visually introspects the algorithm internal to let a practitioner

better understand decisions taken by the algorithm. TestEvoViz

has three main visual components to convey different aspects

regarding the iterative evolution of the population of unit

tests. This section describes a data model and each one

of these components using as example the Figure 1, which

illustrates the test generation for the Stack class. Table I details

the relation between the genetic algorithm concepts and the

proposed visualization.

A. Data Model and Introspection

Our approach is designed to visualize how test cases are

evolving across generations in order to achieve a higher

coverage. Let Gn = {g0, g1, . . . , gn} be the set of populations

created by the genetic algorithm, where g refers to a population

3



TABLE I
MAPPING GENETIC ALGORITHM CONCEPT IN TESTEVOVIZ

Initialization Population is composed by N tests (chromosome), which are composed by M
statements (genes).

13.333%

26.667% 53.333% 66.667% 60.0%_var0 := SStack newStack.
   _var1 := _var0 firstLinkStack.

Fitness

The fitness is given by the branch coverage of each test and it is shown at the
bottom of each node. In addition, the left panel shows the class, method and
branch coverage variation of each generation. Each of these metrics is associated
to a ring in a spark circle.

13.333%
66.667%

Selection

Each node in the middle panel represents a test that contributes to the final
generation. These tests were selected during the generation process using a
selection criteria (i.e., rank selection). Our visualization also shows the number
of nodes that were discarded in each generation.

80.0% 86.667% 86.667% 86.667%

86.667% 86.667% 86.667%

86.667%

80.0%

100.0%

93.333%

4

5

Crossover Tests that participate in a crossover operation are visually linked to their child.
53.333% 66.667%

86.667%

Mutation
Statements that were mutated after a crossover operation may be detected by
contrasting the source code of a given test with the source code of their parents.

0%

20.0%_var0 := ‘Ana’.
_var1 := 0.

_var0 := 0.
_var1 := SStack new.
_var2 := _var1 push: _var0.
_var3 := _var1 top.

26.667%

_var0 := 50.
_var1 := SStack newStack.
_var2 := _var1 push: _var0.
_var3 := _var1 pop.

of tests: the numerical subscript is the iteration index, and

n is the number of iterations. The initial random popula-

tion is denoted g0. Each population gk consists of m tests

gk = {t0, t1, . . . , tm}, where m is the size of the population.

A tuple (ti, gj) defines a test i of the population in the iteration

j. Let ancestors(ti, gj) be the set of ancestors of the tuple

(ti, gj), each tuple (ti, gj) may have one or two ancestors. We

define ancestors(ti, gj) as the tests of the previous population

in iteration j − 1 that participate in the creation of the test ti.

We have augmented the genetic algorithm to emit events

at relevant steps during its execution, e.g, before and after

each iteration, application of a genetic operation. These events

are used to build a detailed logging facility from which

TestEvoViz extracts relevant information to build the visual-

ization.

B. Generation Contribution

The left-hand side panel of TestEvoViz contains a spark
circle for each generation of the evolution (Figure 3, left-

hand side). A spark circle is a small bar chart which is drawn

in a circular fashion. Our approach uses a spark circle with

three ring sections. Each spark circle summarizes the coverage

variation of a given population gj compared from its previous

population gj−1 at three levels of granularity:

• Branch Coverage – Let Bcov(gj) be the ratio between

the number of executed branches by all the tests of the

generation and the number of existing branches in the

system. The total number of branches is the sum of the

branches of all methods in the application under test.

• Method Coverage – Let Mcov(gj) be the ratio between

the number of executed methods and the number of

methods of the application under test.

• Class Coverage – Let Ccov(gj) be the ratio between the

number of classes that have at least one method executed

regarding all the classes in the application under test.

We define the coverage variation between gj and gj−1 as

follows:

Δcov(gj , gj−1) = (cov(gj)− cov(gj−1))/(cov(gj−1))

This definition is used to measure coverage variation at branch

(Bcov), method (Mcov) and class (Ccov) level. The execution

of a generated test case may cover different methods and

classes of a system. Therefore, height of each ring section

is associated to the variation of the three coverage metrics:

branch coverage variation (green section), method coverage

(red section), and class coverage variation (blue section), as

indicated in Figure 3. In Figure 1, we see that the evolution

brought by the test in generations 1, 2, and 5, contribute to

significant increment the branch coverage. In generation 1

we also see that the method coverage and the class coverage

reached its maximum since these two metrics did not change

in the later iterations.

C. Test Case Evolution

The middle panel of TestEvoViz (Figure 1) details the unit

test evolution along the iterations.

Nodes. Each node represents a test case of a particular

generation (ti, gj). Tests at a given iteration are horizon-
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Generation
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Fig. 3. Spark circle and node glyph

tally aligned as represented in Figure 1 and Figure 4. Let

Bcov(ti, targetClass) be the ratio between the number of

executed branches in the target class regarding the total, and

Bcov(ti,m) the branch coverage of a method m. We define

the visual cues associated to a unit test node (Figure 3) as

follows:

• Border – A thick border indicates that a test case

(ti, gj) has a higher branch coverage than its ancestors

Bcov(ti, targetClass) > Bcov(th, targetClass), for

all th ∈ ancestor(ti, gj). If the coverage remains the

same or does not improve then the box has a thin border.

• Inner boxes – Each colored inner box represents a

method m of the target class that improves its branch

coverage regarding the unit test ancestors Bcov(ti,m) >
Bcov(th,m), for all th ∈ ancestor(ti, gj). To differen-

tiate the methods, each method of the target class has a

unique color. Note that different tests may increase their

coverage of the same methods.

• Value – The bottom value gives the class branch

coverage obtained after executing a given test case

Bcov(ti, targetClass).

Edges. Edges connect tests and indicate the historical evolu-

tion of these tests. An edge joins a unit test to its ancestors. A

unit test may have one or two ancestors. A unit test with two

ancestors means that the unit test is the result of a crossover

operation of two previous unit tests. In some cases, a node

has only had one ancestor, because either (i) the unit test was

the best of the generation and it survives due to the elitism

strategy; (ii) or produced children have a lower coverage than

their parents, in this case, the algorithm chooses to let one of

the two parents survive in the next generation.

Killed unit tests. To not overload the visualization, TestEvoViz

does not represent unit tests that do not contribute to the final

generation. During the evolution, many generated unit tests are

poorly performing (i.e., have a low coverage), and therefore

are killed (i.e., not considered for selected for being combined

with other unit test). The amount of killed unit tests for each

generation is represented as a horizontal bar, located on the

right hand side of the middle panel (Figure 1).

Interaction. TestEvoViz provides a number of interactions to

inspect the source code and track a test case genealogical tree.

Clicking on a node highlights their ancestors. Hovering the

mouse over a unit test shows the generated test code, and

hovering the mouse cursor over an inner box shows the source

code of the corresponding method. Figure 4 shows all the

ancestors of a test, and also shows the source code of the

selected test.

Fig. 4. Highlighting ancestors and obtaining source code

D. Coverage Evolution

The panel located on the right-hand side of TestEvoViz

indicates the evolution of the coverage by means of three

curves (Figure 1): the fittest unit test per generation (green

line), the average of the unit test coverage in a generation (blue

line), and the worse unit test per generation (pink line). The

distance between the worst and the fittest helps in assessing

the overall health of the generation: more distance between

these two curves, more diverse in the genetic information and

the population are.

IV. EXAMPLES

This section describes an application of TestEvoViz to

introspect the test generation of two classes of the Pharo
programming language: Stack and DataFrame. These are two

popular data structures implemented in Pharo. While the first

one is a classical linear data structure, the second one is a

two-dimensional structure commonly used for data analysis.

We use TestEvoViz to generate tests for these classes and

introspect the generation process. Figure 1 and Figure 5 depict

the results obtained for Stack and DataFrame, respectively.

The following paragraphs detail the test generation as executed

by EvoSuite.

Improving Ancestors Coverage. Along the evolution there

are a number of nodes that have a better coverage than their

ancestors. These tests are the ones that have a thick border.

The tests for Stack (Figure 1) show that eight nodes (i.e., tests)

perform better than their parents (i.e., the children tests have

a higher coverage than their parents). Each iteration generates
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Fig. 5. TestEvoViz on the DataFrame class

exactly two new test cases with a better coverage. On the other

hand, the evolution of tests for DataFrame (Figure 5) has also

ten nodes, however the difference is that five of these ten nodes

were discovered in the last iteration. We can categorize these

nodes in two:

• With inner boxes – Nodes with inner boxes represent

test cases that cover new branches or methods regarding

their ancestors. The color of inner boxes helps us to

differentiate this situation. If a color does not appear

before, then it indicates that a new method is discovered,

otherwise, a new branch of a previously executed method

is discovered.

• Without inner boxes – A node without any inner box

represents a test case that has a better coverage than its

parents, but did not cover any new method or branch.

This happens when its parents cover different branches

of the target class, and their child covers part of all these

branches together due the crossover mechanism.

Improving Generation Coverage. Although some tests of an

iteration have a better coverage than their parents, they may

discover new branches that may be already covered by the

others tests in the same iteration. As such, the algorithm is

discovering the same findings multiple times. The generation

contribution panel helps us identify this situation. Figure 1

shows this situation in generation 3 and 4 although there

are tests that cover new branches regarding their parents.

The coverage of the population does not increase at all.

Therefore, these tests cover branches already covered by other

individuals of the population. On the other hand, in the second

and fifth iteration the new tests discover new branches (i.e.,

not previously discovered). This fact is also reflected in the

coverage evolution component, every time that a new test

covers new branches, both the fittest and average coverage

of the population increase.

Discovering Dependencies. Sometimes, discovering a new

branch is due to code statements that involve method calls

to method or classes that were not covered in the previous

iterations. This fact is also reflected in the generation contri-

bution panel, which shows the coverage variation at method

and class level. For instance, Figure 1 shows that all but the

last iterations discover new branches that did not involve any

new method or class. However, Figure 5 shows that the method

coverage improves in the iterations 3 and 6, meaning that new

methods have been called by a given generation of tests.

Discarding weak tests. In each generation, the selection

algorithm discards tests that do not participate in the creation

of the new population. This fact is shown by the gray bars

positioned at the right side evolution component. Since, the

purpose of the selection algorithm is to discard weak tests from

the population (i.e., poorly performing with a low coverage).

The selection algorithm is related to the metric lowest coverage

on the population, which is shown by the coverage evolution

component. For instance, Figure 1 and Figure 5 show that

the selection algorithm does a good job, because at every

generation, tests with a low coverage are excluded, and the

lowest coverage is increasing. A particular situation is shown

in the second iteration in Figure 5, because, none of the tests

of that iteration improve their coverage. However, the lowest

coverage increases. This means that even though there were

no improvement the algorithm discards test cases with low

coverage.

V. CASE STUDIES

This section presents two case studies on which we analyze

the generation process of two Pharo projects to address two

questions:

• Q1: What are the effects of the number of statements on
the test generation process?

• Q2: What are the effects of the population size on the
test generation process?

A. Regex

Regex is a standard Pharo library to parse and match regular

expression expressions. In this case study, we use the class

RxMatcher as a target class. RxMatcher is a recursive

regular expression matcher that has 27 methods.

Baseline. For this case study, we use a base con-

figuration as follows: number of statements = 5,
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Fig. 6. TestEvoViz – Regex project; number of statements = 5;
number of iterations = 5; selection algorithm = rank selection;
and population size = 10

Fig. 7. TestEvoViz – Regex project; number of statements = 3;
number of iterations = 5; selection algorithm = rank selection;
and population size = 10

number of iterations = 5, selection algorithm =
rank selection, and population size = 10. Figure 6 gives

the results of running the algorithm with previous configura-

tion. As we can see, most of the methods and branches are

covered at the beginning of the first iteration. Only in the

fifth iteration a test case improves its coverage regarding their

parents, but that branch was already covered since the spark

circle of that iteration does not present any coverage variation.

After five iterations the tests with the highest branch coverage

is 16%. In this particular case study, there are generated tests

with 0% of coverage. This is because the algorithm only

creates object creation statements basically calling to class

default constructors.

Q1: Number of Statements. Figure 7 depicts the generation

process using the same base configuration, with the exception

that this time we set the number of statements as three.

Figure 7 shows that more tests of the first iteration survive

regarding the baseline. However, the first iteration test cases

have similar coverage than in the baseline. This means that the

first iteration, although having less number of lines, covers the

same amount of branches.

Along the evolution four tests have more coverage than

their ancestors, one may notice this by searching for nodes

with a thick border. The generation contribution panel shows

that the fourth and fifth iteration discover new methods and

branches not previously discover. This particular visualization

shows that the crossover operations between individual with

less statements achieve a higher coverage compared to the

baseline. With this configuration, the best generated test case

covers 36% branches of the target class, which is more than

baseline.

Q2: Population Size. Figure 8 depicts the generation process

using the same base configuration, with the exception that this

time we use a population size of 20. Figure 8 shows that in

the crossover operation between two test results in a new test

case that covers new branches, methods and classes. This fact

is indicated by the spark circle of the third iteration. Similarly

to the baseline, the visualization shows that there are few tests

that have better coverage than their ancestors. But in this case,

the algorithm found a new test case which got a better coverage

than the baseline.

B. NeoJSON

NeoJSON is the standard JSON reader and writer of the

Pharo programming language. In this case study, we generate

tests for the class NeoJSONObjectMapping which has 17

methods.

Baseline. We use the following base configuration:

number of statements = 20; number of iterations =
10; selection algorithm = rank selection; and

population size = 20. Using a greater number of iterations

and statements has the effect to produce a larger visualization.

Figure 9 shows the test evolution process for the class

NeoJSONObjectMapping. As we can see, most of the target

class is covered with the tests from the first iteration.

Iterations 3 and 5 slightly increment the branch coverage

This fact is showed by the coverage evolution and generation

contribution panel. There were four generations (between six

and ten) where the algorithm could not evolve until the last

iteration. Though the last generation has a better coverage

than their parents, it does not discover any new branches.

Q1: Number of Statements. To address the first question

we increase the number of statements from 10 to 20.

Figure 10 shows the visualization result of this change. First,

we notice that (i) the last generation has a greater coverage,

and (ii) most of the branches are discovered by the first three

generations. Regarding the baseline that most of the coverage

is discovered in the first five iterations. Therefore, we conclude

that in this particular case a greater number of number of

statements helps discover more branches quickly. In addition

the last generation covers more portion of the target class than

the baseline.

Q2: Population Size. To address the second question, we use

the base configuration but use a population size of 30 instead

of 20. Figure 11 shows the resulting evolution process. Since,

the population is larger, there are more tests that survive on the

first generation. The visualization shows that the coverage is
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Fig. 8. TestEvoViz – Regex project; number of statements = 5; number of iterations = 5; selection algorithm = rank selection; and
population size = 20

Fig. 9. TestEvoViz – NeoJSON project; number of statements = 10; number of iterations = 10; selection algorithm = rank selection; and
population size = 20

improved by four iterations (second, third, fourth and seventh),

which is two more than the baseline. There are also more tests

that have a better coverage than their parents. However, the

coverage reached by the last generation is 12 % bigger than

the baseline.

VI. DISCUSSION

Scalability. TestEvoViz uses a grid layout, which makes the

overall visualization size depend on the population size and the

number of iterations. Therefore, a larger visualization typically

requires scrollbars which may involve more interaction from a

practitioner to enjoy the visualization. To mitigate the negative

8



Fig. 10. TestEvoViz – NeoJSON project; number of statements = 20; number of iterations = 10; selection algorithm = rank selection;
and population size = 20

Fig. 11. TestEvoViz – NeoJSON project; number of statements = 10; number of iterations = 10; selection algorithm = rank selection;
and population size = 30

effect of this situation, our tool offers zoom-in and zoom-out

facilities using the mouse wheel. We argue that even though

the size of the nodes may be small when zoomed out, patterns

remain identifiable.

Method Colors. We assign a particular color to each method

of the target class. This color helps identify whether methods

are discovered multiple times by the algorithm or whether the

test covers new branches in method. In presence of a large

number of methods, such an approach could lead to reduced

9



visualization readability. In this case, hovering the mouse gives

a contextual popup window information to precisely identify

a method.

Pharo Implementation of EvoSuite. Our visualization is

implemented over a test generator for Pharo called Small-
SuiteGenerator2. The main difference between our implemen-

tation and EvoSuite is about resolving type information to

drive the test generation. EvoSuite operates in Java, which is

statically typed (i.e., each variable has a static type). Since

Pharo is a dynamically typed language (like Python and

JavaScript), SmallSuiteGenerator has to use various strategies

and heuristics to extract type information from executing a

Pharo application. Currently, TestEvoViz is not representing

collected or inferred type information that application uses to

generate tests.

Generalization. Our visualization helps developers introspect

the generation process to understand how the algorithm is

performing. As we see in our case studies, a simple variation

in the parameters may significantly impact the algorithm

behavior. However, it is important to clarify that the behavior

also depends on many other variables, for instance, the target

class and the complexity of their methods. Therefore, it is not

possible to generalize the findings outside the configuration

on which the algorithm was run.

VII. RELATED WORK

Genetic algorithms have been proposed in the 60s, since

then, numerous efforts have been made to improve and

evaluate genetic algorithms. Most of the existing works use

standard visualizations (i.e. line charts and box plots) to

show the evolution of a number of metrics along evolution

to describe each generation. The spread of the fitness along

each individual of a generation is usually represented using

chart as we do in the third panel of TestEvoViz. A number of

detailed visualizations have been proposed to better understand

the evolution process.

Our visualization was inspired by a number of visual

techniques even though they have a different purpose. We

combined and adapted these to build our proposed approach.

We employ spark circle [5] to highlight coverage variations

between iterations. We use a Cartesian layout to relate gen-

erated tests with their corresponding iterations [7]–[10]. We

associated a number of metrics to each node inspired in

polymetric view [11]–[13] and edge lines were inspired from

hierarchical bundle edges [14].

Representing generated tests with target class‘ executed

methods was tailored of [15], which uses boxes to represent

methods. In other hand, relationships between nodes with their

ancestors are represented as edges [15], [16] . TestEvoViz

also shares similarities with [16] to represent fitness progress

through iterations.

Hart et al. [16] propose an ancestry view, to render all the

ancestors of the best individual after the generation process,

2https://github.com/OBJECTSEMANTICS/SmallSuiteGenerator

using a tree layout and coloring nodes based on a number

of individual properties (i.e gene values, fitness, and gene

origins). Romero et al. [17] use color maps to visualize the

individuals and chromosomes of the population.

Farooq et al. [18], [19] propose a visualization for interac-

tive genetic algorithms (IGA), IGA combines the evolution

mechanism with user’s intelligent evaluation, where users

help the algorithm in the evolution process. In particular,

this visualization helps users to decide the generation for

interaction. It uses a two axis dot plot visualization, where

the horizontal axes are the generation number, and the vertical

axes the coverage of each individual all generations.

Ito et al. [20] proposed the use of pseudo-color to visualize

binary-code individuals of the population using pseudo-color

assigning a red pixel to chromosomes that represent “1”, and

a blue pixel to “0”.

Tomida et al. [21] proposes a technique to visualize the

evolution process of automated program repair. It is based in

a tree layout showing the code genealogy. It highlights the

nodes according to the operations and variants performed in

individuals of the population. These operations are particular

to tasks of automated program repair. This work is related to

our effort.

At the difference of these works, our approach focuses on

genetically-based test coverage evolution. Therefore, our visu-

alization renders information highly related to test evolution,

their operations and properties. As far as we know, this is the

first approach to help developers understand the test generation

process along the genetic algorithm.

VIII. CONCLUSION AND FUTURE WORK

TestEvoViz introspects a test generation algorithm execution

and uses a visualization to expose some aspects of the gener-

ation process. The resulting visualization may be exploited by

practitioners to adjust the algorithm configuration.

We also present some situations in which TestEvoViz is able

to support a non-trivial analysis of the test generation.

As future work, we will support differences of algorithm ex-

ecution. Currently, TestEvoViz visualizes the execution based

on one single algorithm configuration. In the future, we will

make TestEvoViz show differences between multiple execu-

tions of the algorithm.
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