
Visualization of Evolution of Component-Based
Software Architectures in Virtual Reality

Elke Franziska Heidmann∗, Lynn von Kurnatowski†, Annika Meinecke†, and Andreas Schreiber†
German Aerospace Center (DLR)

Institute for Software Technology
∗heidmann.elke@t-online.de, †forename.surname@dlr.de

Abstract—The visualization of software architectures by the
use of effective and feasible visual metaphors provides an intuitive
approach to comprehend the implemented architecture of a
software project. In this regard not only the visualization of the
latest status of the implemented architecture is important, but
also the visualization of the history of software architectures.
Such visualizations show dependencies and contexts in which
design decisions were made. Resulting information supports
programmers to understand systems and to recognize disadvanta-
geous design decisions. A software which is particularly suited for
the visualization of component-based software is IslandViz. This
software visualizes OSGi-based software architectures in Virtual
Reality with an island metaphor, but at this point the history
of an architecture is not taken into account. In this paper we
present how IslandViz can be extended to visualize the history
of software architectures of OSGi-based software projects. For
this purpose we use algorithms for dynamic graphs to realize
a dynamic positioning of the islands and an adaptable layout
of the regions on the islands. The aim is to ensure that the
user’s orientation in the virtual environment is preserved even if
elements of the visualization must adapt due to changes in the
software history.

Index Terms—software visualization, software architecture,
software evolution, history of software, virtual reality

I. INTRODUCTION

Software systems are becoming increasingly complex. For

this reason, software development also requires a form of

construction plan like in engineering disciplines. The software

architecture is often considered as such a construction plan

for software projects that displays the essential system prop-

erties and acts as a description to understand the structure

and behavior of a system. Especially for large and complex

software projects the software architecture is an important

communication vehicle, a basis for a mutual understanding

between all involved persons, for decision making and for

communication about the system. However, over time, the

original construction plan can no longer be used for com-

munication and understanding of the developing system. This

is because software products must be continuously modified

over the course of their life cycle, since the environment in

which they are used changes over time [1]. Moreover the scope

of the software increases because of change requests from the

user and expected functionality extensions. ISO/IEC-14764 [2]

states further reasons for changes on software projects like the

correction of errors and the improvement of the software, e.g.

in terms of performance and maintainability. The term “soft-

ware history” describes these changes and enhancements that

are made during the development and maintenance phase of

a software project. The modifications increase the complexity

of the software because additional unstructured dependencies

are added gradually. At the same time, the challenge increases

that all those involved in the software development can keep

an overview of the system despite continuous changes [1].

As an approach to software projects and their architecture,

graphical representations are usually used, in which the entities

of the software are represented by simple geometric shapes.

The UML diagram is the most popular example of this. How-

ever, the simple, geometric representation of large software

projects can become too complex using UML diagrams. Other

alternatives are the use of complex graphical elements, three-

dimensional visualizations, metaphors or representations in

Virtual Reality (VR). The use of the third dimension in visual-

izations offers a higher information level. Using metaphors to

represent software systems give the viewer a more intuitive

way to access information. This happens through objects

known from everyday life, for example the city metaphor [3],

[4] or the solar system [5].

However, existing software visualizations mainly focus on

a specific point in time to represent the software architecture

without considering its history. Rebuilding large software

architectures step-by-step can give important insights. It helps

in understanding all dependencies and gives context in which

changes occurred. This makes it possible to recognize disad-

vantageous design decisions and to rectify them. Consequently,

it is helpful to visualize the time aspect of a software project

because relevant information can be found in the software

history. The software IslandViz [6], [7], which is particularly

suited for the representation of modular software doesn’t

support the representation of software history until now.

IslandViz visualizes the software architecture of a software

system based on OSGi (Open Service Gateway Initiative)1 in

VR, using the real-world metaphor of islands (Figure 1). The

whole architecture is represented as an island landscape on

the sea. The single bundles are represented by islands. Their

area is divided into regions corresponding to the packages

contained in the bundle. The individual compilation units

(classes and interfaces) are buildings, which are located in

the corresponding regions.

To include the history of a software architecture, it is

1https://www.osgi.org/

12

2020 Working Conference on Software Visualization (VISSOFT)

978-1-7281-9914-6/20/$31.00 ©2020 IEEE
DOI 10.1109/VISSOFT51673.2020.00006

Fig. 1: IslandViz - visualizes the software architecture using

the island metaphor

necessary to consider how new, deleted, and changing bundles,

packages and compilation units affect the visualization. For

IslandViz we identified three main aspects that need to be

considered. First, the data must be made available. A database

that contains not only the status at a certain point in time,

but the entire history of a project. In a second step, the

visualization must be able to adapt to constantly changing

island layouts. In this context the preservation of the mental

map [8] is a key requirement [9], [10]. Finally, the new

extension needs to be evaluated using a user study.

In the remaining paper, we present our contributions on

visualizing the evolution of OSGi-based software systems as

follows:

1) We begin with our approach for the exploration of the

evolution of software projects in VR (Sect. II).

2) Then, we present some details on the particular imple-

mentation (Sect. III).

3) We give a short overview of a focus group interview we

conducted to identify requirements of software developers

for a software visualization (Sect. IV).

4) Followed by the description of our pilot user study

including the experimental design, the measurements, the

procedure used and the results (Sect. V).

5) After that, we interpret the results (Sect. VI).

6) We conclude the paper with the major findings and

indicate future work directions (Sect. VIII).

II. VISUALIZATION APPROACH

In the following section we describe our concept to visu-

alize the evolution of software architecture using the island

metaphor.

A. Island Positions

In the original IslandViz, island positions and distances

between different islands implicitly visualize dependencies be-

tween bundles. In the evolution of a software project, bundles

are created and deleted and dependencies change. As a result

our history extension needs to handle changing dependencies

and recalculate island positions accordingly. The difficulties lie

in retaining a mental map of the visualization while islands

change their positions. The visualization of dynamic graphs

G = G0, G1, ..., Gn [11], which are defined as a sequence of

graphs, where each graph is a representation of the dynamic

graph at one given time, faces the same problems. We looked

at two approaches from graph theory for our concept.

1) Aggregated Graph Approach: Based on the work of [12]

we first decided on creating an aggregated graph which takes

all nodes and edges of all commits into account. The weight

of nodes and edges is defined by how often they appear in

our dynamic graph. Each node was assigned a position in

the aggregated graph using a force-based approach. The idea

behind this approach is that nodes repel each other while edges

prevent them from drifting too far away. The formulas we used

based on the work of [12] were:

�Fa =
we ∗ d2

l2
∗ �d (1)

l =

√
wu ∗ wv

we
(2)

�Fr =

√
wu ∗ wv

d2
∗ �d (3)

we defines the weight of an edge between nodes u and v with

their respective weights. l defines the optimal length of edge

e.

To further improve the layout of a single graph in the graph

sequence, we used a refinement based on the works of [13].

They defined a mental distance Δ(l1, l2) between two layouts

l1, l2 of two graphs g1, g2 as the sum of distance between the

nodes of both graphs.

Δ(l1, l2) =
∑

v∈V1∩V2

dist(l1(v), l2(v)) (4)

After initialising the aggregated graph we applied a force-

based layout algorithm on it. The new layout will be accepted

if the mental distance between this layout and the other layouts

of the sequence is smaller than a predefined tolerance value

δ.

2) History-force Approach: Our second approach, which

we ultimately decided to explore further, was to include an

additional force which will be called history-force further

on. Based on [14], we included a force connecting the same

instance of a node in neighbouring graphs of the sequence.

As a result, nodes will be attracted by their predecessors and

descendants. For our implementation we used the following

formula to calculate the history-force:

�Fh =
w∑
i=1

c5 ∗ c1 ∗ 1

2i−1
∗ �dn ∗ d2

c4
(5)

�d = vt−i − vt (6)

The distance vector �d defines the distance between the cur-

rently looked at position of a node vt and its i−th predecessor.

c5 describes the relationship between the original force and the

newly introduced history-force. Based on the recommendation

of [14] to not only look at direct neighbors, to improve the

positioning of nodes, w defines how many neighboring graphs

in the sequence will be looked at. To reduce computation time,

we decided to look at 4 predecessors but only one descendent,

13

since including multiple descendants would require multiple

iterations to calculate the layout.

B. Island Layouts

1) Enhanced Hexagon Tiling Algorithm: The form of is-

lands in IslandViz is defined by the Enhanced Hexagon Tiling
Algorithm (EHTA) [15]. The EHTA assigns to each region

a number of cells in a hexagonal grid. The number of cells

which are assigned to one region is proportional to the number

of compilation units in each package.

Starting at a random cell in a grid, the EHTA distributes

each new cell to a region as follows:

• The next cell assigned to a region is a free cell, that is

neighboring at least one already assigned cell.

• The probability of a free cell being selected next depends

on the number of already assigned neighbors. The proba-

bility P (n) that a cell with n assigned neighboring cells

is selected is proportional to a score sn of a cell.

P (n) ∼ sn = bn (7)

The compactness of the resulting selection is defined by

b.

After the required number of cells of a region has been

reached, the next region is added at the border of the already

existing one. The algorithm iteratively determines the required

cells of all regions.

Buildings representing the compilation units of the package

have to be placed on the regions accordingly to the island

metaphor. This means that the area of the region must be

proportional to the number of buildings to provide sufficient

space for them. In our approach the assignment is performed

in a way that exactly one building can be placed on each cell

of the grid which itself is based on the layout.

Since the number of compilation units within a package

can change over the life cycle of the software, the number

of buildings to be displayed within a region also changes,

and so does the required space. Therefore, the concept for the

island layout must ensure that there is sufficient space available

within the region for the increasing number of displayed

buildings. However, it is not possible to assign a sufficiently

large area to each region from the beginning because the

necessary information about how many cells are required is

not available yet.

In order to allow each region of an island to expand as

needed, the island layout is designed in a way that each region

always has unoccupied border cells that can be occupied for

expansion. This ensures that each region is provided with

coastal access to grow.

For this purpose, we extend the EHTA by adding conditions

and parameters for the random selection of new cells. The

basic idea is to define absolute growth corridors for each newly

created region. Cells that are located on a growth corridor

can only be assigned to the respective region. For each newly

created region, we define a growth corridor that does not

overlap with another region or its growth corridor. This ensures

an unlimited growth of the individual regions (Figure 2).

(a) selected corridors visible (b) corridors hidden

Fig. 2: Island built using growth corridors

Fig. 3: Example for regions with a width of only one cell

By adding a new region, the starting cell is selected in a

manner that its growth corridor can be created without over-

lapping with already occupied cells or other growth corridors.

The Probability Pstart−opt(n) that a border cell is checked for

being a possible starting cell is:

Pstart−opt(n) = b6 − bn (8)

with n being the number of assigned neighbors and b being

the same as in equation 7. In case a selected border cell is not

suitable as a starting point for a region, additional cells are

checked until a start cell is found.

As shown in Figure 3 unrealistic island layouts can arise

when regions are created directly between two existing growth

corridors. In most cases this results in a growth corridor being

only one cell wide. Our solution is, to include the distance

to the nearest growth corridors in our calculation. Our new

formula is:

Pstart−opt(n, stepr, stepl) =

{
0.1 if stepr = 0 ∨ stepl = 0

stepr ∗ stepl ∗ (b6 − bn) else

(9)

stepr and stepl are the number of cells to the nearest growth

corridors to the right and to the left side of a potential starting

cell. Is a cell located next to an existing corridor (stepr =
0∨ stepl = 0), the probability will have a low constant value.

This ensures that a cell can be selected as starting cell if only

free cells are located next to a growth corridor.

2) Height Profile of Islands: In order to extend the visual-

ization of the islands with an additional topology, the height

of a single cell can represent the age of the corresponding

14

(a) same height for all cells (b) time-dependent height of each
cell

Fig. 4: Height profile of islands

(a) Commit before the package is
deleted

(b) Commit where the package
was deleted

Fig. 5: Effect on the island layout when deleting a package

compilation unit (Figure 5). For this purpose, the cell of a

new class or interface is first displayed at low height above

sea level. As time passes, the height of the cell increases.

3) Deletion of Components: After deleting compilation

units within a package, no building will be displayed any-

more. The hexagon cell reserved for the compilation unit still

remains part of the region. Deleting a package means that all

compilation units of the package are deleted. The area of the

region is still visible, but the information about the package

can no longer be displayed. Instead of the package name,

the region is referred as ”Deleted Package” (Figure 5). The

approach to not use the once assigned hexagon cells for new

buildings after the compilation units have been deleted intends

to support the preservation of the mental map. Especially when

switching between two non-consecutive commits, it is possible

to retrace where elements have been deleted.

C. User Interface

In order to let users navigate through the history of a

software project, we enhanced the interface of the original

IslandViz. We included a navigation interface (Figure 6),

making it possible for users to automatically play all commits

sequentially, to gain insight on how the project changed

over the entirety of its existence. In addition we added the

possibility to go through the commits step by step, giving the

Fig. 6: Navigation interface to either play an animation,

visualizing every commit sequentially (buttons on the left) or

to navigate from one commit to another (buttons on the right)

Fig. 7: Notation Panel: when changing between commits, the

user will receive information on who was the commiter and

the beginning of the commit message, if available

users the option to explore each commit before navigating to

another.

Since users are free to move around the table which displays

IslandViz, the navigation interface moves around the table as

well, so it is always at the closest point to the user.

In addition, we added an information panel to support users

orientation by displaying which commit is visualized at any

given time. When changing between commits, we furthermore

added a notification panel (Figure 7) that displays the author

of a commit, as well as the beginning of the commit message,

if available.

We furthermore added highlighting of changes (Figure 8), to

enhance the user experience of our system. If the visualization

view of IslandViz is on system level detail, new appearing

islands are highlighted by an underlying green disc. If an

island already exists but a change occurs on package level (e.g.

creation/deletion of packages), resulting in a changed island

layout, the island is highlighted by a blue disc. In case only

the height of buildings on an island change, due to changes

in a compilation unit, the island is highlighted using a white

disc.

On bundle level detail, the same color scheme is used to

highlight changes. New areas and buildings are highlighted

with green discs beneath buildings, changes in a compilation

unit are highlighted by blue discs beneath the buildings.

15

(a) new island (b) layout (c) buildings

Fig. 8: Highlighting of changes when (a) a new island is added

(green), (b) the layout of an island is changed (blue) or (c) the

height of buildings on an island are changed (white).

III. IMPLEMENTATION

In this section we describe the implementation of the

concepts described above, Sect. II. We first describe our

data mining approach to extract all relevant information from

source code repositories and some details on the particular

implementation.

A. Data mining

We analyze Java projects that are based on the OSGi

framework (Open Services Gateway Initiative). This frame-

work modularizes and manages software projects and their

services. OSGi projects include bundles. Each bundle is a JAR
archive with a MANIFEST.MF file, which describes different

information such as dependencies and services. We analyze

OSGi-based projects by extracting all relevant information

from source code repositories. The information from all Java
files, MANIFEST.MF files, and XML files are stored in an

intermediate data model. For this purpose we developed a java-

based application that provides all data needed for the visu-

alization. The information about the architecture is extracted

from a Git repository using an iterative process. In this case

Git is the version control system that acts as our data source.

A Git repository contains the complete historical information

about a software project and consequently all visualization-

relevant data.

To store the data we chose a graph database. In the context

of this work, the information about relations between the

different components is at least as important as the entities

themselves, so we selected the Neo4j2 graph database. Figure 9

shows a selected extract of the graph database. The nodes and

relations represent the OSGi specific structure of a software

project. In order to map the software history, we added an

additional node of the type CommitImpl. Each node of this

type represents a commit in the version control system. Linked

to such a node is the state of the entire architecture at a given

point in time. In order to bring all nodes of type CommitImpl
into a chronological order, an additional relationship called

NEXT is added between the preceding and subsequent commit

(Figure 9). For all other types of nodes a NEXT-relationship

is only added if the corresponding components stay the same

from one commit to another. The result is a timeline for

2https://neo4j.com/

Fig. 9: Visualization of a selected extract of the graph database

(brown node: CommitImpl).

every component that is accessible in the graph database. For

the required comparisons in this procedure we entirely use

Cypher-queries.

B. Configuration

We developed our visualization with Unity 2019.33 using

the SteamVR plugin in the version 1.8.214. The targeted

HMD is the HTC Vive Pro. The visualization was developed

on a computer with an eight core 2.60 GHz CPU, an NVIDIA

GTX 1080 GPU and 64.0 GByte RAM.

At the start of the application, steps are performed as the

following:

Preparing the database: We first make sure that all informa-

tion necessary for the visualization is actually available

in the database (Sect. III-A).

Importing the data: All information about the architecture

and history of the software project is extracted from the

database into an internal data structure.

Island and graph layout: The visualization of the OSGi

components is calculated according to the concepts de-

scribed in (Sect. II). The layouts of the islands are initially

calculated by the extended EHTA. Then the positions of

the islands within the visualization are computed by the

force-based approach with historical force. Because it’s

3https://unity.com/de/releases/2019-3
4https://steamcommunity.com/games/250820/announcements/detail/

1621788314781400373

16

important to maintain the mental map over the span of

multiple application usages (that are separated in time),

the calculated information for the visualization will be

stored in the database. As long as the information for

the visualization already exists, no recalculation needs to

happen. In this case the layouts are only reconstructed

from the data. If however new commits are added since

the last usage, the layout is recalculated for these com-

mits.

Creating GameObjects: In the last step of the loading pro-

cess, all necessary Unity GameObjects are generated to

represent the islands and their components.

IV. FOCUS GROUP

When we started developing the history extension for Is-

landViz, we conducted a focus group interview to identify

which requirements users had for such a visualization. Since

we aim to support software developers in their work on big

software projects, these were our target group.

A. Participants

For our focus group we invited six software developers (2

female, 4 male) working at DLR, in the age range of 27

to 42 years. With regard to experience with large software

projects, the group was heterogeneous, with some participants

only recently starting to work with large software projects,

while others had experience in this sector for up to 15

years. Nonetheless, all participants were experienced software

developers. All participants were acquainted with IslandViz.

B. Procedure

The focus group had a duration of 2 hours and started with

an introduction of the topic, explaining the reasoning why we

wanted to conduct the focus group interview, followed by a

short introduction of all participants. We split the discussion

into three parts. During the first part, we were interested in

problems developers face everyday in which information about

the evolution of the software project was needed. Furthermore,

we wanted to identify where and how the developers currently

searched for this kind of information. Lastly we wanted to

identify how detailed information needed to be, in order to

support developers in their work.

In the second section of our discussion we focused on visu-

alization. Which kind of visualization do developers use and

why. We wanted to identify which requirements developers

had for a visualization and in which aspects of their work a

visualization would be welcome.

In the third section of the focus group we presented our

visualization concept (Sect. II), looking for ideas to improve

on it. Furthermore, we discussed the user interface and gave

participants the possibility to voice their wishes and concerns.

C. Analysis

Analyzing our focus group showed that developers looked at

the history of a software to solve errors, comprehend changes

during development, and to plan for future changes, as well

as for work on the documentation.

Especially when errors occurred in code which was previ-

ously working correctly, developers claimed to look at recent

changes. They furthermore used the history of a project to get

an overview of the current version, but also to find out when

and why changes were made in packages they did not work on

for a while, and who was working on the code. Moreover, the

developers were interested if other developers changed existing

code while programming, which changes they made and why.

The visualization should therefore include author and commit

message. In most cases, developers were only interested in

recent changes of up to two weeks, so the visualization should

prioritise this time frame and allow fast navigation through

recent commits.

Our focus group interview showed that the most important

source to look at the history of a software project is the

version control system and the created issues. Commits can be

assigned to specific issues, making them an important source

to get an overview of the project and the work in progress.

Next to commits, issues should therefore also be featured in

a visualization of software history.

Regarding user interaction, developers wished to filter com-

mits by branches and authors. In addition, the visualization

should show new structures and major changes more promi-

nently, simplifying navigation to these commits.

V. USER STUDY

We argue that by creating adaptable island layouts and

dynamically changing island positions we support users in re-

taining a mental map of the software architecture. As a result,

our extension should support users in recognizing changes in

the software architecture more efficiently and more correctly.

We therefore decided to conduct an exploratory user study to

confirm our expectations and to identify usability issues. To

this purpose we compared our extension of IslandViz with the

original implementation using a between subject study design

for our pilot study.

A. Conditions

In total we tested two conceptually different visualization

systems in our user study – the original IslandViz (Condition

A) and our extension (Condition B).

Condition A consisted of the original implementation of Is-

landViz. Since the original IslandViz does not support jumping

between different commits, we included a navigation interface

to load a new unity scene showing the previous or following

commit from inside IslandViz. However, when changing be-

tween different commits in this system the visualization is in-

terrupted during the loading of a new unity scene during which

the participants are shown a light grey surface. Condition B
consisted of the basic implementation of our history extension

for IslandViz as described in section II. Island positions and

layouts adapt according to the changes from one commit to

another. Additional highlighting of changes was left out in

this system since we were more interested in finding out how

efficient our support of a mental map was realized.

17

TABLE I: Task 1

Compare the systems between commit 2 and 3.

Name the new bundles. GUI Command, Data Model

Name the deleted bundles. Scripting

TABLE II: Task 2

Compare the bundle Data Model between commit 3 and 4.

Which packages were added? TestUtils

Which packages were deleted? none

Which files were added in ex-
isting packages?

DefaultTypedDatumConverter,
DefaultTypedDatumFactory,
DefaultTypedDatumSerializer

Which files were deleted in still
existing packages?

TypedDatumServiceImpl

B. Procedure

Participants arrived for our study and first were asked to

sign an informed consent form. Afterwards they were asked to

answer a questionnaire recording their demographic informa-

tion. Participants were given an introduction text explaining

the visualization as well as the tasks they were expected to

perform throughout the study. They then put on the head

mounted display and were asked to familiarize themselves

with the visualization. During this exploration phase, the

study conductor again explained the important navigation and

interaction techniques of the system. Furthermore, participants

were allowed to ask questions. When the participants felt

comfortable, the task was presented inside the visualization on

the information panel and the study conductor read each task

out aloud. While the task was not displayed in the information

panel the whole time, participants had the possibility to

display it at any time. After completing both tasks, participants

answered the System Usability Score (SUS) [16]. Since we

were interested in identifying aspects to improve the user

experience of our extension, we asked our participants several

open questions regarding their experience with the system, as

well.

C. Tasks

We created two tasks which were given in both groups. With

the first task (Table I) we wanted to find out how participants

are able to track changes occurring on system level detail. The

second task (Table II) was designed to determine how effective

participants can identify changes on bundle level detail of

the software system. A task in our study was started by the

conductor of the experiment and ended when participants had

stated all answers correctly or declared that they were finished.

For each task we captured the duration time as well as the

completeness of the given answer. With regard to measuring

completeness we assigned one point for each expected answer

(e.g. in Task 2.3 a total of 3 Points could be reached). In total,

participants could achieve 9 points.

D. Dependent Variables and Hypotheses

In our study we measured task completion time and task

correctness, as well as the usability of each system using the

system usability score. We were interested if our extension

resulted in more efficient task completion. Our first hypothesis

therefore was:

H1 The average task completion time using the history ex-

tension of IslandViz will be smaller than in the original

version.

Furthermore, we expected participants to detect more

changes using our extension since a users orientation and

mental map is preserved. As a result, our second hypothesis

was:

H2 Using history extension of IslandViz will result in better

results regarding task completeness.

In addition, we anticipated overall a better usability score

with our history extension based on its support of a mental

map of the software architecture as well as the reduced loading

times. Hence, our third hypothesis was:

H3 Based on the SUS, the history extension will have a higher

usability rating than the original IslandViz.

E. Participants

12 students and employees of the University of Würzburg

participated in our preliminary study (7 female, 5 male). Our

participants were between 19 and 52 years old (Mdn = 22.5,

IQR = 10.0). Participants mainly had a background in com-

puter science (4 human computer interaction, 4 other computer

science, 4 non computer science). Half of our participants

claimed that they had advanced knowledge in programming,

while half stated that they had only beginners knowledge. 11

participants stated that they had previous experience with VR,

while one participant was new to VR.

F. Results

We used Shapiro-Wilk Tests [17] to analyze our data for

normality. For each test we computed the effect size r and

applied the thresholds introduced by Cohen [18] with the

values 0.1 (small), 0.3 (medium), and 0.5 (large). Comparing

the task completion times for both conditions in Figure 10

shows that participants were in general faster to complete both

given tasks using the history extension of IslandViz. The mean

task completion time for both tasks was normally distributed.

We applied an independent samples t-test which showed,

the mean task completion time was significantly higher in

condition A (M = 818s, σ = 152.6s) than in condition B

(M = 508s, σ = 163, 47s) with t = 3.396, p = 0.007,

r = 1.960(large effect). We therefore accept H1.

Figure 11 shows, participants in general achieved more

correct and complete answers using our history extension.

In comparison the variance in group B was much smaller

than in group A. The task completeness in task B was not

normally distributed, we therefore applied a non-parametric

test to analyze our data for significant differences. The overall

task completeness showed no significant differences between

18

Fig. 10: Completion Times for Tasks in the original IslandViz

(A) and the history extension (B)

Fig. 11: Task Completeness for Tasks in the original IslandViz

(A) and the history extension (B)

condition A (Mdn = 7.5 out of 9 points, IQR = 3.25) and

condition B (Mdn = 9 out of 9 points, IQR = 0.0), with

p = 0.074, r = −0.583 (strong effect). We therefore cannot

accept H2.

The results of the SUS (Figure 12) show that both con-

ditions were rated similarly with condition B (M = 73.75,

σ = 18.29) having a slightly higher score than condition A

(M = 92.92,σ = 10.66). Both conditions are therefore graded

acceptable by users.

In addition to the above analyzed criteria, we asked partici-

pants multiple open questions to find out how we can improve

our system. The answers show that in general participants

liked the idea of visualizing large software projects in VR

using an island metaphor. When asked about what they liked

about the systems when they were completing the above

tasks, participants of group A commented more about the

visualization in general. Participants of group B commented

about the consistency in the visualization which allowed them

to detect changes faster. When asked what they did not

like, participants in group A reported difficulties in detecting

changes due to the long loading times and the multitude of

changes happening at once. Furthermore, they did not like

Fig. 12: Results of the SUS in the original IslandViz (A) and

the history extension (B)

that islands changed their locations completely. Participants in

group B in general did not like that there was no additional

highlighting of changes. In addition they complained about

the slightly moving islands when switching between commits,

especially in the context of task 2 on bundle level detail.

VI. DISCUSSION

With our user study we wanted to determine if our concepts

introduced in Section II improved users ability to discover

changes in a software project over time. We furthermore

wanted to gain information on which features would enhance

user experience. The study was only conducted as pilot study,

with a small sample size to gain early insights in the results

of our concept. In addition, we wanted to generate ideas to

improve our interface. The results therefore have only a small

validity and reliability. Nonetheless, the results indicate that

our extension is advantageous when exploring the history of

a software product which we want to further explore in the

future.

While users rated both conditions similar using the SUS, the

answers to our open questions show that participants of group

B had less significant issues using our history extension then

participants in group A.

With regard to completion times, completing tasks in our

history extension was significantly faster than using the orig-

inal IslandViz. This might be in part due to the fact that

additional loading times prolonged the needed time in con-

dition A; however, in combination with our observations and

the answers to our open questions, we are confident that the

improved layout consistency of our extension was an important

factor as well.

Even though statistical testing did not provide significant

results with regard to task completeness, participants in group

B were able to achieve 98% of the given points. Participants

of group A were in general able to identify the changes

as well; nonetheless, the variance was much higher in this

group, indicating that the system in condition B provided more

support which led to these differences.

19

VII. RELATED WORK

Lanza [19] presents an approach to visualize software his-

tory through changing metrics. For this purpose, he develops

an ”Evolution Matrix”, in which a class is represented as a

rectangle at a specific point in time of a software development

process. To represent the temporal aspect, the rectangles are

arranged in this evolution matrix. Each row of the matrix is

assigned a class of the software system while the columns of

the matrix represent the state of the class at different points

in time. By looking at the matrix row-wise, the evolution of

a class within a system can be recognized. By Looking at the

matrix column-wise an overview of the system at any given

point in time is possible.

Hassan et al. [20] follow a similar approach with their

”Spectograph”. Here, also artifacts of the software system are

arranged line by line and points in time column by column,

though in addition to this the considered metric is encoded by

the colour of the matrix field. For this purpose, four colours

are suggested that each correspond to a quarter of the value

range of the metric.

Gall et al. [21] visualize the history of software architecture

in three-dimensional space. To achieve this, the software

architecture is represented at a specific point in time in a

two-dimensional graph. By lining up these graphs in the third

dimension, the temporal component is introduced.

Steinbrückner and Lewerentz [22] developed ”EvoStreets”,

a visualization which is based on the city metaphor, but also

considers the software history. In this work the package hier-

archy of the software system is realized by streets. Buildings

represent classes which are arranged along the streets. To

change the city according to the software history, Steinbrück

and Lew define rules. For example, one of the rules determines

that new elements are added to the end of the street and another

rule describes that the visualization of deleted elements are

marked with a bright color.

VIII. CONCLUSION AND FUTURE WORK

In this paper we presented our approach to visualize the

history of OSGi-based software projects through an island

metaphor. The main focus was to preserve the mental map

of the user while viewing the software history. In the context

of this work, this term describes that the orientation of the

user within the visualization should be preserved, although

the visualization-components are required to adapt and change

with the modifications in the software history. This was

accomplished in different ways depending on the level of detail

that needs to be displayed in the visualization. In the overview

of the system the islands of the archipelago are positioned

by an algorithm for dynamic graphs. This algorithm keeps

the islands close to their previous positions if the archipelago

grows. An adaptive layout makes it possible that a bundle

can be displayed as an island and that additional buildings

can be added to each region. This is realized by providing

secure coastal access and growth corridors of the regions. For

the implementation we have extended the Enhanced Hexagon

Tiling Algorithm (EHTA).

In a pilot user study, we compared the extended island

visualization with an application that also displays the soft-

ware architecture using the island metaphor, but reloads the

visualization between each commit. First results indicate that

the extended island visualization supports the user in retaining

a mental map of the software project. Nonetheless, we plan to

confirm our results in a second, extended user study in which

we will set the main focus on enhancing the user interface.

Our visualization is specifically designed with the goal

to support users in their understanding of complex software

architectures. Therefore, future work will foremost focus on

enhancing our interface and interaction techniques to make

our extension of IslandViz more accessible to users. To this

purpose we will also take into consideration the results from

our focus group interview and pilot user study. Other future

work aims to support other component models than OSGi and

other programming languages than Java. Beside visualizing

the evolution of software projects, we plan to integrate further

software metrics into the visualization.

ACKNOWLEDGMENT

This paper is based on a master thesis that originated from

a cooperation with the University of Würzburg. We thank all

colleagues who took part in creating this work.

REFERENCES

[1] M. M. Lehman, “Laws of software evolution revisited,” in Proceedings
of the 5th European Workshop on Software Process Technology, ser.
EWSPT ’96. Berlin, Heidelberg: Springer-Verlag, 1996, p. 108–124.

[2] ISO/IEC-14764, Software Enineering - Software Life Cycle Processes -
Maintenance, ISO ISO/IEC 14 764:2006(E), Dec 2006.

[3] T. Panas, R. Berrigan, and J. Grundy, “A 3D metaphor for software
production visualization,” in Proceedings of the Seventh International
Conference on Information Visualization, ser. IV ’03. USA: IEEE
Computer Society, 2003, p. 314.

[4] R. Wettel and M. Lanza, “Codecity: 3D visualization of large-scale
software,” in Companion of the 30th International Conference on
Software Engineering, ser. ICSE Companion ’08. New York, NY,
USA: Association for Computing Machinery, 2008, p. 921–922.
[Online]. Available: https://doi.org/10.1145/1370175.1370188

[5] H. Graham, H. Y. Yang, and R. Berrigan, “A solar system metaphor for
3D visualisation of object oriented software metrics,” in Proceedings of
the 2004 Australasian Symposium on Information Visualisation - Volume
35, ser. APVis ’04. AUS: Australian Computer Society, Inc., 2004, p.
53–59.

[6] M. Misiak, D. Seider, S. Zur, A. Fuhrmann, and A. Schreiber, “Immer-
sive exploration of OSGi-based software systems in virtual reality,” in
2018 IEEE Conference on Virtual Reality and 3D User Interfaces (VR),
March 2018, pp. 1–2.

[7] A. Schreiber, L. Nafeie, A. Baranowski, P. Seipel, and M. Misiak,
“Visualization of software architectures in virtual reality and augmented
reality,” in 2019 IEEE Aerospace Conference, March 2019, pp. 1–12.

[8] P. Eades, W. Lai, K. Misue, and K. Sugiyama, “Preserving the mental
map of a diagram,” in Proceedings of Compugraphics ’91, 1991, pp.
24–33.

[9] D. Beyer and A. E. Hassan, “Animated visualization of software
history using evolution storyboards,” in Proceedings of the 13th
Working Conference on Reverse Engineering, ser. WCRE ’06. USA:
IEEE Computer Society, 2006, p. 199–210. [Online]. Available:
https://doi.org/10.1109/WCRE.2006.14

[10] F. Steinbrückner and C. Lewerentz, “Understanding software evolution
with software cities,” vol. 12, pp. 200–216, 04 2013.

[11] S. Diehl, C. Görg, and A. Kerren, “Preserving the mental map using
foresighted layout,” in Proceedings of the 3rd Joint Eurographics - IEEE
TCVG Conference on Visualization, ser. EGVISSYM’01. Goslar, DEU:
Eurographics Association, 2001, p. 175–184.

20

[12] C. Collberg, S. Kobourov, J. Nagra, J. Pitts, and K. Wampler, “A
system for graph-based visualization of the evolution of software,” in
Proceedings of the 2003 ACM Symposium on Software Visualization,
ser. SoftVis ’03. New York, NY, USA: ACM, 2003, pp. 77–ff.
[Online]. Available: http://doi.acm.org/10.1145/774833.774844

[13] S. Diehl and C. Görg, “Graphs, they are changing,” in Graph Drawing,
M. T. Goodrich and S. G. Kobourov, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2002, pp. 23–31.

[14] A. Chapanond, M. S. Krishnamoorthy, G. M. Prabhu, and J. R. Punin,
“Evolving graph representation and visualization,” 2010.

[15] M. Yang and R. P. Biuk-Aghai, “Enhanced hexagon-tiling algorithm
for map-like information visualisation,” in Proceedings of the 8th
International Symposium on Visual Information Communication and
Interaction, ser. VINCI ’15. New York, NY, USA: Association
for Computing Machinery, 2015, p. 137–142. [Online]. Available:
https://doi.org/10.1145/2801040.2801056

[16] J. Brooke, “SUS: A quick and dirty usability scale,” Usability Eval. Ind.,
vol. 189, 11 1995.

[17] S. S. Shapiro and M. B. Wilk, “An analysis of variance test for
normality (complete samples),” vol. 52, no. 3, pp. 591–611, publisher:
[Oxford University Press, Biometrika Trust]. [Online]. Available:
https://www.jstor.org/stable/2333709

[18] J. Cohen, “A power primer,” vol. 112, no. 1, pp. 155–159, place: US
Publisher: American Psychological Association.

[19] M. Lanza, “The evolution matrix: Recovering software evolution using
software visualization techniques,” International Workshop on Principles
of Software Evolution (IWPSE), 09 2001.

[20] A. E. Hassan, Jingwei Wu, and R. C. Holt, “Visualizing historical
data using spectrographs,” in 11th IEEE International Software Metrics
Symposium (METRICS’05), 2005, pp. 10 pp.–31.

[21] H. Gall, M. Jazayeri, and C. Riva, “Visualizing software release his-
tories: the use of color and third dimension,” in Proceedings IEEE
International Conference on Software Maintenance - 1999 (ICSM’99).
’Software Maintenance for Business Change’ (Cat. No.99CB36360),
Aug 1999, pp. 99–108.

[22] F. Steinbrückner and C. Lewerentz, “Representing development history
in software cities,” in Proceedings of the 5th International Symposium
on Software Visualization, ser. SOFTVIS ’10. New York, NY, USA:
Association for Computing Machinery, 2010, p. 193–202. [Online].
Available: https://doi.org/10.1145/1879211.1879239

21

