
Visualizing Evolving Software Cities

Federico Pfahler, Roberto Minelli, Csaba Nagy, Michele Lanza
REVEAL @ Software Institute – USI Università della Svizzera italiana, Lugano, Switzerland

Abstract—Visualization approaches that leverage a 3D city
metaphor have become popular. Numerous variations, including
virtual and augmented reality have emerged. Despite its popular-
ity, the city metaphor falls short when depicting the evolution of
a system, which results in buildings and districts moving around
in unpredictable ways.

We present a novel approach to visualize software systems
as evolving cities that treats evolution as a first-class concept.
It renders with fidelity not only changes but also refactorings
in a comprehensive way. To do so, we developed custom ways
to traverse time. We implemented our approach in a publicly
accessible web-based platform named m3triCity.

Index Terms—Software visualization, Software maintenance

I. INTRODUCTION

Researchers have explored many approaches to visualize the

evolution of software systems. In 2007, Wettel et al. presented

CODECITY, an approach to visualize software systems as

interactive cities [1], which inspired many other approaches.

Classes are represented as buildings, while packages are

depicted as the districts in which buildings reside. The dimen-

sions of visual elements (i.e., width, height) are proportional to

the values of software metrics, following the idea of polymetric

views [2]. By leveraging the city metaphor, CODECITY aims at

displaying software metrics in a meaningful way, while giving

viewers a sense of locality in the code city. The popularity of

the city metaphor has grown, going as far as utilizing virtual

and augmented reality, for example with EVO-STREETS [3],

CodeMetropolis [4], and VR City [5].

Despite its popularity, the city metaphor falls short when it

comes to visualizing the evolution of a system. In the past

researchers have either favored a small multiples approach

(i.e., depicting several city versions side by side) or created

movies from the various snapshots. In both cases following the

evolution of the system is rather hard: Using small multiples

we do not see the data in the same detail as with larger

visualizations while with the latter the resulting movies are

not smooth since changes are depicted as “jumps” (classes and

packages move in unpredictable ways from one version to the

other) making it difficult to follow the evolutionary process.

We present a novel approach to visualize software systems

as evolving cities that treats evolution as a first-class concept.

To do so, we take inspiration from Girba’s software evolution

model proposed in HISMO [6] and adapt it to the Git workflow.

Essentially, the model is composed of versions and histories:

A version represents the set of changes that happened in the

system while a history is a collection of versions. Our approach

models versions and histories at class, package, and repository

granularity. Once populated, the evolution model of a software

system permits to construct and traverse its history.

To demonstrate the usefulness of our evolution model, we

use it to depict software systems as evolving cities. To do

so, we devised a History-Resistant Layout that leverages our

evolution model. Every element in the visualization assumes

a fixed position in the 3D space and remains stationary over

the whole evolution, making up for the unpredictable “layout

jumps” of other approaches. In CODECITY, for example,

at every revision elements were free to move in the whole

visualization canvas according to the heuristics employed

by the underlying bin packing algorithm. As a result, our

layout renders with fidelity not only artifact-specific changes

(adding/removing code) but also refactoring operations (e.g.,
moving a class to another package or renaming code artifacts).

We implemented our approach in M3TRICITY, a web appli-

cation available at https://metricity.si.usi.ch.

II. RELATED WORK

The first 3D visualization approaches appeared in the 1990s,

spreading ever faster when consumer hardware started to

become both affordable and performant enough. From seminal

works like PLUM by Reiss [7] and works by Young & Munro

who explored virtual reality as a means to visualize software

[8], the metaphor of visualizing software as a city took hold.

Knight et al. created Software World, where software sys-

tems are displayed as cities, with buildings, trees and streets

[9]. In 2003, Panas et al. depicted a software system as a

city with real information about static and dynamic data [10]–

[12]. Langelier et al. presented Verso, a tool based on a

landscape metaphor with cities in mind [13]. In 2007, Wettel

et al. presented CODECITY, to visualize software systems

as interactive cities, aiming to display software metrics in a

meaningful way, while keeping the layout of the city consistent

with the information and giving viewers a sense of locality

in the city [1]. CODECITY was extended to visualize the

evolution of the systems [14]. The approach was not resistant

to time changes, creating situations in which the entire city was

moving to another place in the plan during the time. Based

on the city metaphor, Steinbrückner and Lewerentz presented

EVO-STREETS that takes into account also the evolution of

software systems. They mapped time to the height of the hills

on which classes were placed [3]. By making use of 3D blocks,

Fittkau et al. presented ExploraViz, a tool for visualizing traces

using both 3D and 2D visualizations [15]. In 2012, Erra and

Scaniello proposed CodeTrees, a visualization of the software

system under the form of trees [16], a concept extended by

Maruyama et al. [17]. More recently, Vincur et al. presented

VR City, a tool that represented a software system in a virtual

reality environment [5].

22

2020 Working Conference on Software Visualization (VISSOFT)

978-1-7281-9914-6/20/$31.00 ©2020 IEEE
DOI 10.1109/VISSOFT51673.2020.00007

A

B

C

D

G F

H

KL

I

J

E

Fig. 1: Visualizing a Snapshot of JETUML with M3TRICITY

III. M3TRICITY

We present an approach that considers evolution as a

first-class concept to visualize software systems as evolving

cities. The approach is implemented in M3TRICITY, publicly

available at https://metricity.si.usi.ch.

Figure 1 depicts the main user interface (i.e., UI) of

M3TRICITY visualizing a snapshot of JETUML.1 From the

top bar (Fig. 1-A), users can learn more about M3TRICITY

or reach the project homepage where they can open the

visualization on a pre-existing project or start the analysis of a

new GitHub repository. M3TRICITY shows the name and the

author of the project being analyzed (Fig. 1-B) and displays the

timestamps and the authors of the five last commits (Fig. 1-C).

At the bottom, a timeline (Fig. 1-D) summarizes the evo-

lution of the project. It indicates when metrics have been

changed, i.e., the number of fields, methods, for-loops, and

lines of code, computed for each revision. We use a timeline

visualization to depict this information: On the x-axis, there

are the project versions crawled from the repository, while on

the y-axis, there are the four categories of changes. The size

of each dot represents the value for each change category in

a specific version normalized across the complete history of

the system. A cursor, highlighted in Fig. 1-E, keeps track of

the snapshot being depicted in the canvas (Fig. 1-H).

On the bottom right, M3TRICITY displays the commit

message of the current snapshot (Fig. 1-F). The control panel

(Fig. 1-G) lets users move through time by playing, pausing,

forwarding, or rewinding the visualization. The visualization

canvas (Fig. 1-H) occupies the central part of the screen.

By hovering on elements in the visualization, M3TRICITY

shows a tooltip with additional information (Fig. 1-I).

1See https://github.com/prmr/JetUML

On the top right corner of the screen, M3TRICITY sum-

marizes information about the history of the system at hand

(Fig. 1-J), lets the user choose between different ways to

traverse time (Fig. 1-L), and change the settings (Fig. 1-K).

In the snapshot depicted in Fig. 1-H, JETUML is un-

dergoing a structural refactoring [18] where all classes in a

package com.horstmann.violet are moved to package

ca.mcgill.cs.stg.jetuml. The visualization uses 3D

edge bundling to highlight structural refactorings depicting

arcs from the original position to the new one.

Figure 2 shows the settings panel of M3TRICITY where

users can toggle the visualization of different elements (e.g.,
title, date, commit messages, pop-ups) and change the metrics

used in the visualization (e.g., depth and height of the cuboids).

A B C

D E

Fig. 2: The Settings of M3TRICITY

General Settings (Fig. 2-A) give users the possibility to fine-

tune the visualization. It is possible here to hide some elements

on the canvas or switch to full-screen mode. Artifacts Settings
(Fig. 2-B) allow choosing the metrics used in the visualization

and defining some parameters, i.e., the minimum width and

height, the gap between the objects (i.e., bump).

23

Names PopUp Settings (Fig. 2-C) let users toggle automatic

tooltips to show the names of the elements (i.e., classes and

packages) that have been modified in the current snapshot.

Fig. 2-D is used for hiding objects matching a regular expres-

sion. The last setting, Colorization (Fig. 2-E) let users assign

specific colors to objects, based on the tags extracted from the

name of the file, a regular expression, or by manually selecting

the elements on the canvas. We next discuss M3TRICITY’s

Advanced Evolution Model and its History-Resistant Layout.
Advanced Evolution Model. The goal of M3TRICITY is

to model evolution as a first-class concept and leverage it for

the creation of the 3D visualization. Our approach is inspired

by Girba’s software evolution model named HISMO [6].
In HISMO history is modeled in a matrix. The matrix rep-

resents a package history, while rows represent class histories,

and columns represent different versions of the package. Being

based on SVN, there was no need to have the concept of

“repository history” since the system itself assigned a unique

version to all files at every commit. Git stores only information

about modified files, hence we had to extend HISMO to also

keep track of the files at every single revision/version. Figure 3

shows the Advanced Evolution Model of M3TRICITY.

Repository

Repository
History

Package
History

Class
History

Repository
Version

Package
Version

Class
Version

1

1..*

1..*

1..*

1

1..*

1..*

1..*

1

1

Fig. 3: The Evolution Model of M3TRICITY

Inside the model, we have the concept of history and ver-
sion. History consists of a series of versions, where a version

represents changes made in one or more objects within the

system. The RepositoryHistory is a linear succession of Repos-

itorVersions. Similarly, ClassHistory and PackageHistory also

have a linear succession of versions, each one representing

their changes over time. To understand the linking between

RepositoryVersion, PackageVersion, and ClassVersion, each

version entity points to one or more associated entities.

RepositoryVersion is the root element of this structure and

ClassVersion is the last one in the hierarchy. By doing so,

we can construct all histories of all components or the whole

repository history. The linking permits to understand and pair

a PackageVersion with a specific ClassVersion among the ones

contained in a ClassHistory. The model also makes it possible

to merge rows (= histories) and columns (= versions) when

renaming or copying happens. Figure 3 shows how data can

be retrieved: Starting from the Repository, we can access its

history but also its package and class histories. RepositoryHis-

tory links to one or more RepositoryVersions. This last one

contains the PackageVersions within the Repository at that

specific time. Similarly, PackageVersion references a list of

unique ClassVersions. By traversing the RepositoryVersions,

we can extract all the changes that happened over time.

History-Resistant Layout. The evolution model permits to

construct, traverse, and ultimately visualize the history of the

software system. In M3TRICITY, we implemented a layout

that leverages the evolution model to create a history-resistant

layout. The positioning of every element within the visualiza-

tion is computed based on the information provided by the

model. By using this technique, every element is assigned

a position. The evolution model also includes information

about metric values at every revision. Therefore, we can infer

the maximum real estate needed for each class. In this way,

we are confident that the class “building” will not run into

overlapping problems with other classes. Recursively, the same

applies to packages. To place the individual elements within

the visualization, we use a recursive bin-packing algorithm

similar to other city visualizations. Figure 4 shows the history-

resistant layout (left side) as opposed to a standard bin-packing

layout (right side), like the one used by CODECITY, where the

goal was to optimize space.

C A

B D

E

G

C A

B D

E

F

A

B

E

C

AB

D
E

G

CA

BD E

F

A B E

R1

R2

R3

History-Resistant Layout Bin-Packing Layout

Fig. 4: History-Resistant Layout vs. Bin-Packing

In the figure, each row is a revision of a system. We use blue

to denote classes and light blue to denote packages. Consider

C, for example, which is not present in revision R1. In the bin-

packing layout, C appears in R2, and it is placed according

to some heuristic (e.g., to optimize space). In R3, however, it

is moved. Using our history-resistant layout, the final space

and position of C is kept free in R1, then occupied with the

first instance of C in R2 and assumes its final larger shape in

R3. The “jumps” we mentioned before are visible in the bin-

packing layout on the right side, as its goal is to use space

as efficiently as possible. Therefore, the package containing

classes A and B in R1 is only as big as needed and grows in

the successive versions. With the history-resistant layout, that

package uses since R1 the space it will ultimately need.

The overall effect of our history-resistant layout is, there-

fore, a more robust and less jumpy visualization from revision

to revision, making it easier to follow the evolutionary process,

as we illustrate in Section IV.

24

r1005 - May 22 2018
a0716955dfee17ec73acaf5992e4bbaaef86d146

r710 - Nov 26 2017
2fe64aa4fba080d9d4e797c618c391995ec00a9a

r655 - Nov 15 2017
4f83202575d7cbf825c785c68c62df36c579f20e

r2 - Jan 07 2015
3f806c9285111a1b900f14144d7140c84f68d3cd

r29 - Jan 10 2015
d1058da7c7ea85ed34b1391224afc082e6726f04

r61 - Jan 22 2015
12fd601f5af846aa95e6f7878435ddf10ad49204A

B
C

D
E

F

Fig. 5: From Violet to Violetta. From Violetta to JetUML

IV. M3TRICITY IN PRACTICE

In this section, we use M3TRICITY to explore the 5 years

of evolution of an open-source project: JETUML.

A. The Case of JETUML

JETUML2 is a desktop application for fast UML diagram-

ming. The history of this system starts in early 2015.

Violet, Violetta, and JetUML. Figure 5 shows six key

snapshots of JETUML visualized with M3TRICITY.

Fig. 5-A depicts the first available version [19] of the

project. Most of the canvas is empty but our history-resistant

layout already pre-allocated the space needed to contain the

whole evolution of JETUML. On the left part of the visu-

alization, there is a densely populated district: By hovering

on the visualization, we learn that this is the whole source

code of the VIOLET3 project contained in a package called

com.horstmann.violet.

Fig. 5-B shows the 28th revision [20] of the system. Its

commit message says “#8 moved to dedicated package.” In

this revision, half of the classes contained in the package

2See https://github.com/prmr/JetUML
3See https://horstmann.com/violet

com.horstmann.violet are moved into a newly created

package named ca.mcgill.cs.stg.violetta.graph
giving birth to the VIOLETTA project.

In the snapshot depicted in Fig. 5-C [21], all the classes of

VIOLET and VIOLETTA are moved into a new package called

ca.mcgill.cs.stg.jetuml, giving officially birth to

the JETUML project. From this snapshot up to version 654

[22] few changes happen inside the main package.

Fig. 5-D is the result of a move refactoring where

all the classes concerning nodes and edges are moved

into dedicated packages. A major change happens at

version 710 [23], depicted in Fig. 5-E: Packages were

renamed by removing the acronym “stg” from their

names (e.g., ca.mcgill.cs.stg.jetuml became

ca.mcgill.cs.jetuml), leading to a new placement

of the classes. While this looks like a simple renaming,

which would not be displayed as a relocation, in fact it is

a restructuring and M3TRICITY displays it as an explicit

movement of classes. The last structural change we depict

in Fig. 5-F is at revision 1,005 [24] when numerous classes

are affected by a package renaming where the word “graph”
was substituted by “diagram.”

25

B. Reality Check

To verify whether M3TRICITY succeeds at explaining evo-

lutionary processes, we contacted Prof. Martin P. Robillard,

the owner of the JETUML project, and pointed him to the

M3TRICITY website. He tried out M3TRICITY (“nice tool,
with great usability”) providing the following quote:

“The perspective I see is consistent with my recollec-
tion of the evolution of the system. The visualization is
helpful to identify some of the events that impacted the
maturity of the system. Examples include the emergence
of the test suite and its gradual increase in importance
and the refactoring of God classes. This information is
not directly available from the release notes, because
in JetUML releases tend to be aligned with user-facing
changes more than code restructuring.”

C. (More than) One More Thing

M3TRICITY also includes several additional features:

Time Bucketing. As visualizing each commit may be too

fine-grained, users can bucket time by day, week, month, and

year. All commits in a bucket are then displayed at once.

Evolution Timeline. An interactive user interface compo-

nent below the main visualization (see Fig. 1-D). Users can

jump to a specific moment in development by clicking on the

timeline. When users select an object in the visualization, the

timeline highlights all commits involving the entity.

Interactivity. Users can hover and click on each object to

obtain additional information, such as metrics, the version of

the object, or the type of change.

Changes Highlighting. To provide information about dif-

ferences between versions, changed objects are highlighted in

yellow, and their name is displayed. Moreover, when software

artifacts are moved, for example from one package to another,

the movement is displayed as an arc (see Fig. 1-H), and the

object is moved following the path of the displayed arc.

Elision. Sometimes users are not interested in seeing spe-

cific objects, for example, when a big class obstructs the

main view. With the elision feature, users can select particular

objects and remove them from the view.

V. CONCLUSIONS & FUTURE WORK

We presented an approach to layout software cities that

make the cities more coherent when one visualizes their

evolution. By treating evolution as a first-class entity, we

can augment our layout algorithm about changes that happen

during the history of a system. Moreover, our tool M3TRICITY

supports software evolution understanding by depicting re-

structurings within the system as explicit move animations.

There are still short-comings that need to be addressed:

When a complete part of a system is deleted from its history

it will keep occupying the real estate assigned to it while it

existed. Moreover, the packages themselves and the classes

within the packages are still placed according to space saving

heuristics stemming from the bin-packing algorithm, which is

not necessarily optimal. As part of our future work, we will

investigate more compact layouts (e.g., [25]).

Acknowledgements. We are grateful for the support by the

Swiss National Science foundation (SNF) and the Fund for

Scientific Research (FNRS) (Project “INSTINCT”); and SNF

and JSPS (Project “SENSOR”). We thank Prof. Robillard for

trying out M3TRICITY and providing us with his feedback.

REFERENCES

[1] R. Wettel and M. Lanza, “Visualizing software systems as cities,” in
Proceedings of the International Workshop on Visualizing Software for
Understanding and Analysis, 2007, pp. 92–99.

[2] M. Lanza, “Codecrawler-lessons learned in building a software visual-
ization tool,” in Proceedings of the European Conference onSoftware
Maintenance and Reengineering, 2003, pp. 409–418.

[3] F. Steinbrückner and C. Lewerentz, “Representing development history
in software cities,” in Proceedings of the 5th International Symposium on
Software Visualization, ser. SOFTVIS ’10. ACM, 2010, pp. 193–202.

[4] G. Balogh and A. Beszedes, “Codemetropolis - code visualisation in
minecraft,” in Proceedings of SCAM 2013. IEEE, 2013, pp. 136–141.

[5] J. Vincur, P. Navrat, and I. Polasek, “VR City: Software analysis
in virtual reality environment,” in Proceedings of the International
Conference on Software Quality, Reliability and Security, July 2017,
pp. 509–516.

[6] T. A. Girba, “Modeling history to understand software evolution,” Ph.D.
dissertation, University of Bern, 2005.

[7] S. P. Reiss, “An engine for the 3D visualization of program information,”
Journal of Visual Languages & Computing, vol. 6, no. 3, pp. 299–323,
1995.

[8] P. Young and M. Munro, “Visualising software in virtual reality,”
Proceedings of the International Workshop on Program Comprehension,
pp. 19–26, 1998.

[9] C. Knight and M. Munro, “Virtual but visible software,” in Proceedings
of the International Conference on Information Visualization. IEEE,
2000, pp. 198–205.

[10] T. Panas, R. Berrigan, and J. Grundy, “A 3d metaphor for software pro-
duction visualization,” in Proceedings of the International Conference
on Information Visualizationı, 2003, pp. 314–319.

[11] T. Panas, R. Lincke, and W. Löwe, “Online-configuration of software
visualizations with vizz3d,” in Proceedings of the ACM Symposium on
Software Visualization. ACM, 2005, pp. 173–182.

[12] T. Panas, T. Epperly, D. Quinlan, A. Saebjornsen, and R. Vuduc, “Com-
municating software architecture using a unified single-view visualiza-
tion,” in Proceedings of the International Conference on Engineering
Complex Computer Systems, 2007, pp. 217–228.

[13] G. Langelier, H. Sahraoui, and P. Poulin, “Visualization-based analysis
of quality for large-scale software systems,” in Proceedings of the
International Conference on Automated Software Engineering. ACM,
2005, pp. 214–223.

[14] R. Wettel, “Visual exploration of large-scale evolving software,” in
Proceedings of the International Conference on Software Engineering.
IEEE, 2009, pp. 391–394.

[15] F. Fittkau, J. Waller, C. Wulf, and W. Hasselbring, “Live trace visu-
alization for comprehending large software landscapes: The explorviz
approach,” in Proceedings of the Working Conference on Software
Visualization, Sep. 2013, pp. 1–4.

[16] U. Erra and G. Scanniello, “Towards the visualization of software
systems as 3d forests: The codetrees environment,” in Proceedings of the
Annual Symposium on Applied Computing. ACM, 2012, pp. 981–988.

[17] K. Maruyama, T. Omori, and S. Hayashi, “A visualization tool recording
historical data of program comprehension tasks,” in Proceedings of the
International Conference on Program Comprehension. ACM, 2014,
pp. 207–211.

[18] M. Fowler, Refactoring: improving the design of existing code.
Addison-Wesley Professional, 2018.

[19] JetUML [3f806c9]. https://github.com/prmr/JetUML/commit/3f806c9.
[20] JetUML [d1058da]. https://github.com/prmr/JetUML/commit/d1058da.
[21] JetUML [12fd601]. https://github.com/prmr/JetUML/commit/12fd601.
[22] JetUML [4f83202]. https://github.com/prmr/JetUML/commit/4f83202.
[23] JetUML [2fe64aa]. https://github.com/prmr/JetUML/commit/2fe64aa.
[24] JetUML [a071695]. https://github.com/prmr/JetUML/commit/a071695.
[25] M. Sondag, B. Speckmann, and K. Verbeek, “Stable treemaps via local

moves,” IEEE Transactions on Visualization and Computer Graphics,
vol. 24, no. 1, pp. 729–738, 2018.

26

