
Exploring Developer Preferences for Visualizing
External Information Within Source Code Editors

Xinhong Liu
Department of Computer Science

University of British Columbia
Vancouver, Canada

xinhliu@cs.ubc.ca

Reid Holmes
Department of Computer Science

University of British Columbia
Vancouver, Canada

rtholmes@cs.ubc.ca

Abstract—
Developers increasingly rely on external tools and services

which causes development information to be scattered across
different information silos. To access this information, developers
need to access different applications, presentation files, and web
services. This paper investigates mechanisms for incorporating
external information sources into Integrated Development Envi-
ronments using visual mechanisms to support common software
development activities. Through a developer survey and a small
experiment we find that developers prefer minimal representa-
tions for incorporating external information sources into their
source code editors, and that they are able to use this information
when performing their development tasks.

Index Terms—Integrated Development Environments, external
information, actionable information, information overload

I. INTRODUCTION

While building software, developers use many sources of

external information (e.g., [1]–[5]). According to a survey

conducted by JetBrains in 20201, in addition to Integrated

Development Environments (IDEs) in which developers write

and modify their code, 85% of developers use source code

collaboration tools, and nearly 50% of developers use issue

trackers, Continuous Integration (Continuous Integration (CI)),

or Continuous Development (Continuous Delivery (CD)) tools.

Other categories of standalone tools, such as static analysis

tools and code review tools, also see significant industrial

usage. Developers choose to use these tools and services

because they each help them accomplish their work tasks,

even if they are not directly integrated with one another or

with their source code editor.

These disparate tools improve the development process, but

impose other overheads on the developer as they work to

integrate the information provided by those tools [6], [7]. This

overhead arises because while these external tools act on the

developer’s source code, they usually execute independently,

including on developers’ computers or remote servers, and

usually store their output separate from the source code

itself [8], [9]. This means to analyze or use the output of these

tools developers need to leave their code editor, navigate to the

tool, and find the information within the tool they need. For

example, to increase test coverage, a developer first needs to

1The State of Developer Ecosystem in 2020
https://www.jetbrains.com/research/devecosystem-2020/

leave their IDE to open a web browser and navigate to the web-

based interface for their coverage tool, which was generated

by their continuous integration service. Second, they must

navigate through the results to find uncovered lines. Third,

they need to open the corresponding source file in their local

IDE for the uncovered lines and finally develop new unit tests

for these lines. While these tasks are not hard, they had to

navigate two disconnected hierarchies (the coverage report on

the server and the source code files in the IDE) and manually

connect them (by the file names the developer was looking at

in each hierarchy) before the developer could complete their

task.

While many tools and services can be hosted locally, engi-

neering teams increasingly rely on cloud-based services [10].

One commonality between most of these kinds of tools is the

source code itself: code acts as an implicit anchor that can be

used to tie the results from an external tool back to the source

code the developer is working on for their task.

Although a number of tools have explored techniques for

linking information back to source code (e.g., Bridge [11],

Hipikat [12], , CodeBook [9]), and others have used inline

source code representations for displaying results in code

editors (e.g., HATARI [13], Whyline [2], PerformanceHat [5]),

few papers have examined differences in the representations
themselves which is the focus of this work.

In this paper, we explore developer preferences and per-

formance for different visual representation mechanisms for

integrating information from external information silos into

source code editors. Our primary concern with this research

was to learn, from real developers, how they perceive these

visual representations, and whether they helped (or hindered)

their development tasks. By focusing directly on the repre-

sentations, this work aims to provide evidence tool designers

can consider to improve how they integrate with source code

editors. To understand this, we surveyed 21 developers to

learn their preferred integration representations for a variety

of different software development tasks.

Ultimately, we learned that developers do value having

external information embedded within source code editors

but prefer lightweight representations that enable more com-

prehensive on-demand investigation over more heavyweight

representations. We created a functional technology probe

27

2020 Working Conference on Software Visualization (VISSOFT)

978-1-7281-9914-6/20/$31.00 ©2020 IEEE
DOI 10.1109/VISSOFT51673.2020.00008

using a subset of these representations and evaluated these with

a controlled user experiment with 8 participants to see how

these representations impacted them as they performed four

development tasks. Through this experiment we found that

developers were able to quickly and effectively use external

information through these integrated representations.

The contributions of this paper are:

1) A description of common visual representations for inte-

grating information into source code editors.

2) A survey with 21 developers examining the relative

strengths and weaknesses of these representations for

common development tasks.

3) A controlled experiment with 8 participants demonstrat-

ing that developers can use inline representations to

complete concrete development tasks with fewer actions

and context switches.

II. INTEGRATING EXTERNAL INFORMATION

The goal of this paper is to determine how to best provide

actionable external information through software visualiza-

tions integrated into source code editors without overwhelming

developers.

A. Integration design principles

To accommodate integrating the diversity of external in-

formation sources into source code editors, we detail several

design principles that strive to balance the actionability of

the integrated information with the risk of that information

becoming overwhelming for the developer. This analysis is

restricted to information needs that can be associated with

specific project artefacts (e.g., lines, methods, or files) rather

than more general information needs. For example, while this

analysis includes code coverage (which is associated with

lines) or test history (which is associated with test methods),

it excludes project scheduling or marketing.

A natural concern when considering integrating a wealth

of external information into source code editors is that the

external information could distract from the source code itself.

Avoiding overwhelming developers with information that is

not relevant to their tasks is important because to developers

“code is king” [14]. We used the following four presentation

principles to guide our visual design decisions in order to try

to maximize the informativeness of the external information

while simultaneously minimizing its overwhelmingness. The

principles were identified by manually examining a variety of

existing source code editor plugins and identifying common

positive properties of their visual representations.

These principles are not meant to be prescriptive, but to

provide different dimensions for designers to consider when

thinking about how to integrate external information into de-

velopment environments. While these principles are described

as actions a designer should take, these steps are only relevant

if a designer aims to support a specific principle.

a) Non-intrusiveness.: It is important that external infor-

mation not distract developers. The main focus within code

editors is always the source code. Minimal representations

should be preferred; if a larger view is needed, it should

be hidden until it is contextually activated. Colours should

be chosen to not overlap with those used in the code editor

already (such as those used for syntax highlighting).

b) Intuitive expressiveness.: External information

sources each have their own semantics and these should

be considered in their representations. Wherever possible,

graphic representations and colours should be chosen that

fit with the information being displayed. For example, a

green � could represent code that is “covered by a passing

test” while a red � could represent “covered by failed tests”.

c) Expandability.: External information sources encode

rich sets of data. While representations should not be intrusive,

these abstractions will naturally encode less information than

the full information source. Any representation used should

make it possible to expand the information should the devel-

oper want to know more, or make it possible to directly access

the information in the external representation, if needed.

d) Uniqueness.: The presentation of information should

be distinguishable from other information. While external

information sources should encode their representation in

intuitive ways, they should be cognizant of how other sources

might also encode themselves such that they avoid confusion.

B. External information needs

Developers frequently refer to external information such

as version control, build status, test results, and coverage.

Here we categorize external information usage according to

their purpose from existing literature. Each kind of external

information is usually associated with a specific element type

(e.g., a variable, statement, line(s), block, method/function, or

class/file) which may influence how the information should

be represented. Additionally, some information needs have

pertinent temporal properties, from which past states can be

aggregated and compared with the current state (e.g., coverage

deltas, historical test performance).

While working on their projects, developers create and

access a wide variety of external information sources. While

these sources vary by development team and project, we have

included a non-exhaustive list of common software develop-

ment activities identified from prior work that often require

external information; these have been categorized below by

the developer’s goal when accessing the information.

Crucially, many of the information sources used to answer

these questions are stored externally to the project itself and is

accessed using different tools, online services, and result files

generated as byproducts of the development process. Each of

these is external to the resource the developer needs to modify

to accomplish their ask: the source code itself.

a) Team Awareness: Since all large software projects are

built by teams, developers rely on awareness information to

support collaboration and to keep appraised of their teammates

activities [15]. Being unaware of their teammate’s actions can

28

negatively affect developers’ own performance [16]. The kinds

of questions developers might ask surrounding awareness

include “Who is working on what?” and “Who changed this
[code]?” [3]. To answer these questions developers often

access the version control system to check on recent changes

to the code they are working on. One commercial tool that

supports this kind of activity is vscode-gitlens 2 which inte-

grates some version control (specifically Git) features directly

into the VS Code development environment. This kind of tool

enables developers to quickly learn who, why, and when a line

of code was changed with inline annotations.

b) Code Comprehension: Before adding new features or

improving existing code, developers often need to understand

the code they are working with. Source code comprehension is

a core software engineering activity [17]. Code comprehension

tasks are often time consuming [18] and involve finding

answers to questions like “Where is this method called or type
referenced?” and “What are the values of these arguments at
runtime?” [1].

Code comprehension tasks can also have temporal proper-

ties. These may include questions like “What is the evolution
of the code?” and “What caused this build to break?” [3].

Change-related information includes change metadata (who

and when a change was made), how the code was changed, and

the impact code changes can cause. Developers sometimes

seek to answer “What is the intention behind this piece of
source code?” [19]. Recent work demonstrated a combination

of approaches to tackle the concern location problem for

linking source code to specific software features [20].

c) Test Analysis: Test cases represent a special kind of

source code that has important properties for developers. Sim-

ilar to code changes, metadata information such as authorship

can help to find the developer responsible for an individual

test cases (e.g., “Who owns a test case?” [3]). Additionally,

developers might be interested in co-change analysis (e.g.,

“What test cases frequently change when this source code is
modified?”).

Additionally, test cases have important temporally-ordered

dynamic properties (e.g., “When did this test last fail?”, and

“Does this test frequently fail?”). The information to answer

these questions is infrequently stored directly with the source

code and is instead often maintained in external continuous

integration systems such as those provided by TravisCI3 or

Jenkins4.

d) Navigation and Debugging: Developers frequently

navigate through the source code in their projects to answer

specific queries. External information can also assist with these

tasks, helping developers quickly find locations where code

should be changed or added [21]. Online services can also

be used to answer important development questions, such as

“what are the churn rates for all Java projects”, that would be

challenging or impractical to answer using local analyses [22].

2https://marketplace.visualstudio.com/items?itemName=eamodio.gitlens
3https://travis-ci.org/
4https://www.jenkins.io

Analogously, debugging often involves navigating through the

code to answer questions like “Why is [variable] equal to
[value]?” [2] or “What is average execution time of this
statement?” [5].

C. Presentation views

Modern code editors such as Atom5 and VSCode6 are highly

customizable user interfaces using common technologies like

HTML, CSS, and JavaScript. Large communities of developers

have created code editor plugins for these editors. Examining

a broad set of existing source code editor plugins, we noted

that their most prominent presentation techniques can be split

into two categories: those that adorn the code editor with

inline views within the source code itself and those that

present the information in isolated views independent from the

source code. From our examination of existing plugins, both of

these categories can be further decomposed into unique visual

representations.

1) Inline views: These views have the benefit that they are

anchored by the source code they adorn. Figure 1 shows five

of the most common representations used in existing plugins.

1

2

3

4

5

6

7
x

Fig. 1. Commonly used inline source code editor representations used for
integrating external information. Of these, gutter (left margin) and badge (right
margin) visualizations are the most commonly used.

Each of these representations has benefits and drawbacks:

Gutter: Most source code editors have a reserved presenta-

tion space to the left of each editor line called the gutter.

Gutter representations place an icon or label in the gutter to

convey a small piece of information about a line of code,

function/method, or class. Gutter representations can typically

accommodate small charts, single words, or icons. Due to

space constraints, usually only a single adornment can be used

for each line of source code.

Badges: Badges appear to the right of source code lines.

Unlike gutter adornments, badges typically appear within the

source code line. As most source code lines are not of uniform

width and usually do not take the full horizontal viewport,

badges offer greater space for providing more expressive

information than gutter representations. Badges can appear

as text, icons, small graphics, or a combination of these as

5https://atom.io/
6https://code.visualstudio.com/

29

appropriate. Multiple badges can appear together provided

enough space, although when a line of code uses the full

viewport these may be hidden.

Highlight: Highlighting portions of a line of code (like a

variable or method invocation) can help provide additional

information about the highlighted element, for example by

highlighting other similar variable usages or method calls.

Hovering a pointer over the highlighted portion can also

provide additional information for that region in the form of

a short tool-tip (text description). It is normally not possible

to place more than one highlight on a single portion of source

code, although a single line can have multiple highlights as

long as they do not overlap. Unlike gutter or badge represen-

tations that can often convey their meaning just by glancing at

them, code highlights normally need to be explicitly interacted

with (e.g, by activating or hovering over them) to convey their

meaning, although code colouring schemes are a special kind

of code highlighting that does not require interaction as they

are always activated.

Context menu items: Context menus are often used to provide

access to information that might be less commonly used, be of

lower priority, or could be overwhelming if it were always dis-

played. In these cases, the information can be associated with

the code element (as with highlighting above) but without any

visual representation except when invoked using the context

menu in the code editor. By right clicking on the code element,

the developer can be shown additional information about the

code element. A primary downside of these representations is

that it can be unclear which code elements have additional

context menu options added to them which can inhibit their

discoverability. Additionally, developers need to remember

that the context menu option exists and remember to invoke

it when needed.

Overlay: These representations are often used to augment

the four other representations above. Overlays are panels

that appear over code elements when the developer clicks

on another representation (e.g., a gutter, badge, highlight, or

invokes a context menu option). Overlays are often used to

provide a more complex visual representation than is possible

with the other less intrusive representations. This provides the

developer the control to only display those overlays for which

they need additional information.

2) Isolated views: These views present information within

the development environment, but outside of the source code

itself. Isolated views are often helpful when a developer is

trying to get an overview or summary of the source code

and is not sure which segment of source code they should be

examining. Figure 2 shows common isolated mechanisms used

within IDEs. For example, when trying to improve coverage,

a developer might not know which file contains the highest

percentage of uncovered lines. A ranked list of source files

can deliver this information, but this list only exists in a full

coverage report, and is not suitable to put inside the code area

for a specific element as the developer would then need to

scan all code elements to check their coverage levels. Figure 2

shows the two most common isolated information views used

within code editing environments; as with inline views these

also have strengths and weaknesses:

Notification item: Most development environments have a

status bar that can be used to notify a developer of different

events. An icon can be placed in this notification space

to let the developer know that there is additional external

information available. Different icons can be used for different

notifications, or a single notification icon can reveal a list of

individual actions if more than one are available. To avoid

distraction, notification icons are generally subtle and are

not intrusive, although this could increase the likelihood that

developers miss an important notification if it could have

helped the developer with their task.

Notification panel: By far the most common isolated rep-

resentation is the notification panel; this modality is used

extensively by plugins that augment IDEs. Notification panels

are displayed in their own view adjacent the source code

editor to provide additional information. These panels usually

provide some kind of an overview that gathers individual

pieces of inline information about specific code elements into

a summary view in some kind of organized manner (e.g., a

hierarchically sorted tree), although may use their own novel

visualization mechanism. Since notification panels tend to be

large, they must compete with each other for screen space.

This means they are often turned off (or just hidden in non-

activated tabs), forcing the developer to remember both that

the tab exists, and that they should activate it, when they are

performing aspects of a task the panel could assist with.

1

2

3

4

5

6

7

x

Fig. 2. Commonly used isolated visualizations for integrating external
information into source code editors.

D. Leveraging presentation views

When determining how to integrate an external information

source into an IDE, developers need to balance the actionabil-

ity of the information with the overwhelmingness of the visual

representation. While an external information source could be

represented using several different presentation views, it is

important that the designer consider the design principles in

Section II-A when making their design choices.

This is especially important in an information-dense envi-

ronment like the IDE as it is easy to imagine representations

that would be overwhelming and intrusive given the breadth of

information sources available in large mature projects. While

embedding external information into source code editors can

30

increase the accessibility of the information (as the developer

does not need to access the external source to see the informa-

tion), it must still be functional and must co-exist with other

information sources.

For example, an online test coverage service might use gut-

ters for each source code line to indicate whether that line of

code is covered. When the developer clicks a gutter, an overlay

can popup showing the tests that cover the line. An isolated

presentation view could also be shown with a notification item

can be displayed to indicate overall coverage condition (e.g.,

relative to a project-specific threshold) and when clicked a

notification panel would appear with a full coverage report of

all files in the project. At the same time, adding a gutter icon

for every line of code may be overwhelming for the developer

and would prevent other information sources from adorning

the gutter (because there is only space for one element); in

this case, using a badge for method-level coverage might be

more helpful and allow the developer to expand the badge to

access more detailed reports about problematic methods.

To better understand how developers perceive the utility

and intrusiveness of the different visualizations, we sought

to gather their feedback in the form of an in depth survey

examining concrete external information integrations for a

variety of common development tasks.

III. INTEGRATION REPRESENTATION SURVEY

To understand developers’ preferences for the visual repre-

sentations of external information we conducted a survey and

distributed it online among software developers.

While examining existing plugins that integrate into devel-

opment environments, we noted that isolated representations

(especially custom panels) were the most common form of

visual integration; we wanted to determine if this matched

with developer preferences. Additionally, given the flexibility

and ubiquity of gutter and badge visualizations among inline

representations, we wanted to further understand developer

preferences among these options.

Consequently, the goal of the survey was to answer two

main research questions:

RQ1 Do developers have preferences among inline or iso-

lated visual representations?

RQ2 For inline representations, do developers prefer gutter-

based or badge-based visualizations?

A. Survey methodology

The survey was designed to take 10 minutes and was dis-

tributed via email to our academic and industrial contacts and

on social media through developer-relevant forums on Reddit

and HackerNews. Each respondent was provided with four

common tasks they might perform using external information.

For each task, they were given two visual representations that

we created by creating prototypes for an existing IDE.

In addition to selecting between their preferred represen-

tation for each task, the survey solicited rationale from the

participants for their selection. Ultimately 29 respondents

started the survey and 21 completely all four tasks (72.4%).

Unfortunately, we do not know how many people saw our

online recruitment and cannot calculate a response rate. 95.7%

of respondents self-identified as professional developers and an

average of 8.1 years of development experience.

The four tasks were selected from the author’s experience

using external information sources. While the tasks are clearly

not exhaustive of all possible development tasks, we believe

they represent a reasonably diverse cross section of develop-

ment tasks that could leverage external information. The four

tasks were provided in a randomized order, as were the two

design alternatives for each of the tasks. The specific questions

posed for each task were:

HIST This task required examining the past history of

test failures as recorded by the Continuous Integration

service which is executed as an online platform. “You are
facing some test case failures in a well-tested project. To
understand the importance of these failures, you are trying
to understand the historical behavior of failing tests.”

TEST In this task, the developer wanted to verify that their

changes would not cause the tests to fail when executed

with the regression test suite. “You are working on a
project with version control and continuous integration.
After you make a commit, or you pull commits, you want
to know whether some change breaks the build or fails
some tests.”

PROF The profile task involved trying to understand what

portion of code is slow by examining the online perfor-

mance test suite which is run in a controlled environment

to ensure that the results are consistent for all developers.

“While working on a source file in your project, you are
trying to figure out what part of the code is executing
slowly.”

COVER The coverage task involved examining the test

coverage results as collected by the Continuous Integra-

tion service and hosted by the coverage service. “While
working on a source file in your project, you want to
know which lines are covered by test cases and the current
status of those tests.”

The visual representations for these four tasks provided

badge-based and gutter-based representations. For example,

for the HIST task, Figure 3 was shown. For each task,

respondents were able to select between several rationale

related to why they chose one representation over another, or

were able to provide their own rationale if they had a different

reason. After choosing between badges and gutters, they were

also shown an independent representation that used a separate

panel that did not try to fit the external information inline and

were given the choice to choose between these. For example,

for the HIST task the separate panel shown can be found in

Figure 4. Further screenshots for these visual representations

is available in the M.Sc. thesis7.

7https://hdl.handle.net/2429/71778

31

Fig. 3. Inline representations for badges (A) and gutters (B) for HIST.

Fig. 4. Isolated representation for the HIST task using its own panel.

B. RQ1: Inline vs. isolated representations

One drawback with supporting integration of external in-

formation is that the information could distract developers.

This is especially true if one information source monopolizes

the source code area or multiple external information sources

are trying to decorate the same portion of source code. One

advantage of allowing the information to be integrated is

that it could increase the utility of the information (both

by being more discoverable and by allowing direct usage).

One advantage of allowing the information to be hidden and

only displayed when toggled by the developer is that the

information could be made less distracting to them as they

work.

Figure 5 shows developer preferences between showing

information in an isolated panel or inline with code. For all

scenarios, most respondents prefer to have the information

shown in the code area (inline). Several respondents did

mention though that having an optional summary panel could

also be useful in addition to the inline representation.

1) Inline vs. toggled representations: Respondents who pre-

ferred inline representations mainly rationalized their prefer-

ence for reasons related to minimalism. Unobtrusive represen-

tations gave them the option to have access to the information

without it overwhelming their code editors:

“Stay minimal until I ask for more” — P4 HIST

“Keep it minimal and inline maybe like the ones
offered in VSCode” — P18 HIST

“Stay minimal until I ask for more information” —

P4 TEST

“I prefer inline with the option to explore in an
extra panel” — P18 PROF

For those respondents who preferred separate panels, their

primary rationale was because it enabled them to only con-
sider additional information when it is needed:

“Ability to hide the information when not required.”
— P2 HIST

“Ability to show the additional data when required.”
— P2 TEST

“Ability to hide information until required” — P2

COVER

Additionally, respondents had specific scenarios where sep-

arate panels had additional capabilities that inline presenta-

tions do not have:

“Extra panel can be sorted” — P25 PROF

“It may be easier to jump across files with the
panel. The bottom part of the panel also helps” —

P26 COVER

“Extra panel could in theory show extra information
about each relevant commit in the bar chart.” —

P6 HIST

That said, many respondents also specifically mentioned that

there were too many panels in their editors already, and that

for some tasks the inline representation was simply a better

match for the kind of task the data would be used for (for

example “inline with the editor panel makes for faster REPL
workflow” – P6 COVER.

2) Combined representations: A few participants want to

be able to combine both inline and independent representations

because they liked to have options to match their needs, for

example “Nice to have options” — P1 PROF. This sentiment

was echoed by several of the respondents who preferred the

inline representations but sometimes found the separate panels

handy. This was mainly due to the separate panel’s ability

to summarize information in a hierarchical fashion, although

sometimes having both allowed tackling problems in both top-

down and bottom-up ways: “[the panel] shows whole project
coverage by file, while the gutter shows coverage by line.”

RQ1: Should representations be inline or isolated? Inline

representations were considerably more popular with the sur-

veyed developers because they do not like the proliferation of

panels around their code editors. Simultaneously, developers

found isolated panels better at presenting summary data

and have some capabilities inline representations lack. The

option to activate an isolated panel from an inline represen-

tation could increase the utility of both representations.

C. RQ2: Inline representation preferences

For two of the tasks, developers preferred badges over

gutter visualizations (HIST: 65.2%, PROFILE: 73.9%). For

the other two tasks badges were not preferred (TEST: 45.8%,

COVER: 27.3%). While variation between tasks suggests that

the characteristics of the task remain an important factor

when choosing between these representations, the qualitative

32

52%

35%

13%

Inline with optional panel

Inline

Separate panel

(a) History

50%

21%
29%

Inline with optional panel

Inline

Separate panel

(b) Test

52%

35%

13%

Inline with optional panel

Inline

Separate panel

(c) Profiles

64%

27%

9%

Inline with optional panel

Inline

Separate panel

(d) Coverage

Fig. 5. Preferences for showing information in a separate panel for each scenario.

comments did seem to indicate that badges had more positive

attributes.

For respondents who preferred badges over gutters, their

primary rationale was that “A provides more information at
a glance and saves me from the extra step” (HIST: 93.3%,

TEST: 81.8%, PROFILE: 76.5%, COVER: 83.3%). This sug-

gests that respondents chose badges mostly because of the
higher information density. Concerns about using the gutter

area for external information seemed to be task dependent,

“[The gutter] occupies gutter area, which is used for setting
breakpoints” (HIST 13.3%, TEST 27.3%, PROFILE 41.2%,

COVER: 50.0% The primary challenge identified with de-

velopers with respect to gutter-based representations reflect

readability challenges with these limited representations:

“[The badge] is visually easier to read.” — P2 TEST

“’Failed’ text is hard to read.” — P11 PROF

“The gutter icon seems hard to read.” — P28 PROF

For respondents who preferred gutters over badges, their

primary rationale for selecting gutters were that badges “are in
the same space as the source code” (39%), “the gutter is easy
to spot” (48%), and gutters “provide enough information...
while keeping visually minimal” (55%).

For these respondents, their rationale mainly centered

around minimizing visual distraction:

“when you test hundreds of time, the bars area might
get too long.” — P7 TEST

“I like the icon in [the gutter].” — P27 PROF

“this gutter info is clear and easy to read. Also, [...]
there is a lot more inline text in A that can really
clutter up the text area.” — P11 COVER

The variation in opinions suggests that integrators of exter-

nal information need to carefully consider the representation

that will work best for the information they are trying to show.

One reason for this is that the information density developers

need varies. In the coverage task a binary piece of information

was needed (whether the element is covered or not) while in

the profiling task more descriptive information is required.

One distinct disadvantage inline representations have com-

pared to independent panels occurs when multiple external

information sources try to decorate the same code location.

While each independent panel can provide isolated views that

do not need to interact with one another, inline representations

can interfere with each other. To investigate how these can be

handled, we provided respondents with visual strategies for

resolving collisions in badge and gutter representations and

asked them to comment on these.

For this question, 76% of respondents preferred the

badge-based collision representations. Their rationale mainly

stemmed from the ability of badges to convey more informa-

tion making it easier to differentiate what was being shown:

“It is easier to read on the right side.” — P11

“More information is displayed (and in a pleasing
manner) making it easier to draw accurate
conclusions.” — P19

“[Badges are] more intuitive and prominent. It
does not feel annoying despite always there.” — P21

For the 24% of respondents who prefer gutters, their senti-

ments were mainly related to information overload:

“[Gutters] feel less visually jarring; there’s only
one line that expands horizontally. [Gutters] also
avoid an “explosion” of information and reminds
me of a context menu (feels more familiar).” — P20

“[Badges] really seem like an overload of
information and would hardly fit anymore if code
lines are long and take up a big part of the screen.”
— P28

RQ2: Do developers prefer gutters or badges? For the

four surveyed tasks, badge-based visualizations were slightly

preferred by developers over gutter-based visualizations. The

ability of badges to convey more information seems to be

the primary driver of this preference. Correspondingly, space

constraints imposed by gutters can cause in readability is-

sues. Gutter visualizations work for tasks where information

can be easily and naturally fit a small footprint. When more

information is needed, or multiple pieces of information vie

for the same inline locations, badges are preferred.

33

IV. EICE TECHNOLOGY PROBE

While the survey in Section III helped us to understand

developer preferences, to gather further insight into developer

performance we created the External Information in Code

Editor (EICE) prototype. This prototype was designed to

help us evaluate how developers would interact with external

information visualized within their code editors while perform-

ing real tasks. In particular, we wanted to ensure that the

visualization of external information within the developer’s

environment did not overwhelm them and negatively impact

their performance. EICE was developed as a plugin for the

Atom development environment.8

A. Controlled experiment

While the online survey focused on visual preferences

for integrating external information, we wanted to gain a

better understanding of how developers could actually use this

information using the EICE technology probe. To do this, we

performed a controlled experiment which set out to answer

two primary research questions:

RQ3 Does integrating external information impact task per-

formance?

RQ4 Are there negative consequences to integrating external

information?

a) Participants: At the conclusion of our prior sur-

vey, participants self-identified as being amenable for future

contact. From this pool 8 survey respondents became study

participants, each had at least one year of JavaScript and an

average of 7.5 years of professional development experience.

b) Project: To select a real project for the study, we

searched GitHub for projects written in JavaScript, with at

least one year of development history with between 20 and 40

files, and over 200 commits from 10 developers. We excluded

projects that did not have unit tests and that we could not easily

get to build. From these, we randomly selected the JSBarcode

project9. JsBarcode consists of 615 commits by 24 developers

over a 7 year period at the time of the study.

c) Tasks: The experiment involved four tasks (T1–T4).

As with the tasks in Section III-A, these four tasks were

selected from the author’s experience; they were different than

the prior four tasks to gain insight into developer feedback

for different tasks requiring external information. Each task

was independent of each other and used a different external

information source; external information was dynamically

loaded as the participant worked. The four experimental tasks

were:

T1 Comprehension (Runtime value): For values covered by

unit tests, EICE will display the value before and after

the line executes. Developers interact with an overlay

representation by clicking on a variable and requesting

runtime values.

T2 Build (Broken build): EICE adds gutter items to lines that

belongs to commits that directly or indirectly cause the

8Implementation details in M.Sc. thesis: https://hdl.handle.net/2429/71778
9https://github.com/lindell/JsBarcode

build to fail. When users click the gutter item the commit

SHA and related metadata will be displayed in an overlay

window.

T3 Test (Coverage): EICE pulls coverage data from the latest

coverage report and adds gutter items to lines captured

in the report. Green gutter items indicate the lines are

covered and how many times times they are covered. Red

gutter items indicate the lines are not covered by unit

tests.

T4 Optimization (Profiling): EICE extracts profiling results

of functions and shows a badge next to each function’s

declaration, showing how long it takes to run along with

the runtime of the entire program.

Participants did not need to write any source code, but

were asked to diagnose and propose a fix for each problem

after investigating the JSBarcode source code and associated

resources. The approximate time to complete a task was esti-

mated to be 10 minutes. Combined with the study introduction

and follow-up, the total duration of the study was one hour.

Each participant performed four tasks in a randomized

counterbalanced design. Two tasks were performed with the

EICE technology probe while two tasks were performed with

the control treatment where participants would use tools of

their choosing for accessing external information.

d) Metrics: Given the modest number of participants in

the experiment, and to gain as much insight as we could in

a limited controlled setting, we designed the experiment to

focus on the number of actions NA and the number of resource
switches NRS rather than the time required to complete the

task. The intuition behind these measures is that the more

actions a developer needs to take to complete a task, the more

effort the task may require. Additionally the more resource

switches and programs involved in completing the task, the

more complex the process becomes, increasing the cognitive

load to complete the task.

We instrumented the experimental computer to automat-

ically count a resource switch whenever the participant

switched from one application to another application. Resource

switches were also counted whenever the developer switched

between files in the code editor, web pages in the browser, or

tabs in the editor or browser.

While these measures are attempting to gain some insight

into relative developer performance, the high level goal of the

study was really to gather evidence that EICE did not unduly

burden developers as they worked; these measures are only

meant to be proxies to gain lightweight insight into the impact

of the tool.

B. RQ3: Impact on task performance

The results for the number of resource switches (NRS) for

the experimental and baseline tasks showed that participants

using EICE performed 33% as many resource switches (14

switches with EICE compared to 32 switches without EICE).

In fact, for three of the four tasks (T1, T3, T4), EICE partic-

ipants were able to use the external information embedded

34

in the code editor alone to complete the task. One of the

participants reflected:

“If I’m already working on something I don’t need
to worry about switching to all different applica-
tions.”— P4

In terms of the number of actions (NA), as with NRS,

participants using EICE for T1, T3, and T4 performed better

than with their traditional tools; across all tasks participants

using EICE performed 71% as many actions. This decreased

impact (relative to NRS) was largely related to T2, for which

participants found EICE hard to use; across the other three

tasks, EICE required only 51% as many actions to complete

the tasks.

Ultimately though, the goal of this small controlled exper-

iment was not to quantify the effort reduction of using EICE

vs traditional tooling. We mainly wanted to evaluate, with real

tasks using real external information from a real project, that

the visual integration did not overwhelm or confused develop-

ers causing them to to perform worse than with their traditional

tooling. In this way, we believe this experiment provides initial

hints that such integrated information can be both useful and

be visualized in a way that is not overwhelming to developers.

The participants also reflected positively on how having

access to this external information could impact them on their

own tasks. For example, “ [Even] I’ve disabled communica-
tions, and I’m working, but I still see that a really relevant
information because it would be showing me in the code that
I’m working on. So that can be quite helpful.” — (P4)

RQ3: Does integrating information impact performance?
Participants were able to successfully use external informa-

tion embedded into their source code editor to both decrease

the number of resource switches and number of actions for

most of the experimental tasks.

C. RQ4: Negative consequences of integration

Integrating external information does not automatically

make developer’s lives easier. For example, in T2 (broken

build) the EICE group performed worse than the control group

in terms of both NRS and NA. This was due to a design flaw

in how we integrated the build breakage external information

into the code editor: a usability decision we made (to open

the failure report when the participants clicked on the inline

visualization) caused participants expected to perform extra

resource switches and extra actions compared to the control

group. This demonstrates the importance of careful planning

and usability testing for these kinds of visualizations as they

can actually decrease developer performance.

Reflecting on their own projects, developers still had linger-

ing concerns about the integration becoming distracting: “[the
inline representation] might be too distracting in some cases”

— (P3), or that they would like to have a toggle to easily turn

off information sources they were not interested in: “having
the option to toggle on and off [the visual elements]” — (P1).

RQ4: Can inline integration be detrimental? When in-

tegrating information into the source code editor, designers

must carefully consider how developers will use and interact

with the information to ensure they do not actually cause the

developers to perform more work.

V. DISCUSSION

Developers use both code editing environments and external

development tools on a daily basis. This paper has provided a

glimpse into developer preferences for how code editors can be

augmented with external information. While the results may

seem straightforward, we believe they can provide concrete

design guidance for future tool developers. Specifically, devel-

oper guidance from the survey suggests that increased usage of

badge-based representations can both allow tool developers to

use more verbose representations (e.g., compact textual sum-

maries or graphs). Developers also found these representations

easier to use when multiple information sources are trying to

decorate the same code artefacts. Feedback from developers

also showed that in addition to integrating this information

into their code editors, they also appreciated direct linking

from the inline representation back to the original information

source so they could see it in its usual context if they needed

additional information.

Additionally, results form the experiment suggest that even

straightforwardly integrating existing information from ex-

ternal sources into the code editor can provide meaningful

value for developers. While the experiment primarily focused

on developer’s ability to use the integrated information, we

believe surfacing the information and making it accessible

without overt effort is just as important. These results have

implications for the importance of surfacing information and

the amount of immediate context needed for that exploratory

start point. By integrating external information into the code

editor, developers are relieved from not only the search step

(knowing where to find a piece of information for a specific

cod artefact), but also from the ideation step where they

need to think about searching for the information. Given the

value these links can provide to developers, additional research

on mechanisms to support exposing information from online

information sources may be warranted (to complement existing

research projects that infer these links).

A. Threats to validity

There are several threats to validity for an exploratory study

such as this one. These are important concerns that must be

taken into consideration when framing the results presented

in this work which is providing initial evidence for the utility

and preferences for the visualization of external information

within development environments.

a) Internal validity: The dynamic structure of the survey

made it challenging to directly compare all participants as

the followup questions were based on their prior responses

(e.g., the rationale for choosing A or B). This decision was

made to increase the feedback we could get from respondents,

35

but injected some of our own design thinking into the survey

process.

For the controlled experiment, we did not examine partic-

ipants as they worked on their own projects and tasks. This

would have allowed us to more directly examine the utility of

the information rather than using proxy metrics like number

of actions / context switches, but would have eliminated our

ability to have a meaningful control group without a much

larger participant pool.

b) External validity: The primary threat to external valid-

ity is the participant sample sizes of the survey and experiment.

While this is a clear limitation, the goal of the work was

to provide insight into developer preferences (survey) and

initial evidence whether integration decreased performance

(experiment). Additionally, the number of tasks evaluated

in the survey and the reliance on a single project for the

experiment both limit the generalizability of the results. As

with the primary threats to internal validity, an in vivo study

would be the next step to gain additional insight into the

challenges and benefits of integrating external information into

code editors in practice.

VI. RELATED WORK

Prior work has explored various methods to deliver external

information to developers including (1) software visualization,

(2) tools adding separate displays to code editors, and (3)

through novel tools that deliver their results using inline code

editor representations. This work differs from many prior

efforts in that it focuses on developer perceptions of the

representations themselves, rather than prior work which are

predominantly novel tools that happen to surface their results

within the code editor. A non-exhaustive overview of this work

is given below.

A. Software visualization

Software visualization provides another perspective to aid

code understanding. Prior work such as Software Land-

scapes [23], Software World [24], Component City [25], and

CodeCity [26], [27] all visualizes software allowing for data

exploration and analysis. Such approaches typically replace

code editor views with novel and independent visual repre-

sentations. In contrast, in this work we investigated developer

sentiment towards approaches that enable developers to not

leave their familiar code editing environment.

B. Code editor replacements

There are previous studies that attempt to adding “side

views” to code editors to presenting external information.

Reacher, an Eclipse plug-in, shows the call graph of methods

of interest next to the code editor view [28]. Software terrain

maps, based on the metaphor of cartographic maps, provides

an additional visualization display for developers to navigate

around the source code in the editor [29]. Code Bubbles [30],

Code Canvas [31] and Debug Canvas [32] take on a different

approach: they create a larger view where source code views

are enclosed in bubbles or regions that can be independently

laid out on a canvas. These representations can further display

relations among these smaller regions, easing the code com-

prehension and debugging process. Despite the perceived value

in such interfaces, they introduce new scalability issues that

are not as problematic for our less integrated approach [30].

C. Code editor augmentation
Tools such as HATARI [13] and GitLens10 CodeMetrics11.

Whyline [2] and PerformanceHat [5] integrate external infor-

mation by adding visual changes (e.g., annotations) directly

to the source code, without (necessarily) providing a sepa-

rate independent display. HATARI plug-in for Eclipse adds

annotations to source code elements, using colors to indicate

risk levels of code changing [13]. GitLens uses annotations

including highlight and heat-map to seamlessly integrate Git

core features in the code editor itself. CodeMetrics shows

the complexity information above the function declarations.

Whyline is a tool developed recently to allow developers to

select questions about a program’s output and work back-

wards from output to its causes [2]. PerformanceHat creates

operational awareness of performance problems and integrates

runtime performance traces into source codes, displaying the

performance statistics/impacts in the form of overlays [5]. This

type of tool is closest to the EICE technology probe in that

developers do not have to leave the code editor to benefit from

the tool’s results.

VII. CONCLUSIONS

In this paper, we investigate whether developers are open

to greater integration of the data from external information

sources into their development environments. In particular,

we wanted to learn more about developer preferences for the

visualization of this information and to check whether they

found it overwhelming or improved their ability to perform

some of their development tasks.
We did this through an online survey with 21 responses

which suggests that developers prefer the additional informa-

tion being visualised within their environments as long as

it is carefully done. In particular, developers prefer inline

representations that place information before the code (as

gutter icons) or after the code (as badge representations)

over representations that use isolated panels or views. A

common concern among developers is that they do not want

to be overwhelmed by the integrated information. Through a

controlled experiment we show initial evidence that developers

are able to leverage integrated information to both decrease the

number of actions and context switches required to perform

development tasks.
Ultimately, the survey and controlled experiment provide

initial evidence that developers support visualizing external

information in their environments and provides guidance for

future tool developers to consider when designing these visu-

alizations.

10VSCode plug-in for visualizing code authorship via Git blame annotations
and code lenses. (https://github.com/eamodio/vscode-gitlens)

11VSCode plug-in for computing and displaying code complexity inline
with functions. (https://github.com/kisstkondoros/codemetrics)

36

REFERENCES

[1] J. Sillito, G. Murphy, and K. De Volder, “Asking and Answering Ques-
tions during a Programming Change Task,” Transactions on Software
Engineering (TSE), vol. 34, no. 4, pp. 434–451, 2008.

[2] A. J. Ko and B. A. Myers, “Finding causes of program output with
the Java Whyline,” in Proceedings of the International Conference on
Human Factors in Computing Systems (CHI), 2009, pp. 1569–1578.

[3] T. Fritz and G. C. Murphy, “Using information fragments to answer
the questions developers ask,” in Proceedings of the International
Conference on Software Engineering (ICSE), 2010, pp. 175–184.

[4] E. Murphy-Hill, R. Jiresal, and G. C. Murphy, “Improving software
developers’ fluency by recommending development environment com-
mands,” in Proceedings of the International Symposium on the Founda-
tions of Software Engineering (FSE), 2012, pp. 1–11.

[5] J. Cito, P. Leitner, C. Bosshard, M. Knecht, G. Mazlami, and H. C. Gall,
“PerformanceHat: Augmenting source code with runtime performance
traces in the IDE,” in Proceedings of the International Conference on
Software Engineering (ICSE), 2018, pp. 41–44.

[6] T. Zimmermann, “Changes and bugs mining and predicting development
activities,” Ph.D. dissertation, Jan 2008.

[7] R. DeLine, G. Venolia, and K. Rowan, “Software development with code
maps,” Communications of the ACM (CACM), vol. 53, no. 8, p. 48–54,
Aug. 2010.

[8] G. Venolia, “Bridges between silos: A mi-
crosoft research project,” January 2005. [On-
line]. Available: https://www.microsoft.com/en-us/research/publication/
bridges-between-silos-a-microsoft-research-project/

[9] A. Begel, Y. P. Khoo, and T. Zimmermann, “Codebook: Discovering
and exploiting relationships in software repositories,” in Proceedings of
the International Conference on Software Engineering (ICSE), 2010, pp.
125–134.

[10] D. Spinellis, “Developing in the cloud,” IEEE Software, vol. 31, no. 2,
pp. 41–43, Mar 2014.

[11] G. Venolia, “Textual allusions to artifacts in software-related reposito-
ries,” in Proceedings of the International Workshop on Mining Software
Repositories (MSR), 2006, pp. 151–154.

[12] D. Čubranić and G. C. Murphy, “Hipikat: recommending pertinent
software development artifacts,” in Proceedings of the International
Conference on Software Engineering (ICSE), 2003, pp. 408–418.

[13] J. Śliwerski, T. Zimmermann, and A. Zeller, “HATARI: Raising risk
awareness,” in Proceedings of the European Software Engineering
Conference held jointly with International Symposium on Foundations
of Software Engineering (ESEC/FSE), 2005, p. 107–110.

[14] J. Singer, “Practices of software maintenance,” in Proceedings of the
International Conference on Software Maintenance (ICSM), 1998, pp.
139–145.

[15] J. Chisan, “Towards a model of awareness support of software develop-
ment in GSD,” in Proceedings of the International Workshop on Global
Software Development (GSD), 2004, pp. 28–33.

[16] H. C. Estler, M. Nordio, C. A. Furia, and B. Meyer, “Awareness and
Merge Conflicts in Distributed Software Development,” in International
Conference on Global Software Engineering (GSE), 2014, pp. 26–35.

[17] M. P. O’Brien, “Software Comprehension – A Review & Research
Direction,” p. 29.

[18] N. A. Al-Saiyd, “Source code comprehension analysis in software main-
tenance,” in Proceedings of the International Conference on Computer
and Communication Systems (ICCCS), 2017, pp. 1–5.

[19] A. J. Ko, R. DeLine, and G. Venolia, “Information needs in collocated
software development teams,” in Proceedings of the International Con-
ference on Software Engineering (ICSE), 2007, pp. 344–353.

[20] M. Eaddy, A. Aho, G. Antoniol, and Y.-G. Gueheneuc, “CERBERUS:
Tracing Requirements to Source Code Using Information Retrieval,
Dynamic Analysis, and Program Analysis,” in Proceedings of the
International Conference on Program Comprehension (ICPC), 2008, pp.
53–62.

[21] S. Bajracharya, J. Ossher, and C. Lopes, “Sourcerer: An infrastructure
for large-scale collection and analysis of open-source code,” Science of
Computer Programming (SCP), vol. 79, pp. 241–259, Jan. 2014.

[22] R. Dyer, H. A. Nguyen, H. Rajan, and T. N. Nguyen, “Boa: A language
and infrastructure for analyzing ultra-large-scale software repositories,”
in Proceedings of the International Conference on Software Engineering
(ICSE), May 2013, pp. 422–431.

[23] M. Balzer, A. Noack, O. Deussen, and C. Lewerentz, “Software land-
scapes: Visualizing the structure of large software systems,” in Pro-
ceedings of the Transactions on Visualization and Computer Graphics
(TCVG), 2004.

[24] C. Knight and M. Munro, “Virtual but visible software,” in Proceedings
of the International Conference on Information Visualization (IV), 2000,
pp. 198–205.

[25] S. M. Charters, C. Knight, N. Thomas, and M. Munro, “Visualisation for
informed decision making; from code to components,” in Proceedings of
the International Conference on Software Engineering and Knowledge
Engineering (SEKE), 2002, pp. 765–772.

[26] R. Wettel and M. Lanza, “CodeCity: 3d visualization of large-scale
software,” in Proceedings of the International Conference on Software
Engineering (ICSE), 2008, pp. 921–922.

[27] R. Wettel, “Scripting 3d visualizations with codecity,” in Proceedings
of the Workshop on FAMIX and Moose in Reengineering (FAMOOS),
2008.

[28] T. D. LaToza and B. A. Myers, “Visualizing call graphs,” in Symposium
on Visual Languages and Human-Centric Computing (VL/HCC), 2011,
pp. 117–124.

[29] R. DeLine, “Staying Oriented with Software Terrain Maps,” in Workshop
on Visual Languages and Computation (VLC), 2005, pp. 309–314.

[30] A. Bragdon, S. P. Reiss, R. Zeleznik, S. Karumuri, W. Cheung, J. Ka-
plan, C. Coleman, F. Adeputra, and J. J. LaViola Jr, “Code bubbles:
Rethinking the user interface paradigm of integrated development envi-
ronments,” in Proceedings of the International Conference on Software
Engineering (ICSE), 2010, pp. 455–464.

[31] R. DeLine and K. Rowan, “Code Canvas: Zooming towards better devel-
opment environments,” in Proceedings of the International Conference
on Software Engineering (ICSE), 2010, p. 207.

[32] R. DeLine, A. Bragdon, K. Rowan, J. Jacobsen, and S. P. Reiss, “De-
bugger Canvas: Industrial experience with the code bubbles paradigm,”
in Proceedings of the International Conference on Software Engineering
(ICSE), 2012, pp. 1064–1073.

37

