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Abstract—Work fragmentation is a common phenomenon in
the workspace, and is detrimental to the actual work taking
place. To measure and study the impact of work fragmentation in
software development, several studies exploited interaction data,
i.e., the data generated by the events performed by the developers
in the IDE. However, the absence of information on activities
performed outside the IDE could lead to a misclassification of
development time. In fact, sometimes leaving the IDE is not
an interruption of the task at hand, e.g., when consulting API
documentation, or when discussing with colleagues in ad-hoc
collaboration applications.

In this paper, we propose Ferax, a data analytics platform that
developers can leverage for retrospection and possibly to improve
their productivity. The capabilities of Ferax are twofold: First,
it extends Tako, a profiler to record IDE interaction data for
Visual Studio Code, with information about which applications
were used and which websites were visited. Second, to enable
the understanding of productivity and interruptions on developer
sessions, Ferax provides interactive visualizations that show the
detailed sequence of events inside and outside the IDE, the
switches the developer performs by classifying them as productive
or possible interruptions, and the time distribution for application
usage.

As a preliminary evaluation of Ferax we have collected and
analyzed real development sessions from a set of master students
and two professional developers. We illustrate how a developer
can leverage Ferax to characterize her usual habits, to elicit the
impact of interruptions, and to better characterize sessions which
were only apparently unproductive.

Index Terms—interaction data, development productivity

I. INTRODUCTION

Software developers spend a considerable amount of their

working time in the Integrated Development Environment

(IDE) as well as in applications that support development,

like collaboration apps (e.g., Slack1) to discuss with their

colleagues, and the web browser typically to consult Q&A

websites (e.g., Stack Overflow2).

However, not all applications used while working are work

related: Developers may also consult other applications (e.g.,
messaging apps) and websites (e.g., social networks) that may

cause distractions, interruptions, and thus a loss of focus [1].

These interruptions may occur frequently, causing a phe-

nomenon called work fragmentation that, with the increasing

adoption of social media, is becoming very common in the

workspace [2].

In the context of software development, Sanchez et al. [3]

observed that work fragmentation is correlated to lower ob-

1https://slack.com
2https://stackoverflow.com

served productivity, considering time spent outside the IDE as

a workflow interruption. They noticed that when developers

are outside the IDE, and then come back writing code, they

need some time to resume their work (about 25 minutes on

average). Moreover, after the interruption, developers find it

more difficult to accomplish the interrupted tasks. In their

paper, Sanchez et al. leveraged interaction data to characterize

developer productivity. Interaction data can be defined as the

fine-grained information produced in the IDE during develop-

ment, e.g., keyboard/mouse events, and UI interactions.

Several studies on interaction data have been presented

[2]–[11], but only a few of them charaterize the time spent

outside the IDE, typically assuming that this is a form of

workflow interruption. However, since the work of developers

is not performed uniquely in the IDE, to properly characterize

developer productivity and interruptions it is essential to track

and characterize activities that happen outside of the IDE.

The contributions of this paper are twofold: First, we build

an approach that integrates the recording of IDE interaction

data with activities performed outside of the IDE. Second,

we provide an analytics platform that developers can use to

understand how they spend their time and to improve their

productivity by reasoning on their work habits.

Recording Interaction Data outside the IDE. As a source

for interaction data inside the IDE we leverage and extend

TAKO, an IDE plugin that collects, aggregates, and visualizes

interaction data for Visual Studio Code3 (VSC). VSC is a

popular IDE supporting a plethora of different programming

languages4.

FERAX extends TAKO’s data collection with two external

components: An application for macOS to record application
usage, i.e., which application is in focus at any given point in

time, and a Chrome extension to track the website visits of the

developer. The former component records events when appli-

cations are opened, closed, or when the current application on

focus changes. The latter extracts information about the URL,

the timestamp in which the event occurred, the title of the

page and whether the page was opened, closed, or changed

at the specified timestamp. For privacy reasons, FERAX does

not share the collected data, and in the case of websites, it

records only minimal information if the website is detected as

non-work related.

3https://code.visualstudio.com
4https://code.visualstudio.com/docs/languages/overview
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Data Analytics Platform. Finally, FERAX provides a data

analytics platform for the recorded interaction data inside

and outside the IDE, allowing the developer to analyze their

sessions by means of interactive data visualizations. The

FERAX data analytics platform provides two main features:

• a global digest that helps developers reflect on how

they spend their time during the week, provides general

information about all collected sessions, and can be used

to understand which applications and website have the

larger impact on interruptions;

• single session visualizations that allow developers to

reflect on their productivity on a single recorded ses-

sion, e.g., by analyzing the most used applications and

websites, look at the detailed sequence of actions per-

formed inside and outside the IDE, and the most frequent

switches (moving from one app to another).

As a preliminary evaluation of our approach we show,

through a set of real sessions from developers, how FERAX

can help them to understand how they spend their time during

work and to give the developer a conscience over suboptimal

work habits.

Paper Structure. This paper is structured as follows. Sec-

tion II presents the related work concerning IDE interaction

data recording and time tracking tools for productivity. Sec-

tion III explores the components of the FERAX data recording

architecture. Section IV illustrates the FERAX data analytics

platform and its features. In Section V we perform a prelim-

inary evaluation of FERAX by illustrating a few development

stories coming from real development sessions. In Section VI

we conclude the paper and discuss future work.

II. RELATED WORK

In this section, we discuss approaches to track interaction

data as well as studies that leverage it.

Eclipse extensions. The pioneering research on interaction

data is the work by Murphy et al. [6], [12], [13] on MY-

LYN. MYLYN is a plug-in for the Eclipse IDE that records

interaction data to compute the degree-of-interest (DOI) of

all program entities the developer interacts with. Gu et al.
developed IDE++, a plugin for Eclipse [14]. IDE++ is also

an extension of MYLYN that captures at a finer level of

granularity interactions. Kobayashi et al. developed PLOG, an

Eclipse plug-in for capturing interaction histories [15]. PLOG

can capture developers’ interactions at two levels of granularity

in Java programs, the file level and the method level, by

listening to various IDE events. All these approaches, though,

focus on interaction data inside the IDE, while FERAX focuses

on data outside the IDE as well.

DFLOW. DFLOW is an interaction data profiler for Pharo5,

a pure object-oriented programming language and a devel-

opment environment. The model of development activities

used in DFLOW consideers navigation events, edit events,

inspection events, and UI events. Interaction data recorded

by DFLOW has been used in many subsequent studies, e.g.,

5http://pharo.org

to visualize development sessions [11], or to visualize the

working set of developers [8], i.e., the group of program

entities (e.g., methods, classes) which a developer has in-

teracted with during a particular period of time. In another

work, Minelli et al. leveraged interaction data to understand

how developers spend their time [10]. The authors found

that the dominant activity is program understanding, which

amounts to 70% of development time on average. Finally,

DFLOW’s interaction data was also leveraged to charaterize

a phenomenon called window plague [16], proposing several

metrics to characterize and quantify the “level of chaos” for

the UI of Pharo [17]. TAKO, the interaction data profiler we

leverage in this paper, is the result of an ongoing technology

transfer effort to port the expertise of DFLOW into the VSC

IDE. TAKO collects fine-grained raw interaction data for VSC,

aggregates it, and provides a set of interactive visualizations

of the data to help developers reflect about their development

sessions. Both DFLOW and TAKO can recognize time spent

outside the IDE, but they do not characterize it like FERAX

by collecting application focus and website visits.

Usage patterns. Damevski et al. proposed a technique that

leverages Hidden Markov Models (HMMs) as a means of

mining high-level developer behavior from low-level IDE in-

teraction traces of many developers in the field [5]. The authors

also recorded and studied interaction data inside the Visual

Studio6 IDE to extract usage patterns (or sequences) [18].

Again, the main difference between their approach and FERAX

is that we support data collection outside the IDE.

FeedBaG. FeedBaG is an extension for Visual Studio that

tracks developers’ interactions with the IDE [19], [20]. It

records such interactions through ReSharper 7, a widely used

Visual Studio extension. FeedBag is a plugin that generates

interaction events and allows users to manage them, but does

not collect data outside the IDE, like FERAX.

ActivitySpace. Bao et al. devised ActivitySpace [21], an

approach to support the inter-application information needs in

software development. It consists of an infrastructure to track

the actions of a developer in the entire working environment

using operating-system windows and accessibility APIs [7].

ActivitySpace can collect the developer interactions with many

commonly used desktop and web applications in software de-

velopment, such as IDEs, web browsers, and text editors (e.g.,
Notepad). Bao et al. try to reveal the developer’s intention

and activities by examining the surrounding actions before

and after an individual action. They also collect interaction

data on the commonly used desktop and web applications

(e.g., click events, the current working window information

and the current focused UI information) using Windows as

operating system. The main difference between FERAX and

ActivitySpace is that the former supports macOS, leverages

more detailed information on events occurring in the IDE, and

focuses on visual analytics regarding developers productivity.

6https://visualstudio.microsoft.com
7https://www.jetbrains.com/resharper/
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III. RECORDING INTERACTION DATA OUTSIDE THE IDE

In this section we discuss the FERAX approacch to record

interaction data outside the IDE. Section III-A introduces the

terminology used in FERAX. Section III-B details TAKO, the

profiler we leverage for interaction data inside the IDE, while

Section III-C presents the FERAX data recording architecture.

A. Terminology

We distinguish three categories of applications according to

productivity:

• productive applications are the ones related to develop-

ment and collaboration, e.g., VSC, Terminal, and Slack.

• non-productive applications are the ones that may cause

possible interruptions, e.g., WhatsApp, and Telegram.

• uncertain applications are applications that are difficult to

classify as productive or non-productive, e.g., other web

browsers (like Safari), Finder, and Calendar.

The purpose classification considers the purpose of the

application:

• Programming Apps are applications related to the pro-

gramming session, e.g., VSC, and Atom.

• Collaboration App are messaging applications related

to the productivity used normally in work settings -

since they are often hosted or managed by the employer

company, e.g., Microsoft Teams, and Slack.

• Social network App are distractive applications related to

socials, e.g., WhatsApp, and Telegram.

• Utility App are general purpose applications, e.g., Finder,

and Archive Utility.

• Browser App are applications that developers uses for

consulting websites, e.g., Google Chrome, and Safari.

• Other App are all the remaining, unclassified apps.

We classify websites as follows:

• productive websites are the websites related to the pro-

gramming session, e.g., Github and Stackoverflow.

• distractive websites are the websites that may interrupt

the task, e.g., Facebook and Twitter.

We define as chunk a piece of work time spent in a

single application or in a website. A chunk starts when the

application (or a website) goes on focus and ends when the

application (respectively, a website) stops being on focus.

We define as switch a change of the application or website

in focus. We classify switches as follows:

• A productive switch is a switch to a productive application

or website.

• An uncertain switch is a switch to an uncertain applica-

tion.

• A possible interruption switch is a switch to a non-

productive application, e.g., social network, or a distrac-

tive website.

For the time spent inside the IDE, we adopt the simplified

model by Sanchez et al. [3] distinguishing just edits, i.e., when

developers perform a sequence of keystrokes in a document,

and non-edits, i.e., all the other activities, like navigations and

selections.

B. Tako

TAKO is an IDE extension for VSC that collects and aggre-

gates fine-grained interaction data by recording the Language

Server Protocol (LSP) messages. LSP8 provides a uniform

API to support common IDE features like autocomplete, goto

definition, document symbols, or documentation on hover for

a given programming language. While traditionally the work

for each of these features must be repeated for each IDE

or development tool, implementing a language client/server

pair with LSP, automatically gives support for those language

features in a moltitude of IDEs, in particular VSC. In other

words, the purpose of a Language Server adhering to LSP is

to provide the language-specific features inside a server that

can communicate with the IDE over a standardized protocol.

At the current state, TAKO can record all messages ex-

changed in the LSP in both directions, i.e., the requests sent

from the language client to the server and the responses

sent from the server to the client. By recording LSP events,

TAKO supports any language supported by VSC for which

a language server exists, and for each of these languages,

it can record significant events related to specific groups of

features supported by LSP, like text synchronizations features

(e.g., save events), diagnostics (e.g., compilation problems

or linting errors), and programming language features (e.g.,
refactorings).

While some of these features look relatively high-level,

some development activities still need to be extracted from the

LSP events, e.g., navigations and grouped edits. TAKO saves

the collected data into sessions.

TAKO does not collect any interaction data happening

outside the IDE. The goal of FERAX is to build an approach

to collect also data outside the IDE and integrate it with the

data collected by TAKO. To record activities happening outside

the IDE we built a pair of external applications that capture

information about website visits and the application focus.

C. Interaction Data Recording

Figure 1 presents the FERAX data recording architecture.

Fig. 1. FERAX data recording architecture

8https://microsoft.github.io/language-server-protocol/overviews/lsp/
overview/
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The FERAX data recording architecture is composed of

three components, which communicate through a WebSocket:

(1) TAKO to record interaction data inside the IDE, (2) the Ap-

plication Focus Recorder, and (3) the Website Visits Recorder.

Application Focus Recorder. The application focus

recorder component of FERAX is an application for the macOS

operating system. It records the application in focus and

sends the recorded data to TAKO. The application works as

an observer that looks for application focus changes. When

there is a switch from an application to another, the observer

is notified, produces the data to be sent to the server, and

forwards it. To get information about the running application

we use the dedicated API of NSRunningApplication9.

The macOS application registers the application state

change, and for each state change it generates one or

more change of focus events (didChangeAppWindowFocus).

Those events are then sent to TAKO through the Web-

Socket. Each event has the following structure: i) a type (i.e.,
didChangeAppWindowFocus); ii) the application name; iii) a

focus, i.e., a flag to express if the focus is acquired or lost;

iv) and a timestamp.

Website Visits Recorder. The website visit recorder is

packaged as a Google Chrome Extension. As we discussed

in Section III-A, we can distinguish two websites categories:

productive websites and distractive websites.

The extension assumes a conservative default list of produc-

tive domain websites, i.e., a list that contains only websites

related to software development, and that can be customized.

It includes domains like stackoverflow.com and github.com.

The core of the extension manages communication with

TAKO, and generates events about website visit changes

by leveraging the Chrome tabs10 and windows API11.

Through those APIs, the core registers the tabs/windows

state change, and for each state change it generates one or

more didChangeBrowserTabURL events, that are then sent to

TAKO through the WebSocket. Each event has the following

structure: i) a type (i.e., didChangeBrowserTabURL); ii) a

URL, i.e., the full URL if the visited website is a productive

website, the domain otherwise; iii) a timestamp; iv) a focus

flag; v) a title, i.e., the page title, only for productive websites.

The extension generates such events when the following

window/tab events happen:

• Active tab change/Tab URL update: fired when the

selected tab in a Chrome window changes, or when the

current tab URL changes; the extension generates a pair

of events, one corresponding to the loss of focus on the

old tab/site, and one to the focus on the new tab/site.

• Window close/change: fired when a Chrome window

is closed or changed; in the former case, the extension

generates only a loss of focus event; in the latter, the

extension generates a new event representing a focus on

the URL of the active tab of the window on focus.

9https://developer.apple.com/documentation/appkit/nsrunningapplication
10https://developer.chrome.com/extensions/tabs
11https://developer.chrome.com/extensions/windows

IV. THE FERAX DATA ANALYTICS PLATFORM

The core component of FERAX is the data analytics plat-

form, which can be used to inspect developer sessions by

means of interactive visualizations. The platform is composed

of a component that processes the session data and injects it in

a database (Section IV-A), and a web application that provides

the visualizations (Section IV-B).

A. Data Processing

The first step to extract the activities and inject them in a

database is to parse the collected data. To perform this step

we devised a parser. The parser takes a session folder as input,

as produced by Tako, processes all the files contained in the

folder to extract the activities, and injects them in a NOSQL

database.

The essential task of the data processing component is to

parse the collected interaction data to extract activities. To

extract an activity, the parser merges two or more different

events, e.g., it merges the opening event of a website with the

closing event of the same website to create a Browser activity.

Each activity is composed of:

• session_id is an id for the current session.

• start is the timestamp that indicates the start of the

activity.

• end is the timestamp that indicates the end of the activity.

• origin_type indicates the application where the event

is recorded: App Focus for the recording app focus

application, Browser for the recording website visits

application, or IDE for Visual Studio Code.

• resource indicates the resource involved in the activity

(see Section III-A)

If the origin type is “Browser”, there are two possible

resources: Productive WebSite and Distracting WebSite. The

distinction between these two categories is made by a default

Productive WebSites list which provides a list of commonly

used websites related to coding. The Productive WebSites

list is customizable, all websites that are not present in

this list are intended as possible interruptions. If the ori-

gin type is “IDE”, there are two possible resources: Edit and

Non Edit. Since each digit produces an Edit event, according

to Sanchez et al. [3] the Edits can be aggregated if the distance

between the performed digits is below 1 second (Massive

Event) and the Edits belong to different documents. The

NonEdit events (e.g., navigations) can be aggregated if the

distance between the performed non-edit events is below 1

second. If the origin type is “App Focus”, there are more

possible purposes : Programming App, Collaboration App,

Social network App, Utility App, Browser App and Other App.

There are others fields that are intended only for specific

activities. For example, the “Edit” resource contains a text

field where the written text is stored and a document path

where the edit has been performed, and the “Browser” session

contains a website field where the entire URL (for documenta-

tion websites/Productive WebSite) or the hostname (for other

websites/Distractive Website) is stored.
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Fig. 2. The Global Digest

B. Visual Analytics

The last component of FERAX is the frontend, that enables

users to inspect their sessions and reason about how they

spent working time through visual analytics. FERAX offers

four views:

• Global Digest offers a general view of the collected data;

• Digest provides general information of a single session;

• Timeline shows where the time was spent during working

hours;

• Chord Diagram provides a visualization to focus on

possible interruptions.

Global Digest

The first panel is the global digest, where developers can

inspect a set of collected sessions to get general information

about their working habits. The data in the global digest can

be complete, or can focus on the sessions belonging to the

last week or last month.

Figure 2 shows an example of the Global Digest panel,

composed of a summary table (1), chunk distribution (2), most

used apps duration (3), most used apps count (4), most visited

websites duration (5), most visited websites count (6) and

weekly app usage (7).

The summary table lists basic statistics like the sum of

all session durations, the number of save events in the IDE,

the number of switches between applications and average of

switches per hour, the number of edited documents and num-

ber of visited websites. From the specific digest in Figure 2,

we can notice that the developer tends to perform a lot of

saves in the IDE and he tends to change application focus

very frequently (almost 1 switch per minute).

The first chart is the chunk distribution visualization, where

it is possible to inspect the distribution of the chunks in custom

ranges according to their duration. In this chart, we group

the chunks into buckets according to their duration. During a

preliminary assessment of the chunk duration distribution, we

observed that those distributions were often long tailed when

using buckets of uniform duration. Instead, we preferred to use

nonlinear, custom duration ranges for the buckets that are easy

to understand by the user, and that likely capture meaningful

behaviors. For example, very short chunks (< 1s) are likely

to be mistakes (during alt-tab switches), while chunks greater

than 15 minutes are likely to be highly focused periods in

a single application. When hovering on the chart, the tooltip

shows the selected chunk app category, the range it belongs

to, and depending on the selected aggregation shows the

switches count or their cumulative duration. Figure 3 presents

an example of chunk distribution chart by count.

Fig. 3. Chunk distribution by count in the Global Digest

This chart groups the numbers of chunks belonging to a

category for each range. From this specific chart we notice

that most of the chunks are less than 1 minute long and the

most frequent ones are the chunks lasting between 10 seconds

and 1 minute.
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Figure 4 presents the chunk distribution chart by duration.

Fig. 4. Chunk distribution by duration in the Global Digest

In this chart we sum the duration of the chunks instead of

their count. Differently from the previous chart, here we can

see that the developer spent most of the time in chunks lasting

between 1 and 5 minutes. We can also notice that most of the

time is spent in a Programming app and in the Browser.

The second group of charts (see Figure 5) is composed

of two bar charts showing the most used apps purposes,

considering either the chunk duration or the chunks count.

Fig. 5. App usage charts in Global Digest

From these specific charts, we can see that most of the

time spent by the developer was in programming applications

while the second most-used app purpose is Browser app. Since

it is difficult to understand if the time spent in the browser is

instrumental to the task at hand or not, there is a third group of

charts that helps developers understand how they spend time

in the browser. Figure 6 shows the time spent in distracting

websites and the top-4 most visited productive websites.

Fig. 6. Visited websites among the selected sessions

After analyzing the 4 graphs we can understand that the

developer has used a lot the IDE and that the most visited

website was an internal instance of Gitlab. We can also see

that the developer often consults distracting websites, but the

chunks are usually short.

The last chart of the Global Digest is the weekly app usage

chart that shows the application usage distributed over the

weekdays. As in the other bar charts, the developer can switch

between chunk count and chunk duration. When hovering on

the data, the tooltip shows the selected app category, the day

and depending on the selected aggregation shows the switches

count or the app duration. Figure 7 show an example of app

usage distribution divided into weekdays.

Fig. 7. Weekly app usage by duration charts in the Global Digest

From these graphs we can see that the developer spent most

of the time in programming apps and that most of the recorded

development was done on Friday.

Single Session Digest

The Digest allows the developer to get detailed information

about a specific session, like summary information about the

session, how they spend the time in applications, and the most

visited websites. The views of the single session Digest are the

same as the Global Digest except for the weekly app usage

chart that is not present since we are considering only one

session. Figure 8 shows an example of a Session Digest panel.

In this session we can see that the developer worked on six

different files of a project called Stormed, the session lasted 4

hours and 16 minutes, and comparing this session with the

Global Digest we can see that the number of switches is

lower than the average, the number of visited websites (5) is

low and the time spent on the Browser is almost completely

in productive websites. It is important to see the distinction

between chunk counts and duration. These chart show that the

chunks lasting above a minute are almost all in programming

apps and that chunks lasting below a minute have limited

impact. Moreover, from the most used apps chart come out that

there is an absolute dominance of programming applications

over all the others apps. What we can conclude after inspected

this session Digest is that the selected session was a productive

and focused session.

Timeline

The goal of the timeline panel is to allow developers to

inspect the exact sequence of activities happened during a

work session. Figure 9 shows the graphical interface of the

Timeline panel, that is composed of three separated timelines

for the App Focus, the IDE and the Browser.

The App Focus timeline shows the sequence of application

chunks. The color scheme we use for the apps are the same

as the ones used in the digests, the only difference is that

we set the VSC color to white instead of the green as the

Programming App category since the time spent in VSC is

implicitly evident and detailed from the IDE timeline above.
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Fig. 8. The Digest panel for a single Development Session

Fig. 9. The graphical interface of the Timeline panel

By hovering a chunk, the tooltip shows details on the used

app and the exact time the chunk started and ended.

The IDE timeline shows how developer spent the time inside

the IDE. In their paper, Sanchez et al. leveraged the edit

ratio [3], i.e., the ratio of the number of edits over the total

number of events, as an indicator of productivity. We decided

to use the Sanchez et al. model to decompose the activities

happening inside the IDE in two different categories: NonEdits

and Edits, aggregated as discussed in Section IV-A. When

hovering on an edit activity, the tooltip shows the time in

which it occurred, the number of edited characters, the start,

the end, and the document where the edit is performed.

The last slot of the timeline pertains to the browser. We can

distinguish two different types of website visits: Productive

websites and Distractive websites (see Section III-A). To pro-

duce the result, we use a custom dictionary (customizable in

the settings) to distinguish Productive and Distractive websites.

We inspect the hostname of the visited websites to distinguish

if it is a productive website or not. Examples of productive

websites in the default list include stackoverflow.com, ora-

cle.com, spring.io, and developer.apple.com.

In the considered session timeline, we can notice that the

developer spent most of the time in VSC. The beginning of

the session is time spent in program comprehension while the

second part of the session was dedicated to writing, with a high

edit ratio. The last part of the session was spent in practice

only in Collaboration Apps and in the Browser, and we can

see that the edits are absent.
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Chord Diagram

Figure 10 shows the last panel type in FERAX, i.e., a Chord

diagram that shows the switches between apps and websites

to find instances of possible interruptions.

Fig. 10. The Chord panel focusing on a Productive switch

To categorize a switch we define two different application

lists: Productive applications, depicted in blue, and uncertain

applications, depicted in yellow (see section Section III-A

for terminology). The productive applications include typical

programming and collaboration apps. The uncertain applica-

tions include, instead, the web browsers we do not track, like

Safari, and applications like Finder. We also filter switches

to very short chunks, because they are likely mistakes. All

the other applications, like social networks, are deemed as

non-productive, and depicted in red. A similar classification is

used for websites. The target application category determines

the type of switch. A Productive switch (depicted in blue)

is a switch from an application to a productive application

or a productive website. Figure 10 also presents an example

of productive switch. In the tooltip the developer can inspect

how many times she switched from the origin application to

the target productive application (VSC). An uncertain switch,

depicted in yellow, is a switch to an uncertain application. A

possible interruption switch is a switch to a non-productive

application, like a social network. These are the most interest-

ing switches since they represent the possible interruptions to

avoid. Figure 11 presents an example of a possible interruption

switch. In the tooltip we can inspect how many times we

switched from the selected application to the selected possible

interruption application.

C. Limitations and Threats

The first threat concerns the classification of visited web-

sites. In fact, the productive websites are defined in a custom

list, and it is impossible for this list to cover all the domains of

productive websites. For example, the list may not contain the

documentation website for a novel framework, and classify

it as non-productive website. A similar limitation involves

Fig. 11. An example of possible interruption switch

the classification of applications. Moreover, classifications

are static and do not depend on the context. For example,

messaging apps can be used for collaboration with other

developers. We plan to allow developers to customize clas-

sifications globally or per single session. Another limitation

concerns the actual developer activity outside the IDE. At

the moment, FERAX detects only the focus, and cannot detect

when the developer is idle. FERAX has also the limitation that

it records interaction data only on the computer, and not in

additional devices like the smartphone, that can be a source of

distractions. Finally, another limitation is that FERAX supports

only Google Chrome as a browser and macOS as an operating

system to track interaction data outside the IDE.

V. PRELIMINARY EVALUATION

We present a preliminary evaluation of FERAX through a set

of interesting sessions. Section V-A explains the methodology

we used to interpret the sessions. Section V-B presents a fo-

cused session, Section V-C presents a documentation session,

and Section V-D shows the impact of long interruptions.

A. Methodology

We distributed TAKO and FERAX to a group of volunteers

composed of 4 master students12 and 2 professional develop-

ers13. All participants were instructed beforehand on what kind

of data was being collected, and they were not instructed to

perform any specific development task, but just to use the tools

during their normal work. We collected a total of 20 sessions,

and then we filtered out the ones with fewer events happening

outside the IDE. We analyzed the remaining 12 sessions, and

for space reasons, we only report 3 of them in detail. For

each session we firstly analyzed the single session digest to

inspect general information about the session. Secondly, we

inspected the Timeline to investigate the sequence of activities.

12Students of the Master in Software and Data Engineering at USI
13Professional developers with at least 3 years of experience from Code-

Lounge, a center for software R&D, part of the Software Institute at USI.
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Thirdly, we analyzed the Chord diagram to find instances of

possible interruptions. Finally, we presented our impressions

to the developer to discuss and confirm the findings.

B. A Focused session

We discuss how a highly focused session appears in FERAX.

Figure 12 shows the chunk distribution by duration chart for

that session; we see that the vast majority of time was spent in

longer than 1 minute chunks, and the majority in longer than

5 minutes chunks.

Fig. 12. Chunk distribution aggregated by duration of a focused session

A small amount of time is spent in collaboration apps, but

by looking at the count, it seems that the developer frequently

uses them but for a short time. There is also a considerable

amount of time spent in the browser. To classify the time spent

in the browser we inspect the most visited websites chart,

where we can see that the majority of the time is spent in a

productive website. Most of the time was spent in IDE and the

timeline can shed light into how that time was spent (Figure 9).

The timeline shows that the first part of the session (before

17:00) could be a setup phase where the developer spent her

time in program comprehension since in this phase there is

a majority of NonEdit events. In a second phase (between

17:15 and 18:15) the number of edits increases. In the IDE

category there are gaps without any performed event (white

areas in the IDE category when VSC on focus). A possible

interpretation of these gaps is that the developer was collecting

her thoughts. We conclude the analysis of the session with the

chord diagram, to inspect the switches between application

and the amount of potential interruptions (Figure 13).

Fig. 13. Chord diagram of a focused session

This chart shows that the number of potential interruptions

was relatively low. We showed the graphs to the developer and

explained our interpretation, confirming that this was a very

focused session with few distractions.

C. A Documentation session

The chunk distribution in the session digest reports that the

average time spent in a chunk is below 5 minutes, and by

inspecting the most used apps chart and the chunk distribution

aggregated by duration (Figure 14) we can see that most of

the time was spent in the browser.

Fig. 14. Documentation session: chunk distribution by duration

The session information shows that the number of edited

documents in the IDE is 1, that there is a high number of

switches between applications (93, almost twice as much as

the average over all the sessions), a low number of visited

websites, and that most of the time was spent on productive

websites, with Gitlab being by far the most visited one.

This can be explained by continuous back and forth switches

between the IDE and Gitlab, where the project documentation

resides. We confirm this hypothesis by looking at the timeline

where we can see the detailed app usage over time (Figure 15).

Fig. 15. Timeline of a documentation session

The edit ratio is almost 0, and if we inspect each IDE

activity we can see that there are multiple visited source

files. We explained our interpretation to the developer, and

he confirmed that while the edit ratio was relatively low, this

was a productive session (despite low edit ratio) dedicated to

writing documentation on Gitlab.

D. Impact of long interruptions

For this session, the most used apps chart shows that the

developer spent the majority of his time in programming

applications. The second most used apps category is social

networks, that could be source of interruptions. In the chunk

distribution aggregated by duration (Figure 16) we can see that

more than 15 minutes were spent in a social network app.
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Fig. 16. Chunk distribution by duration of a session with long interruptions

This long interruption may impact the developer produc-

tivity when resuming work. To inspect such an impact we

analyzed the Timeline, shown in Figure 17.

Fig. 17. Timeline of a session with long interruptions

The Timeline shows that the first part of the session has a

high edit ratio. After a focus in the IDE, there is a prolunged

interruption (≥ 15 minutes). We can see the impact of the

interruption in the activities that follows it: the performed edits

within 45 minutes from the interruption are minimal. This is

compatible with the findings of Sanchez et al. [3].

Figure 18 presents the Chord diagram of this session.

Fig. 18. Chord diagram of a session with long interruptions

The Chord diagram shows that there is a significant number

of edges from VSC to WhatsApp, representing possible inter-

ruptions. We showed the graphs to the developer and explained

our interpretation; she was surprised on how much a single

prolunged interruption impacted the session. The developer

did not expect that the edit ratio after the long interruption

was this low.

Wrapping up. FERAX offers developers an approach to

reflect about their work habits and the possibility to inspect

the time spent both inside and outside the IDE. We have shown

the importance of capturing information from outside the IDE

to have a more comprehensive and integrated view of the

activities, since development tasks are not performed uniquely

in the IDE. However, the preliminary analysis we presented in

this section provides only anecdotal evidence of the benefits

of FERAX. With a more extensive study, a catalog of patterns

and anti-patterns could be defined.

VI. CONCLUSION

We presented FERAX, an approach to integrate IDE inter-

action data with information on activities performed outside

of the IDE and to support retrospective visual analytics by

developers. FERAX provides two separate components that

record application usage on macOS, and website visits on

Google Chrome. It also leverages an existing interaction data

profiler for visual studio code called TAKO. FERAX provides

a data analytics platform for the recorded interaction data

inside and outside the IDE, allowing the developers to analyze

their sessions by means of interactive data visualizations.

FERAX provides 4 views: the Global Digest, which offers

a summary of the collected sessions, the Session Digest,
which summarizes a single session, the Timeline, which shows

the detailed sequence of activities over time, and the Chord
diagram, which focuses on switches and may capture possible

interruptions. As a preliminary evaluation, we distributed the

tools to a group of volunteers composed of master students

and professional developers, finding occurrences of interesting

developer behaviors. For example, we presented a relevant

example of the importance of analyzing activities performed

outside the IDE in a documentation session. If we had no

data recorded outside of the IDE, this session would have

been categorized as non-productive. In addition, we observed

the impact of a long interruption on the edit ratio, a common

proxy for productivity [3]. The presented examples showed

anecdotal evidence on how the recording of interaction data

both inside and outside the IDE provides a more complete

context to reason on productivity and interruptions.

Future Work. The work presented in this paper can be

improved and extended in multiple ways. We identified the

following directions for possible future work. The first direc-

tion is about broadening the supported software, like other

operating systems (e.g., Windows and Linux) and browsers

(e.g., Safari and Mozilla). The second direction concerns the

session analysis: we plan to add more metrics and to define

a catalog of common patterns and anti-patterns, find them

automatically and alert developers when some anti-patterns

occur. The third direction is about a more comprehensive

usage coverage e.g., record interaction data on the phone, and

enhance the data collected in external applications to know if

the developer is idle.
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