
Enhanced Visualization of Method Invocations by
Extending Reverse-engineered Sequence Diagrams

Taher Ahmed Ghaleb
School of Computing
Queen’s University

Kingston, Ontario, Canada

taher.ghaleb@queensu.ca

Khalid Aljasser Musab A. Alturki
Information & Computer Science Department

King Fahd University of Petroleum and Minerals
Dhahran, Saudi Arabia

{aljasser,musab.alturki}@kfupm.edu.sa

Abstract—Software maintainers employ reverse-engineered se-
quence diagrams to visually understand software behavior, espe-
cially when software documentation is absent or outdated. Much
research has studied the adoption of reverse-engineered sequence
diagrams to visualize program interactions. However, due to the
forward-engineering nature of sequence diagrams, visualizing
more complex programming scenarios can be challenging. In
particular, sequence diagrams represent method invocations as
unidirectional arrows. However, in practice, source code may
contain compound method invocations that share values/objects
implicitly. For example, method invocations can be nested, e.g.,
fun(foo()), or chained, e.g., fun().foo(). The standard
notation of sequence diagrams does not have enough expressive
power to precisely represent compound scenarios of method invo-
cations. Understanding the flow of information between method
invocations simplifies debugging, inspection, and exception han-
dling operations for software maintainers. Despite the research
invested to address the limitations of UML sequence diagrams,
previous approaches fail to visualize compound scenarios of
method invocations. In this paper, we propose sequence diagram
extensions to enhance the visualization of (i) three widely used
types of compound method invocations in practice (i.e., nested,
chained, and recursive) and (ii) lifelines of objects returned from
method invocations. We aim through our extensions to increase
the level of abstraction and expressiveness of method invocation
code. We develop a tool to reverse engineer compound method
invocations and generate the corresponding extended sequence
diagrams. We evaluate how our proposed extensions can improve
the understandability of program interactions using a controlled
experiment. We find that program interactions are significantly
more comprehensible when visualized using our extensions.

Index Terms—Sequence diagram, extended notation, program
comprehension, method invocation, controlled experiment

I. INTRODUCTION

Sequence diagrams allow software maintainers to get a visu-

alized outlook of program interactions. Software maintainers

use reverse-engineered sequence diagrams for legacy systems

or when software documentation is absent, poor, or outdated.

Much research has studied the adoption of reverse-engineered

sequence diagrams to visualize program interactions [1]–[37].

However, due to the forward-engineering nature of sequence

diagrams, visualizing more complex programming scenarios

can be challenging. For example, sequence diagrams represent

method invocations as unidirectional arrows. However, in prac-

tice, source code may contain compound method invocations,

in which values/objects are communicated between callers

and callees implicitly. For example, method invocations can

be nested, e.g., fun(foo()), or chained, e.g., fun().foo().

The standard primitives of UML sequence diagrams do not have

enough expressive power to precisely represent such scenarios

of method invocations.

Prior research has assessed the use of reverse-engineered

sequence diagrams for program understanding [38]. Previous

studies proposed (i) extensions to sequence diagrams to support

more control flow scenarios [2], [9], [12], [39]–[44] and (ii) non-

standard forms of visualization of program interactions, such as

Circular Bundles [45], City Metaphor [46], and Markov Chains

& Timing Diagrams [12]. Still, previously proposed solutions

fail to visualize compound scenarios of method invocations.

Understanding the information flow between compound method

invocations enables software maintainers to perform debugging,

inspection, and exception handling operations.

In this paper, we propose extensions to sequence diagram to

enhance the visualization of compound method invocations in

Java. In particular, our proposed extensions represent (a) three

types of compound method invocations (i.e., nested, chained,

and recursive calls) and (b) lifelines that correspond to objects

returned from method invocations. We choose such types of

compound method invocations as they are widely used in

practice. We aim through our extensions to increase the level of

abstraction and expressiveness of method invocation code. We

choose to extend the standard notation rather than using another

alternative notation to make our approach more interoperable.

We use typical code examples of method invocations to

demonstrate the notation of our extensions. We use our tool

for reverse-engineering software systems [47] to generate the

extended representation of sequence diagrams used in this study.

Moreover, we conduct a controlled experiment to evaluate how

our proposed extensions can improve the understandability of

program interactions at the method level. Our results show

that the communications between program methods/objects are

more comprehensible when visualized using our extensions.

In summary, this paper makes the following contributions:

• Highlights on the limitations of reverse-engineered UML
sequence diagrams in representing program interactions.

• Novel sequence diagram extensions for enhanced visual-

ization of compound scenarios of method invocation.

49

2020 Working Conference on Software Visualization (VISSOFT)

978-1-7281-9914-6/20/$31.00 ©2020 IEEE
DOI 10.1109/VISSOFT51673.2020.00010

• A detailed demonstration of the proposed extensions using

common programming scenarios.

• A controlled experiment to evaluate the effectiveness of

the proposed sequence diagram extensions for program un-

derstandability, in comparison with the (baseline) standard

UML notation of sequence diagrams.

Paper Organization: The rest of this paper is organized as

follows. Section II presents background on sequence diagrams

and program comprehension. Section III provides a detailed

description of our proposed extensions to sequence diagrams.

Section IV describes our controlled experiment to evaluate the

proposed sequence diagram extensions for program comprehen-

sion. Section V discusses our experimental results. Section VI

discusses validity threats to our results. Section VII presents

some relevant studies in supporting program comprehension

through reverse engineering. Finally, Section VIII concludes

the paper and discusses the possible future work.

II. BACKGROUND

This section presents some background about reverse-

engineered sequence diagrams and program comprehension.

A. Program interactions as sequence diagrams

The Unified Modeling Language (UML 2.0 [48]) is the

de facto standard for modeling software behavior using

sequence diagrams. Reverse-engineered sequence diagrams can

be derived from existing source code using static or dynamic

analysis techniques [38]. They give insights of the software

behavior, which help software maintainers understand how

system objects interact with each other.

Program interactions in imperative programming languages

are represented using method invocations. The UML notation

of sequence diagrams supports representing intraprocedural

control flow of programs. Despite the added features to UML
sequence diagrams (e.g., combined fragments),1 the existing

notation still has limitations that may lead to imprecise or

wrong representations of program interactions. Such limitations

have urged prior studies to introduce more creative solutions

to visualize complex program interactions.

B. Program comprehension

Program comprehension is the activity of understanding the

static and dynamic aspects of software systems, namely the

structure and behavior [49]. Program visualization tools play

a vital role in this regards. Program visualizations display

various aspects of program structure or behavior to reduce

source code manual navigation. Prior research has evaluated

the effectiveness of visualization techniques towards program

comprehension using controlled experiments. Controlled ex-

periments maintain a set of tasks that are related to program

comprehension activities (e.g.,maintenance) [50]. Controlled

experiments are widely used to measure (i) the time invested

by users to respond to the predefined comprehension tasks and

1https://www.uml-diagrams.org/sequence-diagrams-combined-fragment.
html)

(ii) the correctness of user responses [49], [51]–[53]. Bennett et
al. [54] conducted an evaluation of the actual use of features

provided by the tools that employ reverse-engineered sequence

diagrams for representing program interactions. Xie et al. [39],

[55] conducted an empirical evaluation of UML sequence

diagrams with an extended notation for thread interactions.

However, such experiments have not assessed the positive

impact of their extended sequence diagrams towards program

comprehension using forward-engineered, rather than reverse-

engineered, sequence diagrams.

III. THE PROPOSED EXTENSIONS TO SEQUENCE DIAGRAMS

In this section, we present our proposed sequence diagram

extensions. The design principles of our proposed extensions

include: (a) the identification of the most important limitations

of sequence diagrams that hinder program comprehension;

(b) targeting most commonly used program features; (c)

maintaining simplicity while maximizing effectiveness for

program comprehension; (d) minimizing the gap with the

standard notation (i.e., reusing some notational components

while alleviating ambiguity); (e) introducing flexibility to

handle complex interactions; and (f) maintaining a design

that compatible to the standard sequence diagram rather than

as a completely separate tool.

We propose four sequence diagram extensions that capture

the compound scenarios of method invocations in Java, namely

nested calls (III-A), chained calls (III-B), recursive calls (III-C),

and returned objects (III-D). We use typical examples to

describe each extension. Our extension allow more complex

scenarios in which different types of method invocations may

overlap (e.g., nested of nested calls or chains of nested calls).

More examples of complex scenarios of our extensions can be

found in our online appendix [56].

A. Nested method calls

Method calls may compose of nested calls passed as

parameters. Program execution of such cases starts with

invoking the methods passed as parameters. After that, the

program invokes the original method call. Invoking methods

passed as parameters can either be in a left-to-right or right-

to-left order. In our case, since we use Java, left-to-right

associativity is considered. The following statement has two

nested calls: a call to the getObj method of object b is nested

with the call to the setObj method of object a;

a . s e t O b j (x , b . g e t O b j ()) ;

The standard sequence diagram represents the above pro-

gramming statement using separate unidirectional, horizontal

arrows as shown in Fig. 1a and Fig. 1b (tool-dependent).

Although the first standard representation (Fig. 1a) simplifies

the whole statement using a single message arrow, it does

not reflect the actual number of interactions. The other

representation (Fig. 1b) shows the exact number of interactions,

but does not precisely reflect the actual interactions between

methods/objects.

50

a:A

setObj(x, b.getObj())

(a) Standard Sequence Diagram - v.1

b:B

getObj()

a:A

setObj(x, b.getObj())

(b) Standard Sequence Diagram - v.2

b:B a:A
setObj

x
getObj()

(c) Extended Sequence Diagram

Fig. 1: Nested calls notation

To resolve such a confusion, we propose a novel sequence

diagram extension that distinguishes this kind of method calls

from the other kinds of calls. This extension provides an

extended component to the standard notation of sequence

diagrams, as shown in Fig. 1b. This notation reflects the

actual communication of information with the exact number of

interactions. As shown in the figure, the method setObject
is firstly called but lastly executed. Also, the parameter x
does represent an interaction while the second parameter, the

call to the getObj method, represents a nested interaction

that is executed inside and before its enclosing method. This

methodology is also applicable to the interactions of the

return and new statements in case they involve method

calls within their parameters.

B. Chained method calls

It is common in object-oriented programming to see what

is called chained calls. Chained calls are the set of calls that

depend on each other in their execution. This means that the

object needed to call one method is returned by its preceding

method call. As an example, we provide the following chain

of calls:

a . g e t S t r i n g () . t r i m () ;

We observe that the method getString of the object a
will be called and will return an anonymous object of type

String, which will be used to call the method trim. The

standard sequence diagram deals with such calls separately,

which means that the diagram will show that these two calls

are independent and do not depend on each other (as shown in

Fig. 2a). However, it shows the exact number of interactions,

but take in mind that some tools represent the whole statement

using one message while some others only represent the first

method call of the chain.

a:A
getString()

:String

trim()

(a) Standard Sequence Diagram

a:A

getString()

trim()

(b) Extended Sequence Diagram

Fig. 2: Chained calls notation

We address this scenario by providing an extended notation

that can precisely represent the chain of the calls and the

dependence of one call on another. As demonstrated in Fig. 2b,

the extended notation is intuitively expressive and reflects the

actual flow of communication between methods and the exact

number of interactions.

C. Recursive method calls

Recursive calls are repetitive calls that make a sequence of

commands executing multiple times. Unlike loops, there is no

specific control structure in programming languages that can

indicate the presence of recursive calls. Still, recursive calls

can be captured through a careful static analysis of the program

source code. Recursion may not only occur by a call from the

method itself, but it can also occur between different methods

calling each other repetitively. For example, if method1 calls

itself, then a direct recursion happens. Also, if method1 calls

method2, and then method2 calls method1; then this is also

considered as an indirect recursion. Let’s take the following

example:

void f a c t (i n t n){
f a c t (n−1);

}
main () {

f a c t (5) ;

}
The fact method is recursive as it calls itself (assuming

that we are inside an object a of class A). In the standard

representation shown in Fig. 3a, the recursive call is represented

as a self-message, whereas self-messages may represent calling

methods of the same lifeline. Our extended notation shown in

Fig. 3b expressively depicts such a recursive call so that users

can be recognized directly from the first sight.

a:A

fact(5)

fact(n-1)

(a) Standard Sequence Diagram

a:A

fact(5)

fact(n-1)

(b) Extended Sequence Diagram

Fig. 3: Recursive calls notation

51

D. Objects returned from method calls

Objects in Java are created by (i) using new statements

or (ii) calling methods. The UML sequence diagram uses

lifelines to represent objects but does not show when such

objects are created. We propose to extend sequence diagrams

capture object creation using the aforementioned ways. Our

object creation extension does not introduce new notational

components to sequence diagrams but rather utilizes the existing

UML components (i.e., lifelines and arrows). Fig. 4 shows

interactions carried out in the following statement using our

proposed extension:

A a2 = a1 . g e t O b j () ;

a2 . g e t V a l () ;

We observe that the returned value of the invoked method

getObj of the object a1 creates the lifeline a2, which is

then used to call the method getVal. On the other hand, in

the standard sequence diagram, it is not clear how and through

which integration the object a2 was created.

IV. EXPERIMENTAL EVALUATION

We define different comprehension tasks that we aim to use

for measuring the added valued by our proposed sequence

diagram extensions to improve program comprehension of

method calls. We use the Greenfoot2 Java project as a case

study for our experiment. Greenfoot includes various method

call scenarios that cover most of our extensions.

A. Research questions and hypotheses

Based on our selected case study, we define the following

research questions:

1) Does the availability of our proposed extensions to the

sequence diagram reduce the time that is needed to

achieve the comprehension tasks?

2) Does the availability of our proposed sequence diagram

extensions increase the correctness of the answers pro-

vided during those tasks?

3) Is representing programs using our proposed sequence

diagram extensions less complex and more precise than

that with the use of the standard sequence diagram?

We associate the first three research questions with three

null hypotheses, formulated as follows:

• H10: The use of our proposed sequence diagram exten-

sions does not affect the time needed to complete each

comprehension task.

• H20: The use of our proposed sequence diagram exten-

sions does not affect the correctness of responses given

during those tasks.

• H30: Our proposed extensions to the sequence diagram

represent programs in a more complex and imprecise way.

After that, we have stated the alternative hypotheses used in

the experiment, as follows:

2https://www.greenfoot.org

a1:A

getObj()

a2:A
getVal()

(a) Standard Sequence Diagram

a1:A

getObj()

a2:A
getVal()

(b) Extended Sequence Diagram

Fig. 4: Notation representing lifelines of returned objects

• H1: The use of our proposed sequence diagram extensions

decreases the time needed to complete each comprehen-

sion task.

• H2: The use of our proposed sequence diagram extensions

improves the correctness of answers given during those

tasks.

• H3: Our proposed sequence diagram extensions precisely

represent programs using a simple (i.e., not complex)

notation.

The first alternative hypothesis is motivated by the fact that

our sequence diagram extensions explicitly demonstrate method

call scenarios of the subject system. UML standard of sequence

diagrams, on the other hand, require participants to implicitly

infer method call scenarios of the system. The rationale behind

the second alternative hypothesis is the inherent precision of

our notational components used to differentiate between the

various method call scenarios. Such a hypothesis results in a

deeper understanding of program interactions at the method

level and, hence, more accurate answers. The third alternative

hypothesis is induced by the way and style our extensions are

represented. The design of the style of the extended in intended

to reflect the actual flow of information in programs using the

least number and size of components.

To test the H10, H20, and H30 hypotheses, we define a

set of comprehension tasks. Such tasks are implemented by

both a control group and experimental group. The control

group uses standard UML sequence diagrams, whereas the

experimental group uses sequence diagrams supplied with our

proposed extensions. A between-subjects design is maintained

to allow each subject to be either in the control group or in

the experimental group.

B. The object of the experiment

The system that our experiment is based on is Greenfoot,

a Java environment that simplifies the development of two-

dimensional graphical applications and is meant for educa-

tional purposes of programming languages. Generating reverse-

engineered sequence diagrams for the overall functionality

of Greenfoot will for sure result in obtaining more complex

and disappointing diagrams for the subjects to achieve the

tasks. Therefore, we have selected only a specific scenario of

Greenfoot used for browsing classes. This scenario is based

on a class called ClassBrowser, which is responsible for

drawing and laying out the classes on the user interface. The

52

resulting diagrams contain more than 50 method calls between

around 20 objects/classes.

We choose Greenfoot as our experimental object for the

following reasons:

• Greenfoot is an open source software project. The

availability of source code also helps in verifying and

replicating of the experiment conducted in this paper [57].

• Greenfoot is a modular software system, which enables

to perform the analysis and modeling of its method

invocation scenarios easily.

• The selected scenario of Greenfoot for our case study

encompasses all types of method call scenarios supported

by our sequence diagram extensions.

We use the Visual Paradigm3 tool to produce the reference

reverse-engineered sequence diagram using the UML standard.

In addition, we use our tool [47], [58], [59] to reverse engineer

the extended sequence diagram. Both diagrams contain the

same number of lifelines but different message lines between

lifelines. However, our extended diagram generates lifelines on

demand lifelines (i.e., at the place where a specific class/object

is used). We exported both diagrams into PDF files to allow

participants to search for certain terms or to zoom in/out while

responding to the tasks. Details about the reverse-engineered

diagrams and the experimental tasks used in our study can be

found in our online appendix [56].

C. Task design

Prior controlled experiments for program comprehension

employed a comprehension framework proposed by Pacione et
al. [50], who classified the comprehension tasks of software

visualization into nine primary activities. However, we find

that strictly following such a framework may not expose all

the capabilities of our proposed extensions. Therefore, we use

different question types in our our tasks. Each type of questions

requires a different kind of user input.

1) Category C1: Searching for the number or names of

certain program components:

• Task T1 (Recursive Calls): Write the name(s) of all

recursive methods, if any?

2) Category C2: Writing code representing a certain sub-

diagram:

• Task T2.1 (Chained Calls): Write the Java code that

corresponds to the excerpt of a sequence diagram (see

Appendix [56]:T2.1)?

• Task T2.2 (Chained Calls + Nested Calls): Write the

Java code that corresponds to the excerpt of a sequence

diagram (see Appendix [56]:T2.2)?

• Task T2.3 (Lifelines of returned objects): Write the

Java code that corresponds to the excerpt of a sequence

diagram (see Appendix [56]:T2.3)?

3https://www.visual-paradigm.com

3) Category C3: Snapping the sub-diagram representing

some certain code:

• Task T3 (Multi-Nested Calls): Identify and screenshot

the portion of the sequence diagram that reflects the

following code:

cb.quickAddClass(newClassView(
cb,newGCoreClass(Actor.class,project)));

4) Category C4: Rating diagrams produced using the

standard and extended diagrams for the same method call

scenarios.

• Task T4.1 (Chained Calls): Rate the Complexity and

Precision of a sub-diagram (see Appendix [56]:T4.1) in

representing the following code:

this.getRootPane().revalidate();

• Task T4.2 (Nested Calls): Rate the Complexity and

Precision of the sub-diagram (see Appendix [56]:T4.2) in

representing the following code:

BorderFactory.createTitledBorder(null,
Config.getString("BBworld"));

• Task T4.3 (Recursive Calls): Rate the Complexity and

Precision of the sub-diagram in (see Appendix [56]:T4.3)

in representing the following code:

void createClassHierarchyComponent(
Collection roots, boolean isRecursiveCall) {
createClassHierarchyComponent(children,true);}

For tasks of categories C1, C2, and C3, we use open-ended

questions in our tasks to make it harder for participants to guess

the answers, which generates more reliable and representative

comprehension situations. Feedback obtained from the tasks of

the category C4 is not graded further, since such tasks already

expect rating values by participants. A single evaluator awarded

points to the answers to ensure a uniform and fair grading

based on a solution model.

D. The subjects of the experiment

The subjects in this experiment are 8 PhD candidates, 12 MS

students, and 16 BS senior students. The PhD and MS students

were in the same program at the computer science department.

The resulting number of subjects is of 36 subjects. Subjects

are from 7 different different nationalities and are working on

different areas of computer science and software engineering.

All subjects have prior experience with the UML sequence

diagram but none of them has had previous knowledge about

our proposed extensions. The participation in the experiment

was completely voluntarily.

We distribute the subjects based on their knowledge of Java,

software modeling, sequence diagrams and reverse engineering.

Considering that all undergraduate students were working on

senior projects in software engineering, they were just evenly

distributed into two groups of eight students, one as control and

another as experimental. MS and PhD students were distributed

based on their experience in software engineering. We measured

participants’ experience by the kind and number of courses

53

they have taken at the software engineering program. We asked

informal questions to each subject to assess the experience

with sequence diagrams. As a result, MS and PhD students

were evenly assigned to the groups (i.e., four PhD and six MS

students per each group). In total, each group consisted of 18

students: four PhD, six MS and eight BS students.

E. Experimental procedure

We conduct our experiment through two sessions, each of

which has taken place at a computer lab in the computer science

department. Both sessions were conducted on workstations with

the same Internet connection and specifications, i.e., all of them

are of Intel Core i3 - 2.93 GHz CPUs, 4 GB RAM, and screen

resolutions of 1440 x 900. The first session involved the MS

and PhD students of both groups, whereas the second session

was for the BS students. A 5-minute recall tutorial on sequence

diagrams was given to both groups, highlighting our proposed

extensions, and how can they reflect Java code. In addition,

we conducted a 10-minutes presentation showing our proposed

extensions to the standard sequence diagram. Both sessions

were supervised, allowing the subjects to pose clarification

questions and preventing them from communication with each

other. We have been requiring subjects to motivate their answers

at all times. Subjects were encouraged to take a short break if

they started to get bored or confused.

F. Variables and analysis

The availability of our extensions for the sequence diagram

notation in the experiment is regarded as the independent

variable to the UML sequence diagram during all the tasks.

The first dependent variable is the time spent on each task

and is measured by recording the the time a user spent on

each task. In addition, we disabled the ‘Back’ button on each

page to prevent the subjects from navigating back to earlier

tasks. The second dependent variable is the correctness of the

given answers. We measured the correctness of answers using

a model answer that associates scores to each expected answer.

Two of the authors assessed the correctness of the answers.

Then, we resolved any disagreements using an open discussion

with the third author.

To test our hypotheses, we first tested the sample distributions

using the Kolmogorov − Smirnov test [60] to see whether

they are normal. In addition, we used the Levene’s test [61]

to check whether the sample distributions have equal variances.

In the cases where statistical tests passed successfully, the

Student’s t-test was used to evaluate the hypotheses. Following

our alternative hypotheses, we employed a one-tailed variant

of each statistical test. For the time as well as the correctness

variables, a typical confidence level of 95% was maintained

(α = 0.05).

G. Pilot studies

Before conducting the experimental sessions, we carried out

two pilot studies to refine several experimental parameters, such

as the number and kind of tasks, their feasibility, clarity, and the

amount of time would be required. The pilots for the control

and experimental groups were performed by one BS, one PhD,

and two MS students at the computer science department. Pilots

were also given tutorial about UML sequence diagrams and our

proposed extensions. Pilots have not participated in the actual

experiment. The results of the pilots helped us to (i) eliminate

three complicated and time-consuming tasks, (ii) change the

categories of two tasks, (iii) make the remaining tasks clearer

and easier to understand, and (iv) improve our tutorial.

V. EXPERIMENTAL RESULTS

Table I presents a set of descriptive statistics of the ques-

tionnaire results based on aggregated measurements over the

eight tasks, which are basically based on grading the answers

of participants and the time spent on each task.

Based on the individual results of each task, we observe

that our data has no outliers to be removed. However, as a key

factor for both time and correctness, we have noticed that two

subjects (one from each group) were not very interested in

conducting the questionnaire as we have noticed that they did

not respond to the provided tasks properly. For example, one of

them has written some zeros as responses for some of the tasks

of the category C2 that required writing code, while the other

has entered similar rating values for all both criteria and both

diagrams in the tasks of the category C4. Subsequently, we

disregarded the entire input provided by these two particular

subjects (i.e., we ended up with having responses of 17 subjects

from the control group and 17 subjects from the experimental

group).

A. Results of the time spent on tasks

We have started by testing the null hypothesis H10 described

in section IV-A that stated that the time needed to complete

comprehension tasks is not impacted by the availability of our

proposed sequence diagram extensions. Fig. 5a shows the total

time spent by the subjects on the first eight tasks using a box

plot. It can be also indicated from Table I that, on average,

extended diagram group required 25.20 percent less time.

The distributions of the samples are normal and they have

equal variances as well. This has been was proven by the

Kolmogorov-Smirnov and Levene tests, which have succeeded

for the timing results shown in Table I). This concludes that

Student’s t-test can be used to test H10. As presented in Table I,

a statistically significant result has been yielded from the t-test,

which is represented by the p-value of 0.0237 that is less than

0.05. The average time spent by the extended sequence diagram

group was visibly lower, which means that H10 can be rejected

in support of the alternative hypothesis H1, implying that the

use of our sequence diagram extensions could decrease the

time needed to achieve different comprehension tasks.

B. Reasons for different time requirements

There are several factors that contributed to the lower time

requirements for the extended sequence diagram participants.

First, most of program interactions are explicitly represented

using special and expressive notation, which helps in finding

certain information by just having an outlook to the provided

54

TABLE I: Computed statistics of the questionnaire results

Time (in minutes) Correctness (in points)
Standard Sequence Diagram Extended Sequence Diagram Standard Sequence Diagram Extended Sequence Diagram

Mean 23.81 17.81 14.40 26.80

Difference -25.20% +86.11%

Min 17.33 11.26 7 17

Max 32.82 24.80 20 30

Median 21.45 18.59 14 27

Stdev. 5.72 5.10 3.37 3.85

Kolmogorov-Smirnov 0.594 0.597 0.070 0.005

Levene F 0.6405 0.7525

Student’s t-test
df 17.76 17.69

t 2.47 -7.66

p-value 0.0237 0.0001

15

20

25

30

Standard Extended
Sequence Diagram

T
im

e
sp

en
t (

in
 m

in
ut

es
)

(a) Time spent

10

15

20

25

30

Standard Extended
Sequence Diagram

C
or

re
ct

ne
ss

 (
in

 p
oi

nt
s)

(b) Correctness

Fig. 5: Box plots for the overall spent time and correctness

diagram. Participants who used the standard UML sequence

diagram, on the other side, tended to look for certain pointers

that might assist them inferring the locations of certain program

information. Second, as most of the program information were

either not, wrongly or inappropriately presented in the standard

sequence diagram, participants tended to search for answers

to the questions even more than once in some portions of the

diagram, which for sure results in having a cognitive load.

On the other hand, there might be several factors that led

to having a negative impact on the time requirements of the

participants who used the extended sequence diagrams. The

main important factor is the unfamiliarity of these extensions

to the participants as it was the first time for participants to

see such extensions. This has led to having the participants

requesting a copy of the tutorial presented while they were

conducting the questionnaire. Therefore, referring to the tutorial

for every particular sequence diagram extension in some of

the questions contributed to spending a certain amount of time

as overhead for recalling its meaning. This could be solved by

incorporating the proposed extensions into standard UML as

well as the tool that generate it.

C. Results of the correctness of answers

We test the null hypothesis H20, which states that the use of

our sequence diagram extensions does not affect the accuracy

of the answers given by participants during the comprehension

tasks.

Fig. 5b demonstrates the points obtained by the subjects on

the first eight tasks by means of a box plot. Notice that we take

into consideration the overall points rather than individual ones

(points per task are discussed in subsections V-E and V-F).

The correctness difference is obviously seen from the box plot,

and is even more pronounced than that for the timing results.

Answers provided by the extended diagram-based subjects

were more accurate by 86.11 percent (refer to Table I), that

is obtained through averaging 26.8 out of 32 points compared

to 14.40 points for the standard diagram group. Similar to the

timing results, Table I also shows the results of the Student’s

t-test for response correctness, in which the requirements for

the use of the t-test were met as well. The p-value of 0.0001

implies statistical significance, which means that H20 can be

rejected in support of our alternative hypothesis H2, which

states that the availability of our sequence diagram extensions

improve the correctness of answers provided throughout the

conducted comprehension tasks. Such results also imply that

H30 can be rejected, since obtaining precise answers indicates

the simplicity of our extensions.

D. Reasons for response accuracy differences

We regard the added value of our proposed extensions for

correctness to several factors. The design of our extensions

expresses the code behind them. Participants were confident and

thus able to capture the correct answer of most of the provided

questions. Finally, the questionnaire results presented in Table I

shows that the extended sequence diagram group utilized their

allotted diagram most of the time. However, in some tasks,

participants could provide correct answers but spent a bit more

time. Such results have been further confirmed by the ratings

55

Fig. 6: Mean values of the correctness (in points) and the time

spent (in minutes) of the tasks of Categories C1, C2, and C3

of participants (Tasks of Category C4), which indicate that

our extensions were precise while they were complex to some

extent.

E. Performance of the tasks of Categories C1, C2, and C3

We examine the performance of the subjects per each task

independently in more detail. Fig. 6 demonstrates the average

time spent and points obtained by each group. Although our

experiment composes eight tasks, only five tasks are considered

in this evaluation (i.e., tasks of Category C4 have a separate

evaluation discussed in subsection V-F). Looking at Fig. 6, we

observe that, for the majority of the tasks (i.e., four out of five

tasks), participants who used the extended diagram were able

to answer questions faster than those who used the standard

diagram. Moreover, the answers of participants who used the

extended diagram were more accurate than those who used the

standard diagram in four out of five tasks. Such results indicates

that the standard diagram requires more time to understand

program interactions and may eventually lead to inaccurate

answers.

1) Task T1: Recursive calls: In this task, participants found

it easier to capture recursive calls using our extended diagram.

All experimental participants achieved the full points (i.e., 4

out of 4) and required less than half the time required by the

control group. The main reason of having only two subjects

out of eleven who could capture recursive methods is the

fact that self and recursive messages are represented using

the same notation in the UML standard of sequence diagrams.

Therefore, such participants consumed too much time tracking

all self-messages for the sake of identifying whether they are

being executed or not. Nevertheless, some control participants

responded that not recursive calls exist.

2) Task T2.1: Chained calls: Timing results of this task

indicate that control participants spent less time in writing

the code representing a chained call UML sequence diagram

than experimental participants. However, answers of the

experimental group obtained higher scores. This result may

indicate that, despite the simplicity of the standard sequence

diagram, it could lead to wrong interpretation of program

interactions. Participants who used the extended diagram were

able to recognize the correct flow of messages with the price

of the time that was mostly spent on recalling the meaning of

the new notation by referring to the provided tutorial.

3) Task T2.2: Chained Calls + Nested Calls: This task also

requires writing a code snippet that generates the excerpt of the

diagram. As the flow of messages here was relying on chained

and nested calls, the diagram excerpts of both the standard

and extended diagrams were somewhat complicated. However,

participants of the experimental group could write the code

faster and more precise than those of the control group. The

mean time spent by the experimental group was about 1.0
minute less and the precision score was 1.0 point more than

the control group.

4) Task T2.3: Lifelines of returned objects: In this task,

we clearly observe that the time spent by the experimental

group was greater than that spent by the control one. The

diagram excerpt used for this task was fairly simple using both

the standard and extended sequence diagrams. This caused the

standard participants responding faster but, due to the limitation

of the UML sequence diagram in creating lifelines for objects

once they are returned from a method call, most participants

could not recognize that the message provided in the excerpt

returns an object to a named variable, which as a result led

to wrong answers. On the other hand, the extended diagram

participants were able to identify the returned object and could

answer the question better but with the price of time spent.

5) Task T3: This is the only task that represents category

C3. Here, subjects are provided with source code and requested

to search for the portion of the supplied diagram representing

that code snippet. Again, the diagram excerpt representing that

code was relatively simpler and participants go catch quickly.

However, we observe the significance of the time invested for

performing this task compared with the other tasks, which is

caused by having participants to search, snapshot, save the

snipped image, and then upload that image as a response to this

task. However, we observe that such time is less than that of the

control group. In addition, we observe that answers provided

by the experimental were less accurate in comparison with

the standard group participants who achieved slightly better

scores (only 0.3 more than the experimental group). While

investigating the root cause of that, we observed that there was

another excerpt of the diagram that is somehow identical to

the one requested in this task. Everything was similar in those

two excerpts except the name of one of the classes used as a

parameter to one of the methods called.

F. Performance of the tasks of Category C4

In the tasks of Category C4, we ask participants to evaluate

the complexity and precision of our extensions in comparison

to the standard notation. To this end, we define the following

two criteria:

56

• Complexity: this criterion measures how complicated a

diagram is for understanding the actual flow of a given

programming scenario, from the participants’ point of

view. This applies to both the standard and the extended

notation of sequence diagrams.

• Precision: this criterion measures how precise a diagram

is in representing a given programming scenario, from the

participants’ point of view. This involves the capability of

the diagram to cover all aspects of the given code, such

as the types of messages, the composition of different

messages, and the interactions between lifelines.

Participants rate the provided diagrams of tasks T4.1, T4.2,

and T4.3 using the aforementioned criteria in a scale of 0−
4. After collecting the results of all tasks of this kind, we

have aggregated them using the median rather than the mean.

This is because that the mean will not appropriately represent

the overall complexity and criteria as it averages the inputs.

Questions of Category C4 are asked to participants of both the

control and experimental groups.
1) Task T4.1: Task T4.1 comparatively measures the com-

plexity and precision of the standard and extended sequence

diagrams in representing chained calls. In Fig. 7, we observe

that our extended notation is 25% less complex than the

standard notation in representing chained calls. In addition,

we observe that representing chained calls using our extended

notation is 1.3x more precise than the standard notation of

sequence diagrams.
2) Task T4.2: We observe that the standard notation of

sequence diagrams is nearly as twice complex as our extended

notation in representing nested calls. Such a result indicates

that the standard notation may complicate the interaction by

generating multiple separate messages that relate to a single

nested method invocation. Such a representation may lead users

to mistakenly think of a different interaction calling scenario

that may not reflect the actual program behavior. As a result,

software maintainers may find it confusing to trace or inspect

the code when using a standard sequence diagram.
3) Task T4.3: Our extended notation for recursive calls

appears to significantly enhance the representation of recursive

methods and their corresponding method invocations. At the

same time, we observe that it is more precise than the standard

notation as it renders the actual recursive flow of a given

programming scenario.
4) Summary: After a deeper interpretation of the perfor-

mance results obtained per each individual task, we analytically

generalize our discussion. From the results obtained, we observe

that our extensions to the standard sequence diagram are of

great help in grasping the interactions executed throughout the

program or even within a certain kind of control structures. In

addition, our extensions help participants visually distinguish

patterns (e.g., a particular block of interactions). This has led

to gain more accurate information about the flow of control

between method invocations than using the standard sequence

diagram. Despite the simplicity of the standard sequence

diagram in representing some method invocation scenarios,

the responses obtained of participants indicate that such simple

Fig. 7: Mean complexity and precision of the tasks of Category

C4

representation has led to a misinterpretation of the actual flow

of data/control between methods. We have explored such a

trade-off using the tasks of Category C4.

VI. THREATS TO VALIDITY

In this section, we discuss the validity threats and how we

addressed them in our experiment. Such validity threats have

been classified into two different categories, namely internal

validity and external validity.

A. Internal validity

This type of validity refers to the cause-effect inferences

made throughout the analysis. It includes the threats related to

subjects, tasks, and other variables.

1) Subjects: Subjects may be of different levels of expertise.

To mitigate this threat, we ensured that to have a fair distribution

of the subjects to the two groups, depending on their experience

in software engineering in general and in sequence diagrams

in particular. To do this, we first asked subjects from the MS

and PhD level (informal) questions to infer their comparative

experience in the topic of the experiment. For undergraduate

students, we have selected students from the same level (i.e.,

the senior level) and particularly the ones who were working

on similar senior projects with under the supervision of one

professor. Second, we gave a tutorial to give all participants

some background about sequence diagrams and our extensions.

Participants also had access to the tutorial as a reference

throughout the experiment.

2) Tasks: The comprehension tasks may have been biased

toward our proposed extensions. To mitigate this threat, we

have designed our tasks in a way that evens the difficulty of

57

tasks over the standard and extended diagrams. In other words,

there were tasks in which the standard diagram was supposed

to be easier to answer than the extended diagram. In addition,

the design of the tasks could have been too complex. We have

mitigated this threat by performing pilot studies, which in turn

enabled us to refine the tasks and exclude the harder or time-

consuming tasks. Moreover, the answers of subjects could have

been graded wrongly. We mitigated this threat by (a) using a

model answer, (b) grading by two persons, and (c) resolving

grade disagreements in a discussion with a third person.

3) Miscellaneous: Our statistical analysis may not have

been completely accurate due to having three students with

blank-like answers or similar rating points. In order to mitigate

this threat, we removed the responses of these three students on

all tasks from our analysis. Another threat to validity could be

because participants of the two groups were give two different

diagrams. We have mitigated this threat by generating the

diagrams from the same source code and exporting them as

PDF files.

B. External validity

External threats to validity are concerned with the possibility

of generalizing the results to different contexts, and the

limited representativeness of the tasks, the subjects and the

use of Greenfoot as an object. For example, involving more

participants (e.g., professionals from the industry or students

from various levels) could be a possible threat. Unfortunately,

it was quite difficult to invite more than the involved number

of participants to the experiment, since participation was com-

pletely voluntarily. In addition, inviting people from industry

was also a bit challenging, since they are always concerned

about how to spend their time efficiently. We plan to extend

the number of participants in our experimental evaluation to

include software maintainers from diverse backgrounds and

different levels of experience.

VII. RELATED WORK

Prior research has investigated techniques to support program

comprehension of software behavior using visualization [62],

[63]. Such techniques may employ a static, dynamic, or hybrid

program analysis and represent program interactions in different

forms of visualization.

A. Studies on using standard sequence diagrams

State-of-the-art techniques were proposed to support pro-

gram comprehension using reverse-engineered sequence dia-

grams [38], [54], [64]. Techniques were proposed to compact

sequence diagrams [10], [14], [15], [18], [19], [32], merge se-

quence diagrams [65], make interactive sequence diagrams [4],

[13], [16], provide better performance [12], [30], or address

other software domains [7], [9], [21], [33]. Still, the standard

notation of sequence diagrams does not have enough expressive

power to precisely represent complex program interactions [38],

[66], such as compound method invocations.

B. Studies on using extended sequence diagrams
Prior studies considered extending the existing notation

and primitives of the UML sequence diagram in order to

model security patterns [42], [43], model thread creation,

waiting and notification [44], or show concurrent and distributed

interactions [9], [12]. However, only a few studies attempted

to simply extend the standard notation of sequence diagrams.

For example, Rountev et al. [2] extended sequence diagrams

to support the presentation of intraprocedural control flow of

programs. However, there was no analysis in prior research

on how such extensions can improve program understanding.

To our knowledge, only two studies [27], [34] evaluated

the effectiveness of their proposed sequence diagrams for

program comprehension. Nevertheless, such evaluations were

not conducted under a controlled environment and only involved

a limited number of participants and questions.

C. Studies on using supplementary diagrams
Prior studies proposed to use supplementary diagrams to

add more information about program control flow, such as

State Chart Diagram [28], [29], [67], Markov Chains [12] as

well as Activity and Class Diagrams et al. [5]. Using multiple

diagrams distracts users and reduces program understandability.

D. Studies on using non-standard forms of visualization
Prior studies proposed techniques to represent program

interactions using visualizations forms other than sequence

diagrams. For instance, Cornelissen et al. [45] proposed a way

of representing program interactions using a circular bundle that

presents an overall view of software behavior. Fittkau et al. [68]

proposed to utilize of city metaphor to show the interactions

of software entities. However, such kind of techniques provide

interaction views that deviate from the standard and hide much

details of the program control flow.

VIII. CONCLUSION

This paper proposes sequence diagram extensions to enhance

the visualization of complex method invocation scenarios, such

as nested, chained, and recursive method calls. Understanding

method invocations using our extended reverse-engineered

sequence diagrams allows software maintainers to better track

the values or objects of the invoked methods. We have evaluated

the effectiveness of our extensions for recognizing the actual

behavior of method invocations. To this end, we have conducted

a controlled experiment in which participants perform a set of

comprehension task. Our results indicate that UML sequence

diagrams may give users wrong indications about how the

program works. In addition, we observe that our proposed

sequence diagram extensions for compound method invocations

help participants achieve comprehension tasks with less time

and high ratios of correct responses.
We aim in the future to address other limitations of the

standard sequence diagrams in which the actual flow of

control/data of programs is not well demonstrated, such as static

initialization blocks, type casting, exception handling clauses,

and method calls that appear as part of the specifications of

loops and conditions.

58

REFERENCES

[1] Lunjin Lu and Dae-Kyoo Kim. Required behavior of sequence diagrams:
Semantics and conformance. ACM Transactions on Software Engineering
and Methodology (TOSEM), 23(2):15, 2014.

[2] Atanas Rountev, Olga Volgin, and Miriam Reddoch. Static control-flow
analysis for reverse engineering of UML sequence diagrams. ACM
SIGSOFT Software Engineering Notes, 31(1):96–102, 2005.

[3] Atanas Rountev, Scott Kagan, and Jason Sawin. Coverage criteria for
testing of object interactions in sequence diagrams. In International
Conference on Fundamental Approaches to Software Engineering, pages
289–304. Springer, 2005.

[4] Richard Sharp and Atanas Rountev. Interactive exploration of UML
sequence diagrams. In Visualizing Software for Understanding and
Analysis, 2005. VISSOFT 2005. 3rd IEEE International Workshop on,
pages 1–6. IEEE, 2005.

[5] Elena Korshunova, Marija Petkovic, MGJ van den Brand, and Moham-
mad Reza Mousavi. CPP2XMI: reverse engineering of UML class,
sequence, and activity diagrams from C++ source code. In 13th Working
Conference on Reverse Engineering 2006 (WCRE’06), pages 297–298.
IEEE, 2006.

[6] Liliana Martinez, Claudia Pereira, and Liliana Favre. Recovering
sequence diagrams from object-oriented code: An ADM approach. In
Evaluation of Novel Approaches to Software Engineering (ENASE), 2014
International Conference on, pages 1–8. IEEE, 2014.

[7] Serguei Roubtsov, Alexander Serebrenik, Aurélien Mazoyer, Mark
van den Brand, and Ella Roubtsova. I2SD: reverse engineering Sequence
Diagrams Enterprise Java Beans from with interceptors. IET software,
7(3):150–166, 2013.

[8] Paolo Tonella and Alessandra Potrich. Reverse engineering of the
interaction diagrams from c++ code. In Software Maintenance, 2003.
ICSM 2003. Proceedings. International Conference on, pages 159–168.
IEEE, 2003.

[9] Lionel C Briand, Yvan Labiche, and Johanne Leduc. Toward the reverse
engineering of UML sequence diagrams for distributed Java software.
IEEE Transactions on Software Engineering, 32(9):642–663, 2006.

[10] Hassen Grati, Houari Sahraoui, and Pierre Poulin. Extracting sequence
diagrams from execution traces using interactive visualization. In 17th
Working Conference on Reverse Engineering (WCRE), 2010., pages
87–96. IEEE, 2010.

[11] Rainer Oechsle and Thomas Schmitt. JAVAVIS: Automatic program
visualization with object and sequence diagrams using the Java debug
interface (JDI). In Software Visualization, pages 176–190. Springer,
2002.

[12] Matthias Rohr, André van Hoorn, Jasminka Matevska, Nils Sommer, Lena
Stoever, Simon Giesecke, and Wilhelm Hasselbring. Kieker: Continuous
monitoring and on demand visualization of Java software behavior.
In Proceedings of the IASTED International Conference on Software
Engineering. ACTA Press, 2008.

[13] Takashi Ishio, Yui Watanabe, and Katsuro Inoue. AMIDA: A sequence
diagram extraction toolkit supporting automatic phase detection. In
Companion of the 30th International Conference on Software Engineering,
pages 969–970. ACM, 2008.

[14] Koji Taniguchi, Takashi Ishio, Toshihiro Kamiya, Shinji Kusumoto, and
Katsuro Inoue. Extracting sequence diagram from execution trace of
java program. In Principles of Software Evolution, Eighth International
Workshop on, pages 148–151. IEEE, 2005.

[15] Yui Watanabe, Takashi Ishio, Yoshiro Ito, and Katsuro Inoue. Visualizing
an execution trace as a compact sequence diagram using dominance
algorithms. Program Comprehension through Dynamic Analysis, page 1,
2008.

[16] Kai Koskimies and Hanspeter Mossenbock. Scene: Using scenario
diagrams and active text for illustrating object-oriented programs. In Pro-
ceedings of the 18th International Conference on Software Engineering,
1996, pages 366–375. IEEE, 1996.

[17] Tim Souder, Spiros Mancoridis, and Maher Salah. Form: A framework
for creating views of program executions. In Proceedings of the IEEE
International Conference on Software Maintenance (ICSM’01), page 612.
IEEE Computer Society, 2001.

[18] Philippe Dugerdil and Julien Repond. Automatic generation of abstract
views for legacy software comprehension. In Proceedings of the 3rd
India software engineering conference, pages 23–32. ACM, 2010.

[19] Juanjuan Jiang, Johannes Koskinen, Anna Ruokonen, and Tarja Systa.
Constructing usage scenarios for API redocumentation. In 15th IEEE

International Conference on Program Comprehension (ICPC), 2007.,
pages 259–264. IEEE, 2007.

[20] Tewfik Ziadi, Marcos Aurélio Almeida Da Silva, Lom-Messan Hillah,
and Mikal Ziane. A fully dynamic approach to the reverse engineering
of UML sequence diagrams. In 16th IEEE International Conference
on Engineering of Complex Computer Systems (ICECCS), 2011., pages
107–116. IEEE, 2011.

[21] Muhammet Ali Sag and Ayça Tarhan. Measuring COSMIC software size
from functional execution traces of Java business applications. In Software
Measurement and the International Conference on Software Process and
Product Measurement (IWSM-MENSURA), 2014 Joint Conference of the
International Workshop on, pages 272–281. IEEE, 2014.

[22] Kunihiro Noda, Takashi Kobayashi, Tatsuya Toda, and Noritoshi Atsumi.
Identifying Core Objects for Trace Summarization Using Reference
Relations and Access Analysis. In Computer Software and Applications
Conference (COMPSAC), 2017 IEEE 41st Annual, volume 1, pages
13–22. IEEE, 2017.

[23] Shahar Maoz and David Harel. On tracing reactive systems. Software &
Systems Modeling, 10(4):447–468, 2011.

[24] David Lo and Shahar Maoz. Specification mining of symbolic scenario-
based models. In Proceedings of the 8th ACM SIGPLAN-SIGSOFT
workshop on Program analysis for software tools and engineering, pages
29–35. ACM, 2008.

[25] David Lo, Shahar Maoz, and Siau-Cheng Khoo. Mining modal scenario-
based specifications from execution traces of reactive systems. In
Proceedings of the twenty-second IEEE/ACM international conference
on Automated software engineering, pages 465–468. ACM, 2007.

[26] Giovanni Malnati, Caterina Maria Cuva, and Claudia Barberis. JThread-
Spy: teaching multithreading programming by analyzing execution traces.
In Proceedings of the 2007 ACM workshop on Parallel and distributed
systems: testing and debugging, pages 3–13. ACM, 2007.

[27] Kunihiro Noda, Takashi Kobayashi, and Kiyoshi Agusa. Execution trace
abstraction based on meta patterns usage. In 19th Working Conference
on Reverse Engineering (WCRE), 2012., pages 167–176. IEEE, 2012.

[28] Tarja Systa. On the relationships between static and dynamic models
in reverse engineering java software. In Proceedings. Sixth Working
Conference on Reverse Engineering, 1999, pages 304–313. IEEE, 1999.

[29] Tarja Systä, Kai Koskimies, and Hausi Müller. Shimba−an environment
for reverse engineering Java software systems. Software: Practice and
Experience, 31(4):371–394, 2001.

[30] Yvan Labiche, Bojana Kolbah, and Hossein Mehrfard. Combining Static
and Dynamic Analyses to Reverse-Engineer Scenario Diagrams. In 29th
IEEE International Conference on Software Maintenance (ICSM), 2013.,
pages 130–139. IEEE, 2013.

[31] Brian A Malloy and James F Power. Exploiting UML dynamic object
modeling for the visualization of C++ programs. In Proceedings of the
2005 ACM symposium on Software visualization, pages 105–114. ACM,
2005.

[32] Del Myers, Margaret-Anne Storey, and Martin Salois. Utilizing debug
information to compact loops in large program traces. In 14th European
Conference on Software Maintenance and Reengineering (CSMR), 2010.,
pages 41–50. IEEE, 2010.

[33] Andrew R Dalton and Jason O Hallstrom. A toolkit for visualizing the
runtime behavior of TinyOS applications. In The 16th IEEE International
Conference on Program Comprehension (ICPC), pages 43–52. IEEE,
2008.

[34] Abdelwahab Hamou-Lhadj and Timothy Lethbridge. Summarizing the
content of large traces to facilitate the understanding of the behaviour of
a software system. In 14th IEEE International Conference on Program
Comprehension (ICPC), pages 181–190. IEEE, 2006.

[35] Madhusudan Srinivasan, Jeong Yang, and Young Lee. Case studies
of optimized sequence diagram for program comprehension. In 2016
IEEE 24th International Conference on Program Comprehension (ICPC),
pages 1–4. IEEE, 2016.

[36] Janice Ka-Yee Ng, Yann-Gaël Guéhéneuc, and Giuliano Antoniol.
Identification of behavioural and creational design motifs through
dynamic analysis. Journal of Software: Evolution and Process, 22(8):597–
627, 2010.

[37] Tatsuya Toda, Takashi Kobayashi, Noritoshi Atsumi, and Kiyoshi Agusa.
Grouping objects for execution trace analysis based on design patterns.
In Software Engineering Conference (APSEC), 2013 20th Asia-Pacific,
volume 2, pages 25–30. IEEE, 2013.

[38] Taher Ahmed Ghaleb, Musab A Alturki, and Khalid Aljasser. Program
comprehension through reverse-engineered sequence diagrams: A system-

59

atic review. Journal of Software: Evolution and Process, 30(11):e1965,
2018.

[39] Shaohua Xie, Eileen Kraemer, and RE Kurt Stirewalt. Empirical
evaluation of a UML sequence diagram with adornments to support
understanding of thread interactions. In Program Comprehension, 2007.
ICPC’07. 15th IEEE International Conference on, pages 123–134. IEEE,
2007.

[40] Vahid Garousi, Lionel C Briand, and Yvan Labiche. Control flow
analysis of UML 2.0 sequence diagrams. In Model Driven Architecture–
Foundations and Applications, pages 160–174. Springer, 2005.

[41] Elizabeth Burd, Dawn Overy, and Ady Wheetman. Evaluating using
animation to improve understanding of sequence diagrams. In Program
Comprehension, 2002. Proceedings. 10th International Workshop on,
pages 107–113. IEEE, 2002.

[42] Alexander van den Berghe, Riccardo Scandariato, Koen Yskout, and
Wouter Joosen. Design notations for secure software: a systematic
literature review. Software & Systems Modeling, pages 1–23, 2015.

[43] Jan Jürjens. Towards development of secure systems using UMLsec.
In Fundamental approaches to software engineering, pages 187–200.
Springer, 2001.

[44] Cyrille Artho, Klaus Havelund, and Shinichi Honiden. Visualization of
concurrent program executions. In Computer Software and Applications
Conference, 2007. COMPSAC 2007. 31st Annual International, volume 2,
pages 541–546. IEEE, 2007.

[45] Bas Cornelissen, Danny Holten, Andy Zaidman, Leon Moonen, Jarke J
Van Wijk, and Arie Van Deursen. Understanding execution traces using
massive sequence and circular bundle views. In 15th IEEE International
Conference on Program Comprehension (ICPC), pages 49–58. IEEE,
2007.

[46] Florian Fittkau, Alexander Krause, and Wilhelm Hasselbring. Software
landscape and application visualization for system comprehension with
ExplorViz. Information and Software Technology, 2016.

[47] Taher Ahmed Ghaleb, Khalid Abdullah Aljasser, and Musab A Alturki.
Reverse engineering method, system and computer program thereof,
February 2020. US Patent 10,552,286.

[48] Grady Booch, James Rumbaugh, and Ivar Jacobson. The unified modeling
language user guide. Pearson Education India, 1999.

[49] Bas Cornelissen, Andy Zaidman, and Arie van Deursen. A controlled
experiment for program comprehension through trace visualization. IEEE
Transactions on Software Engineering, 37(3):341–355, 2011.

[50] Michael J Pacione, Marc Roper, and Murray Wood. A novel software
visualisation model to support software comprehension. In Proceedings
of the 11th Working Conference on Reverse Engineering, 2004., pages
70–79. IEEE, 2004.

[51] Florian Fittkau, Santje Finke, Wilhelm Hasselbring, and Jan Waller.
Comparing trace visualizations for program comprehension through
controlled experiments. In Proceedings of the 2015 IEEE 23rd
International Conference on Program Comprehension, pages 266–276.
IEEE Press, 2015.

[52] Richard Wettel, Michele Lanza, and Romain Robbes. Software systems as
cities: a controlled experiment. In Proceedings of the 33rd International
Conference on Software Engineering, pages 551–560. ACM, 2011.

[58] Taher Ahmed Ghaleb, Khalid Abdullah Aljasser, and Musab A Alturki.
Software engineering method including tracing and visualizing, May
2020. US Patent App. 16/778,167.

[53] Massimiliano Di Penta, RE Kurt Stirewalt, and Eileen Kraemer. Designing
your next empirical study on program comprehension. In 15th IEEE
International Conference on Program Comprehension (ICPC), pages
281–285. IEEE, 2007.

[54] Chris Bennett, Del Myers, M-A Storey, Daniel M German, David Ouellet,
Martin Salois, and Philippe Charland. A survey and evaluation of
tool features for understanding reverse-engineered sequence diagrams.
Journal of Software Maintenance and Evolution: Research and Practice,
20(4):291–315, 2008.

[55] Shaohua Xie, Eileen Kraemer, RE Kurt Stirewalt, Laura K Dillon, and
Scott D Fleming. Assessing the benefits of synchronization-adorned
sequence diagrams: two controlled experiments. In Proceedings of the
4th ACM symposium on Software visualization, pages 9–18. ACM, 2008.

[56] Online Appendix. https://taher-ghaleb.github.io/papers/vissoft 2020/
appendix.html.

[57] Taher Ahmed Ghaleb. The role of open source software in program
analysis for reverse engineering. In Open Source Software Computing
(OSSCOM), 2016 2nd International Conference on, pages 1–6. IEEE,
2016.

[59] Taher Ahmed Ghaleb, Khalid Abdullah Aljasser, and Musab A Alturki.
Method including collecting and querying source code to reverse engineer
software, July 2020. US Patent App. 16/778,127.

[60] Frank J Massey Jr. The Kolmogorov-Smirnov test for goodness of fit.
Journal of the American statistical Association, 46(253):68–78, 1951.

[61] Howard Levene. Robust tests for equality of variances. Contributions to
probability and statistics: Essays in honor of Harold Hotelling, 2:278–
292, 1960.

[62] Abdelwahab Hamou-Lhadj and Timothy C Lethbridge. A survey of trace
exploration tools and techniques. In Proceedings of the 2004 Conference
of the Centre for Advanced Studies on Collaborative Research, pages
42–55. IBM Press, 2004.

[63] Michael J Pacione, Marc Roper, and Murray Wood. A comparative
evaluation of dynamic visualisation tools. In 20th Working Conference
on Reverse Engineering (WCRE), 2013., pages 80–89. IEEE Computer
Society, 2003.

[64] Matthias Merdes and Dirk Dorsch. Experiences with the development
of a reverse engineering tool for UML sequence diagrams: a case study
in modern Java development. In Proceedings of the 4th international
symposium on Principles and practice of programming in Java, pages
125–134. ACM, 2006.

[65] Alan W Biermann and Jerome A Feldman. On the synthesis of finite-
state machines from samples of their behavior. IEEE Transactions on
Computers, 100(6):592–597, 1972.

[66] Taher Ahmed Ghaleb. Extending sequence diagrams for better compre-
hension of program control-flow. Master’s thesis, King Fahd University
of Petroleum and Minerals, 2015.

[67] Swaminathan Jayaraman, Bharat Jayaraman, et al. Towards program exe-
cution summarization: Deriving state diagrams from sequence diagrams.
In Seventh International Conference on Contemporary Computing (IC3),
2014., pages 299–305. IEEE, 2014.

[68] Florian Fittkau, Jan Waller, Christian Wulf, and Wilhelm Hasselbring.
Live trace visualization for comprehending large software landscapes:
The ExplorViz approach. In First IEEE Working Conference on Software
Visualization (VISSOFT), 2013., pages 1–4. IEEE, 2013.

60

