
REM: Visualizing the Ripple Effect on
Dependencies Using Metrics of Health

Zhe Chen
University of Victoria

Victoria, Canada

zkchen@uvic.ca

Daniel M. German
University of Victoria

Victoria, Canada

dmg@uvic.ca

Abstract—In recent years, free and open source software
(FOSS) components have become common dependencies in the
development of software, both open source and proprietary.
As the complexity of software increases, so does the number
of components they depend upon; in addition, components are
also depending on other components. Thus, their dependency
graphs are growing in size and complexity. One of the current
challenges in software development is that it is not trivial to
know the full dependency graph of an application. Developers
are usually aware of the direct dependencies their application
requires, but might not be fully aware of the dependencies
that those dependencies require (the transitive dependencies).
Unfortunately, transitive dependencies can break any software
application; therefore, project developers need tools, methods
and visualizations to inspect the health of these transitive depen-
dencies and their potential impact.In this work, we propose the
Ripple Effect of Metrics (REM) dependency graphs, a visualiza-
tion of dependency graphs that leverages metrics of the health
of dependencies. The two main features of REM dependency
graph are: first, to display, and potentially summarize, the full
dependency graph of an application based on the health of each
of its dependencies; and second, to evaluate the ripple effect
of potentially risky dependencies on the rest of the dependency
graph. The REM helps application developers inspect the health
of all of its dependencies, and also the impact that some of
these dependencies might have. By showcasing two examples
of popular NPM JavaScript application, we demonstrate that
the combination of the ripple effect on the dependency graph
using health metrics activity can be beneficial to developers. The
advantages of REM graphs are: 1) the metric of health annotation
is useful for evaluating the health of dependencies, and 2) the
ripple effect of a vulnerability provides an easy method to identify
potential risk in a dependency chain and 3) the summarizing
mechanisms of the REM help reduce the size and complexity of
the large dependency graphs, while focusing in specific aspects
of the health of the dependency graph.

Index Terms—Dependency graph, Software components, Met-
rics, Health

I. INTRODUCTION

Contemporary software development relies on the reuse

of components, many of them open source. Each of these

components—a dependency—might have an independent soft-

ware development process, with its own developer’s team, and

release cycles. Dependencies can be described as direct or

transitive dependencies based on their visibility to develop-

ers. With current technologies such as automated bots from

GitHub, developers are only informed of the direct dependen-

cies they explicitly list. However, each of these dependencies

might rely on other dependencies for functioning (the transitive

dependencies). Security vulnerabilities are among the most

pressing problems in open-source software package libraries

[1]. Ducan et al. studied the ecosystem of (Node Package Man-

ager) NPM, the world’s largest JavaScript software distributor,

and identified the risk of depending on transitive dependencies

that have become obsolete or inactive [2]. Application project

developers should be more careful when seeking any library

update opportunity. The well-known November 2018 event-

stream incident1 has also demonstrated how can a package

transitively break software that transitively relies on it. Kikas

et al. observed that the number of transitive dependencies has

grown 60% within a year (from April 2015 to April 2016),

but package dependency management practices have received

little attention despite being a crucial part of any software

development [3].

In this work, we propose a dependency graph visualization

that uses metrics of health (e.g. those that measure aspects

of the development process, such as quality, development

activity, etc.) and propagates these metrics up the dependency

graph. We call this visualization the Ripple Effect of Metrics

(REM) dependency graph. The REM graph uses a hierarchical

layout to distinguish the dependency relationship within the

dependency graph of a software application.

Our visualization is designed to help developers identify

potentially vulnerable dependencies based upon their metrics

of health, and how these potential vulnerabilities propagate

through the dependency graphs. The contributions of this work

are: 1) the definition of the REM graphs, 2) an illustration of

the usefulness of REM graphs in the analysis of two samples

of large open-source applications from developers’ point of

view of both, runtime and development dependencies, which

demonstrates that REM graphs help to (i) understand the

health of each dependency chain on the graph using metrics of

health of each individual dependency, (ii) identify vulnerable

dependencies that require further attention by recognizing a

second health metric and displays every valid path to the

software application through edges.

1https://blog.npmjs.org/post/180565383195/details-about-the-event-stream-
incident

61

2020 Working Conference on Software Visualization (VISSOFT)

978-1-7281-9914-6/20/$31.00 ©2020 IEEE
DOI 10.1109/VISSOFT51673.2020.00011

II. BACKGROUND AND RELATED WORK

In contemporary software development process, developers

usually separate runtime from development dependencies. The

runtime dependencies are packages used when the application

is running and working, while development dependencies are

packages used during build time [4]. German et al. studied

the dependency graph of Debian GNU/Linux ecosystem using

building and running dependency information as defined in

a Stage section in Debian package management tool [5].

Similarly, in the NPM ecosystem, the running and building

dependencies are separated into two different types: depen-
dencies and devDependencies, respectively. Assume A is an

NPM package that provides some functionalities in helping

build another software B within the NPM ecosystem. A is

usually referred to as a dependency of B, and B is referred to

as a dependant package of A. We use the term dependency
and library interchangeably.

Many researchers have investigated the modeling and vi-

sualization of dependency graphs [3]–[10], [15], [16]. For

example, Falke et al. suggested a hierarchical graph layout

for visualizing the functional dependency graph of software

applications; using this hierarchical layout, users can view

the top-level nodes as a first overview and step-wise unfold

the nodes on demand to dig into details [9]. Dias et al.

implemented Hunter, a visual tool that includes node-link

diagrams as dependency graphs for understanding JavaScript

source code [15]. German used package management files

to visualize the dependency graph in the hierarchical layout

of three popular applications in Fink, one of the software

distribution for macOS, and attempted to identify the use of

applications in terms of different types of success [6]. Our vi-

sual tool extends German’s work by adapting the technique of

creating dependency graph and adding the visual annotations

that highlight specific dependencies’ information to create a

meaningful dependency graph.

In recent years, researchers have studied problems associ-

ated with dependency relationships using historical data [2],

[3]. Decan et al. have adopted the use of external sources

[1], [2]. Researchers conducted an empirical study on library

migration and showed that most of the studied projects keep

outdated dependencies [11]. Yau et al. investigated the ripple

effect from the location of a modification to other parts

of the system that are affected by such modification [12].

While researchers have been broadly studying the dependency

management, two areas have not gained much attention from

researchers: package deprecation as a vulnerability, and the use

of NPM package scores as information linked to the health of

a dependency. The former area can have a significant impact

on the ecosystem [13], and package scores provide valuable

information regarding the way a package is perceived by

its development process and community. Robbes et al. used

the ripple effects of deprecation to study the propagation of

changes in the ecosystem as a whole [13].

To identify library update opportunities, Kula et al. defined

a library-centric dependants diffusion plot that used a radial

layout and heat-map to show the change in dependencies on

the package’s release history. Their visualization shows the

library version usage and dependency change by assigning

different colours and shapes to the library nodes [7]. While

their work showed a history of package release on direct

dependencies, the visualization did not continue to show

any connection among these dependencies. In contrast, our

visualization contains both direct and transitive dependencies

and shows the relationship between each package node.

Todorov et al. extended on Kula’s work by developing

an orbital layout visualization that adapted the Wisdom of

the Crowd to show the libraries’ update opportunities [8].

In contrast, our work visualizes a filtered dependency graph

with both direct and transitive dependency to expose in-

depth dependency chains. Whereas, their visualization places

only the first-level dependencies around the application. Their

visualization contains node annotation representing the library

freshness status. However, our work includes two annotation

techniques on graph nodes: vulnerable dependencies (library

deprecation, as an example in this work) and other metrics of

health (NPM score metrics, as examples in this work). In ad-

dition to node annotations, our visualization also annotates the

edges to represent the ripple effect of vulnerable dependencies.

III. VISUALIZATION MODEL

Our visualization, the Ripple Effect of Metrics (REM), is

a dependency graph with a hierarchical layout where nodes

and edges are annotated in a way that helps in identifying

dependencies that are problematic, and the ripple effects that

these dependencies have over the entire dependency graph.

Our work has two variants of the visualization: a full depen-

dency graph and a filtered dependency graph. The latter variant

focuses more on the upper level of the dependency chain in

the graph by hiding and modifying lower level nodes that are

unlikely to be vulnerabilities (according to some metrics of

health).

In the following subsections, we first describe the design

of the REM. Then, we describe three main features that are

highlighted by the REM dependency graph: metric of health,

ripple effect metric, and graph filtering technique.

A. Graph Design

REM is a dependency graph; that is, a directed acyclic graph

(DAG) where the root of the graph represents the application

of which the visualization corresponds, and other nodes are

its dependencies. There exists an edge from node A to node

B if A explicitly requires the dependency B.

We have tested and compared many other graph layouts

such as circular and spectral layout, and we find the hierar-

chical layout to be the best in visualizing the dependency re-

lationship. Therefore, the REM dependency graph is rendered

using a hierarchical layout such that the root of the graph is

at the top, and upper-level nodes represent dependencies that

require those to which they are connected in lower-level nodes.

For instance, Fig. 1 is an example of the REM dependency

graph of a hypothetical application A. In this example there

62

Fig. 1: A REM dependency graph example

are three direct libraries that application A explicitly requires;

two of them are runtime libraries (node L2 and L3), and one is

a development library (node L1). The REM dependency graph

uses thicker edges to represent development dependencies in

order to distinguish them from runtime dependencies. Nodes

T1 and T2 on the third level of the graph are dependencies

of node L3 and hence, both are transitive dependencies of

application A.

In the REM, nodes are annotated to highlight two types

of information: (i) a metric of health, which is any numeric

score associated with a package, and (ii) a vulnerability

metric, which is a binary indicator associated with problematic

packages. This vulnerability might be provided by a third party

(e.g. GitHub listing packages that are known to have security

vulnerabilities), or it might be computed from another metric

by providing a value that divides the range of the metric into

vulnerable or not (we will discuss this method below).

The REM graph allows users to interactively choose the

highlighted metric. As shown in Fig. 1, at the right of the

REM, there is a colour-scale legend that explains the mapping

between the colours of the nodes and the value of the metric

of health in each node. We also implemented an interactive

function for users to only show runtime dependencies, devel-

opment dependencies or both at the same time. Another design

element is the tool-tip, namely the nodecard, assigned to each

node to display information on the node that user selects, as

shown as an example in Fig. 2. The nodecard uses the colour

of the highlighted metric of health according to the colour

scale; for example, it displays a red background according to

the defined colour-scale for the highlighted metric of health

maintenance score (as having italic font in the nodecard). The

metadata information includes data such as the name of the

dependency, metrics of health (all four examples in this work),

ripple effect(RE) metric (the library deprecation state in this

work), etc.

B. Metric of Health

A metric of health evaluates some aspects related to the

health of a dependency–such as its quality. In other words, a

Fig. 2: A nodecard as tool-tip that displays information of the

example dependency node path-is-absolute

metric of health is a rating that a third party provides regarding

the health of the dependency.

Our implementation is focused on the analysis of NPM

applications and their dependencies. For every NPM package

(a dependency), NPM provides a set of metrics to evaluate

and rank different aspects of its quality, popularity and devel-

opment process. Specifically, we use the following metrics:

popularity, quality, maintenance and final. The popularity
score is an indicator on how many times the package has

been downloaded, the quality score includes considerations

such as the presence of a README file, stability, tests, up-to-

date dependencies, custom website, and code complexity, the

maintenance score associates with the attention from develop-

ers where higher scored package usually is more frequently

maintained in terms of release, commit, etc., and the final (or

optimal) score combines all three score metrics2.

A REM graph shows information regarding one metric of

health at a time, which is selectable by the user. Nodes are

annotated with the corresponding metric of health. As shown

in Fig. 1, the node’s filling-colour highlights the value of the

selected metric for each of the dependency nodes. The range

of values of the metric is normalized from 0 to 1; hence, the

gradient colour-scale varies from red to green, representing

values from 0 to 1, respectively. In our example in Fig. 1,

node L3 and node T1 have lower scores than L1 and L2 based

on the colour of the node and legend on the left-hand side,

indicating that developers should be further looking into node

L3 and T1.

C. Ripple Effect (RE) Metric

The ripple effect is a concept of how an event affects another

through propagation. In REM, the ’event’ is the existence of

a dependency that is considered risky, and the propagation

(the ripple effect–RE) is any other dependency (including the

root of the graph) that uses the risky dependency. Whether

a dependency is risky is determined by a metric of health.

Some metrics, such as library deprecation, can be by definition

binary. In this case, if the dependency is deprecated, it is

considered to be risky. For metrics that have a range of

values (such as popularity, quality, number of downloads, etc.),

the user of the REM can define a value of the metric as

2https://docs.npmjs.com/searching-for-and-choosing-packages-to-download

63

(a) Original Graph

(b) After Filtering

Fig. 3: Before and After Graph Filtering Comparison - on the

runtime dependency graph for Photonstorm/Phaser(master)
using quality score metric.

threshold: when the metric is above (or below, depending on

the interpretation of the metric), the dependency is considered

to be risky. Consider the ripple effect of dependencies with

maintenance score lower than 0.5 as an example. Nodes with

maintenance score higher or equal than 0.5 are considered to

be the normal (non-vulnerable), and nodes with score lower

than 0.5 are considered risky (vulnerable).

We utilized the outline-colour of the node to represent

the RE metric. In REM, the ripple effect is represented as

the propagation from a risky dependency node up to the

application node. It forms a subgraph where the root is the

root of the original graph, and the leaf nodes are all the risky

dependencies (and all the nodes in any path between the root

and any risky dependency).

Visual-element wise, in the REM dependency graph, every

edge has a light grey colour, except for those edges affected by

risky dependency nodes through the ripple effect are annotated

with dark red colour. For instance, consider Fig. 1 as an

example that uses deprecation state of a dependency as the RE

metric; node T1 is considered vulnerable, since it has thicker

red outline-colour, which represents a deprecated dependency.

Node T1, A, and L3 are part of the ripple effect, because node

T1 is the vulnerable dependency, node A is the application,

and node L3 depends on vulnerable node T1 and is also the

direct dependency of application node A. This ripple effect is

visually represented by the node T1 annotated with red outline-

colour and every path from node T1 to node L3 and node L3

to application A is annotated with dark-red colour.

D. Graph Filtering

It is not uncommon for large applications to have depen-

dency graphs with dozens (if not hundreds) of nodes. Not only

the graphs are large in term of size, but also in complexity.

We have created the filtered REM to address this issue. It is

a variant of the REM in which dependencies are collapsed

(i.e. removed from the visualization) and grayed-out (i.e. had

filling-colour removed from the visualization).

The filtering is composed of two steps. First step: a node B,

which is a direct dependency of A, is collapsed if the following

two conditions are both satisfied: a) there is no ripple effect

between B and A; b) and the metric of health of node A is

less than the metric of health of all the descendent dependency

nodes that are reachable from node B including node B itself.

This collapsed graph will be the input of the second step.

The second step: a node B will be grayed-out if its metric of

health is better than the metric of health of all of its ancestors

that are explicit dependencies of the application (i.e. direct

dependencies of the root of the dependency graph). In other

words: B (and the edges that connect it) is hidden if B and

all of its descendants have better health than the nodes that

directly require it, and B is grayed-out if B has better health

than the direct dependency nodes that directly or transitively

require it.
More specifically, the algorithm is:

• The root of the the filtered REM is the root of the REM

• All nodes directly connected to the root in the original

REM are part of the filtered REM, along with the edges

that connect the root to them

• The graph is iteratively built until no more changes are

observed:

• For any node B not yet part of the filtered REM, if there

exist an edge from another node A that is already part

of the filtered REM, and the minimum metric among the

nodes that B has a path to including B is no better than

the metric of A, then B is added to the filtered REM.

Also, any edge in the REM connecting B to any other

node already in the filtered REM is also added to the

REM

• Any node or edge that is part of the Ripple Effect are

also added to the filtered REM

• Nodes that have at least one child removed in the filtered

REM are annotated as such (i.e. they are collapsed). We

use the
⊕

symbol to represent collapsed nodes.

• Finally, run a second pass that goes through each node in

the filtered graph and compare its metric of health against

every ancestors in direct dependency nodes. The node

will be modified to have white filling-colour and metric

of health as outline-colour if its metric is no worse than

those ancestors that are direct dependency nodes.

Fig. 3 exemplifies the graph filtering. Fig. 3a is the full run-

time REM graph of Photonstorm/Phaser3, a popular GitHub

2D game framework for HTML 5, that has 4 direct depen-

dencies and 34 transitive dependencies. The example uses

3https://github.com/photonstorm/phaser

64

quality as a metric of health. Fig. 3b is the filtered version

of Fig. 3a. As a result, the graph size has been filtered down

to 4 direct dependencies and 15 transitive dependencies. Nodes

that were removed (by collapsing) are having better metrics

of health than their parents (as depicted in having greener

filling-colour). After the collapsing, A group of green nodes

located at right side of the graph updated their filling-colours to

white and outline-colours changed to the colours according to

their metric of health. Filtered REM highlights the dependency

that has a worse numerical metric (yellow filling-colour) by

collapsing healthier nodes (greener filling-colour) and graying-

out non problematic nodes (greener filling-colour than the

direct dependency). In the visualization, we annotate a cross

symbol (+) on the circle shape (O) to nodes with at least one

of their dependencies collapsed.

IV. IMPLEMENTATION

The visualization of REM is implemented using a third-

party Python graphing library, Plotly4. The following sections

describe our process for creating the dependency graph model

and obtaining data required in the REM dependency graph.

A. Building the Dependency Graph

1) Data Collection: Before constructing a dependency

graph, it is necessary to obtain the dependency information

of an application. Researchers [3], [4] have been obtaining

the NPM package data via its public API endpoint5. However,

after the NPM official announced in 2016 in the official blog6

that the API registry endpoint that queries all NPM metadata

has been deprecated. Therefore, we retrieved metadata from

an alternative domain, namely the replicate registry7, which

is similar to the public NPM registry and is hosted on

CouchDB8 by the NPM official team. We executed the GET
/db/ all docs view with include docs=true built-in CouchDB

feature enabled and successfully extracted a recent list of NPM

package.json metadata.

2) Data Pre-processing: From the collected NPM meta-

data, we extracted the information from dependencies and

devDependencies field to obtain the dependency relationships

and store in a SQLite39 database for both runtime and devel-
opment dependencies, respectively.

3) Graph Rendering: We implemented a Python script

that creates the dependency graph from Networkx10 DiGraph

Model. The layout of the graph is done using the hierarchical
layout from Graphviz dot model11. The user interface to

navigate, inspect, and filter for the graph was done using the

Plotly graphing library12.

4https://plotly.com/python/
5registry.npmjs.org/-/all
6https://blog.npmjs.org/post/157615772423/deprecating-the-all-registry-

endpoint
7http://replicate.npmjs.com/
8https://couchdb.apache.org/
9https://www.sqlite.org/
10https://networkx.github.io/
11https://www.graphviz.org/pdf/dotguide.pdf
12https://plotly.com/python/

B. Metrics of Health

The metric of health is used to annotate the nodes in a REM

dependency graph. Such a metric can be any numerical value

(in the actual visualization we normalize the range of a metric

to values between 0 and 1). In this work, we used four package

score metrics from the NPM search engine (as described

above, these were final, popularity, quality, and maintenance).

These metrics are computed by NPM and provided to its users

as a method to evaluate and rank each package. We collected

the score metrics using the NPM public registry API13. The

user can interactively choose the metric of health he or she is

interested to inspect.

C. Ripple Effect (RE) Metric

In this work, we implemented a version of the REM depen-

dency graph that uses the deprecation state of a dependency

as the RE metric and shows the ripple effect of deprecated

dependencies (the condition) as an example. We extracted

the deprecated field from NPM metadata, which is a field

attribute that will only be presented in a deprecated package.

To compute the ripple effect of the deprecated dependencies,

we calculated every path from each deprecated dependency to

the application node and marked those paths as ripples through

the visualization of graph edges.

V. APPLICATION EXAMPLES

In this section, we will illustrate the use of the REM

dependency graph using the four NPM’s metrics of health

from a developer’s point of view. We applied the REM on two

selected examples from popular GitHub JavaScript software

that use NPM as their dependency package manager.

We first wanted to see what the typical dependency graphs

of an NPM application looks like. For this reason we decided

to use GitHub applications that use NPM packages that are

not themselves hosted in NPM. This way we expect to retrieve

actual applications and not libraries. We downloaded the top

107,467 (in terms of number of stars) NPM applications that

satisfied this conditions. Using the package.json we created

their dependency graphs. We noticed that many of these

applications did not have any dependencies. So we further

filtered them to at least have one runtime dependency and one

development dependency. We were left with 54,736 applica-

tions. Fig. 4 shows scatter plots for runtime and development

dependencies for these GitHub NPM application. As these

figures shows, the number of direct runtime dependencies

tends to be small (median 7) but the number of total transitive

dependencies is very large (median 80). The numbers for de-

velopment dependencies are even more skewed with a median

of 9 direct development dependencies and 408 transitive ones.

From these GitHub applications we then chose two software

applications: Adobe Brackets and Wekan as examples to show

the use of REM graph. These are the two top popular GitHub

JavaScript repositories that are real-world NPM applications

(there are some NPM repositories that are more popular, but

13https://github.com/npm/registry/blob/master/docs/REGISTRY-API.md

65

(a) direct and transitive runtime dependencies distribution

(b) direct and transitive development dependencies distribu-
tion

Fig. 4: Two scatter plots that show distributions of the re-

lationship between direct and transitive dependencies across

over 100,000 popular GitHub NPM/JavaScript applications

they are tutorials). For each application we built their REM

dependency graphs by parsing the file package.json from

which we extracted both the runtime and the development

dependencies information of each application.

A. Example - Adobe Brackets

Adobe Brackets14 is a popular open-source code editor

for the web written in JavaScript with over 30,000 stars

on GitHub. It has 12 direct runtime dependencies and 30

development dependencies. Fig. 5 shows a full REM graph of

the Adobe Brackets with final score metric of health and library

deprecation ripple effect. As it can be seen, this small number

of dependencies has exploded into a graph that contains a total

of 432 runtime dependencies and 592 development dependen-

cies. This size of the graph for this application highlights the

scalability problem that developers encounter. To alleviate this

problem, the user has several mechanisms. First, the ability to

zoom-in and out of regions of interest. Second, the ability

to choose either run-time or development dependencies, and

finally, the filtering (collapsing and graying-out) on nodes.

Fig. 6 is an example of selecting only runtime dependencies

with filtering. It shows the graph using two different health

metrics. Fig. 6a uses the final score metric, while Fig 6b

uses the maintenance score metric. As we can see the final

14https://github.com/adobe/brackets

score metrics on most nodes look relatively healthy (as having

mostly green nodes). However, the maintenance score shows

a large number of nodes with low maintenance (as having

yellow to red node filling-colours), suggesting that most of its

dependencies might not be well-maintained (i.e. lack of the

attention from development team).

We then take a close look at the ripple effect of library

deprecation by zooming in the graph from Fig. 6a, as shown

in Fig. 7. We noticed that Adobe Brackets has 4 dependencies

(out of 12 dependencies) affected by the ripple effect of

library deprecation (as connected by dark-red edges), and two

of them have been deprecated: opn and request. Therefore,

these two dependencies show update opportunities and need

to be further examined carefully by developers. Specifically,

this graph highlights that the ripple effect originates in three

transitive dependencies: path-is-absolute, os-tmpdir, and os-
homedir, and they affect three direct dependencies (npm, temp
and decompress-zip). This suggests that there is a potential risk

of using npm, temp and decompress-zip, hence the developers

should take a careful look at the transitive dependencies that

have been deprecated.

B. Example - Wekan

In the second example, we selected Wekan15, a popular

open-source kanban board software that has over 15,000 stars

on GitHub. Fig. 8 is the full REM graph of Wekan with final
score metric and library deprecation ripple effect. As opposed

to the previous example, we will focus on the development

dependencies in this example. Fig. 9 shows development

dependencies on two filtered REM graphs of Wekan. Fig. 9a

shows a REM graph with the NPM popularity score and

Fig. 9b shows a REM graph with the quality score metric

as their metrics of health. Both graphs use the deprecation

state of a dependency as RE metric. Fig. 10 is a closer look

of Fig. 9a, and we added names to the dependencies on the

graph that we will be discussing later on.

Fig. 9a shows the popularity score of development depen-

dencies of Wekan on a REM graph. From Fig. 10, we noticed

three direct dependencies are having relatively bad metrics on

the graph: eslint-import-resolver-meteor, eslint-plugin-meteor,

and eslint-config-meteor. It suggests that these three dependen-

cies are less popular than other dependencies (i.e. less down-

loads, etc.). To further examine them, we look at all three de-

pendencies using the quality score metric, as shown in Fig. 9b.

And we see that the overall quality of the REM graph of Wekan
is good since there are no red nodes on the graph. Because

Wekan is built with Meteor framework, and the three depen-

dencies we examined (eslint-import-resolver-meteor, eslint-
plugin-meteor, eslint-config-meteor) are designed to support

this framework which cannot be replaced, therefore, they do

not need to be further inspected.

Another aspect of the graph we looked at is the ripple effect.

From the REM graph in Fig. 10, We noticed that two direct

15https://github.com/wekan/wekan

66

Fig. 5: a full REM graph of Adobe Brackets with metric of health (final score) and RE metric (library deprecation)

(a) a filtered REM graph on runtime dependencies with ripple effect of library deprecation and NPM final score metric

(b) a filtered REM graph on runtime dependencies with ripple effect of library deprecation and NPM maintenance
score metric

Fig. 6: Two filtered REM graphs of Adobe Brackets (master branch) runtime dependencies

67

Fig. 7: a zoomed version of Fig. 6a with added names for focused dependencies

Fig. 8: A full REM graph of Wekan with metric of health (final score) and RE metric (library deprecation)

dependencies (prettier-eslint and eslint) are affected by the

ripple effect of a deprecated dependency (path-is-absolute).

Because this deprecated dependency is hidden in the deepest

of the dependency chain, developers might not be aware of

its existence. It suggests that the dependency path-is-absolute
needs to be reviewed by developers, and developers should

take actions (such as look for alternative suggested from

deprecation message that owner of the deprecated package

would often offer) if any risk has found in this dependency.

VI. DISCUSSION

A. Data Reliability

1) NPM Package Data Source: A robust dependency graph

is built upon reliable data source. We implemented the REM

graph based on the data collected from the data source, namely

the replicate registry16, which is a registry database containing

NPM package metadata. However, NPM uses another one as

its official data source, namely the public registry17, which

has more recent and accurate package metadata than what we

used in our work. But ever since the public registry removed

its API endpoint for large data collection, the replicate registry

becomes one of the few choices. Another source we have

16https://replicate.npmjs.com/
17http://registry.npmjs.org/

found that contains package data is the libraries.io18, which

had been used as the data source by many researchers in their

works [2], [14]. We chose to use the replicate registry as

our data source mainly because it is the suggested solution

provided by NPM to collect package data19. Although we

have not systematically tested the data integrity on either data

source, we still believe the official team’s data source is more

reliable and consistent than third-party platforms.

2) Metrics Data Source: We presented four scores as

examples of the metric of health in the REM graph. These

four metrics, also known as NPM search rank criteria, are

what developers see when searching for packages. However,

sometimes community members claim that these scores are

often broken and have unreliable results20. We noticed that

one of the NPM official blogs21 mentioned that the NPM

uses scores from a third-party platform, namely npms.io22.

We looked at services from npms.io and found out that the

scoring system in npms.io is similar to NPM search rank

18https://libraries.io/
19https://blog.npmjs.org/post/157615772423/deprecating-the-all-registry-

endpoint
20https://npm.community/t/package-search-scores-are-broken/10188/4
21https://docs.npmjs.com/searching-for-and-choosing-packages-to-

download
22https://npms.io/

68

(a) a filtered REM graph on development dependencies with ripple effect of library deprecation and NPM popularity score
metric

(b) a filtered REM graph on development dependencies with ripple effect of library deprecation and NPM quality score metric

Fig. 9: Two filtered REM dependency graphs of Wekan (master branch)

criteria according to its documentation23.

B. Limitations and Threats to Validity

1) Defined Dependencies: We built the dependency graph

based on the dependency relationship defined in the run-

time and development dependency fields defined in the

package.json file of the respective application. Therefore,

our implementation might be biased and does not properly

include or describe the information on every dependency for

several reasons: 1) dependencies can be required directly

through the JavaScript file, 2) private or non-NPM published

dependencies will either have inaccurate or no metric of

23https://github.com/npms-io/npms-analyzer/blob/master/docs/architecture.md

health; therefore, can hide from the REM graph, 3) the list of

dependencies required might include some that are not used.

2) Dependency Version Constraints: Another factor that

might affect the accuracy of the build process of the depen-

dency graph is the dependency version constraint. Although

there are few package management systems such as CRAN

that only allows applications to use the latest dependency,

most of other package managers for variety of programming

languages such as NPM that allows developers to define

the range of the release of a dependency to accept. Our

implementation of REM graph for NPM applications ignores

the version constraint that might exclude certain dependency

releases by only accepting the latest release, and therefore,

69

Fig. 10: a zoomed version of Fig. 9a with added names for focused dependencies

may result in inaccurate information on the dependency graph,

due to the lack of differentiation between project versions in

NPM [3].

3) Graphing Library: In this work, we implemented the

visualization using a Python graphing library, Plotly. It offers

an easy access to a wide range of tools that helped in

constructing REM graph such as built-in colour-scale, zoom

feature, and HTML output option. However, Plotly generates

a static REM graph and lacks of many interaction features

when comparing to an other library, D3.js24, which makes

the current implementation hard to expand any new features

without changing to other graphing libraries.

4) Huge Graph Presentation: Because nodes and edges are

two dimensional in REM, the visibility of the edge on huge

graphs can be difficult to see. Especially when developers

try to inspect the dependency relationships between certain

packages, they can get confused because of the overlapping

edges in static REM. However, this has not been tested and

evaluated by the developers.

VII. FUTURE WORK

For future work, one significant change we plan to add to

our current implementation is to include the consideration of

dependency version constraint. We plan to test our REM graph

based on different dependency graph construction approaches

that Kikas et al. has discussed [3]. And to test REM graph, we

plan to work on the evaluation of the usefulness of the REM

graph by r it up as a GitHub plugin on the Marketplace25

for developers to use on their NPM software projects and

collecting their feedback. We will adjust and create more

features to the visualization based on the feedback.

Since our implementation currently generates separate REM

graphs on different metrics, that is, for every application,

there will be a full and a filtered version of the REM graph

24https://d3js.org/
25https://github.com/marketplace

for each application with metrics selected (one metric of

health and one RE metric). Therefore, the second future work

is divided into two tasks: 1) to develop a mechanism that

interactively compares different metrics of health on the same

REM dependency graph, 2) to have an interactive way to allow

user view ripple effect of different RE metrics.

Lastly, the fast pace of the software development process

requires developers to assess their dependencies every short

period of time due to fast release cycle. Therefore, we would

like to see the possibility of complementing the REM graph

with real-time data instead of the collected data that we used

in this work which can quickly age over time. To achieve

this, we need to investigate a cost-efficient way to keep NPM

metadata updated and reflect it on the real-time version of the

REM.

VIII. CONCLUSION

Dependency management has been a critical task for devel-

opers in the contemporary software development process. Our

analysis has shown that NPM applications on GitHub are using

a large number of dependencies, which have further resulted

the increasing complexity in software. The challenge for devel-

opers has become to be aware of the transitive dependencies,

their health, and their potential impact in the dependency graph

of a given application. In this work, with the goal to help

developers study the dependency health of the application, we

proposed a Ripple Effect of Metrics (REM) dependency graph

using four metrics (final, popularity, quality, and maintenance)

and one Ripple Effect metric (library deprecation). We also

demonstrated, using two NPM applications and several NPM

metrics of health, how the REM graphs can be used to identify

potentially problematic libraries in their dependency graphs.

70

REFERENCES

[1] A. Decan, T. Mens and E. Constantinou, “On the Impact of Security
Vulnerabilities in the npm Package Dependency Network”, IEEE/ACM
15th International Conference on Mining Software Repositories (MSR),
2018, pp. 181-191.

[2] A. Decan, T. Mens, P. Grosjean, “An empirical comparison of depen-
dency network evolution in seven software packaging ecosystems”, Em-
pir Software Eng 24, 381–416 (2019). https://doi.org/10.1007/s10664-
017-9589-y

[3] R. Kikas, G. Gousios, M. Dumas, D. Pfahl, “Structure and Evolution of
Package Dependency Networks”, IEEE/ACM 14th International Confer-
ence on Mining Software Repositories (MSR), 2017.

[4] E. Witten, P. Suter, S. Rajagopalan, “A Look at the Dynamics of the
JavaScript Package Ecosystem”, IEEE/ACM 14th International Confer-
ence on Mining Software Repositories (MSR), 2016.

[5] D. M. German, J. M. Gonzalez-Barahona and G. Robles, “A Model to
Understand the Building and Running Inter-Dependencies of Software”,
14th Working Conference on Reverse Engineering (WCRE 2007), 2007,
pp. 140-149, doi: 10.1109/WCRE.2007.5.

[6] D. M. German, “Using Software Distributions to Understand the Re-
lationship among Free and Open Source Software Projects”, Fourth
International Workshop on Mining Software Repositories, 2007.

[7] R. G. Kula, C. D. Roover, D. German, T. Ishio, K. Inoue, “Visualizing
the Evolution of Systems and their Library Dependencies”, Second IEEE
Working Conference on Software Visualization, 2014.

[8] B. Todorov, R. G. Kula, T. Ishio, K. Inoue, “SoL Mantra: Visualizing
Update Opportunities Based on Library Coexistence”, IEEE Working
Conference on Software Visualization, 2017.

[9] R. Falke, R. Klein, R. Koschke and J. Quante. “The Dominance Tree in
Visualizing Software Dependencies”, 3rd IEEE International Workshop
on Visualizing Software for Understanding and Analysis, 2005, pp. 1-6,
doi: 10.1109/VISSOF.2005.1684311.

[10] R. G. Kula, C. D. Roover, D. M. German, T. Ishio and K. Inoue, “A gen-
eralized model for visualizing library popularity, adoption, and diffusion
within a software ecosystem”, IEEE 25th International Conference on
Software Analysis, Evolution and Reengineering (SANER), 2018, pp.
288-299, doi: 10.1109/SANER.2018.8330217.

[11] R. G. Kula, D. M. German, Ouni, A. Ouni, T. Ishio, K. Inoue. Do
developers update their library dependencies?. Empir Software Eng 23,
384–417 (2018). https://doi.org/10.1007/s10664-017-9521-5

[12] S. S. Yau, J. S. Collofello and T. MacGregor, “Ripple effect analysis
of software maintenance”, The IEEE Computer Society’s Second In-
ternational Computer Software and Applications Conference, 1978. pp.
60-65, doi: 10.1109/CMPSAC.1978.810308.

[13] R. Robbes, M. Lungu, D. Rothlisberger, “How Do Developers React to
API Deprecation? The Case of a Smalltalk Ecosystem”, Proceedings of
the ACM SIGSOFT 20th International Symposium on the Foundations
of Software Engineering, 2012.

[14] A. Zerouali, E. Constantinou, T. Mens, G Robles, J. González-Barahona,
“An Empirical Analysis of Technical Lag in npm Package Dependen-
cies”, New Opportunities for Software Reuse. ICSR 2018. Lecture Notes
in Computer Science, vol 10826. Springer, 2018

[15] M. Dias, D. Orellana, S. Vidal, L. Merino, A. Bergel, “Evaluating
a Visual Approach for Understanding JavaScript Source Code”, 28th
International Conference on Program Comprehension (ICPC ’20). 2020.
https://doi.org/10.1145/3387904.3389275

[16] K. E. Isaacs and T. Gamblin, ”Preserving Command Line Workflow for
a Package Management System Using ASCII DAG Visualization,” in
IEEE Transactions on Visualization and Computer Graphics, vol. 25,
no. 9, pp. 2804-2820, 1 Sept. 2019, doi: 10.1109/TVCG.2018.2859974.

71

