2020 Working Conference on Software Visualization (VISSOFT)

REM: Visualizing the Ripple Effect on
Dependencies Using Metrics of Health

Zhe Chen
University of Victoria
Victoria, Canada
zkchen@uvic.ca

Abstract—In recent years, free and open source software
(FOSS) components have become common dependencies in the
development of software, both open source and proprietary.
As the complexity of software increases, so does the number
of components they depend upon; in addition, components are
also depending on other components. Thus, their dependency
graphs are growing in size and complexity. One of the current
challenges in software development is that it is not trivial to
know the full dependency graph of an application. Developers
are usually aware of the direct dependencies their application
requires, but might not be fully aware of the dependencies
that those dependencies require (the transitive dependencies).
Unfortunately, transitive dependencies can break any software
application; therefore, project developers need tools, methods
and visualizations to inspect the health of these transitive depen-
dencies and their potential impact.In this work, we propose the
Ripple Effect of Metrics (REM) dependency graphs, a visualiza-
tion of dependency graphs that leverages metrics of the health
of dependencies. The two main features of REM dependency
graph are: first, to display, and potentially summarize, the full
dependency graph of an application based on the health of each
of its dependencies; and second, to evaluate the ripple effect
of potentially risky dependencies on the rest of the dependency
graph. The REM helps application developers inspect the health
of all of its dependencies, and also the impact that some of
these dependencies might have. By showcasing two examples
of popular NPM JavaScript application, we demonstrate that
the combination of the ripple effect on the dependency graph
using health metrics activity can be beneficial to developers. The
advantages of REM graphs are: 1) the metric of health annotation
is useful for evaluating the health of dependencies, and 2) the
ripple effect of a vulnerability provides an easy method to identify
potential risk in a dependency chain and 3) the summarizing
mechanisms of the REM help reduce the size and complexity of
the large dependency graphs, while focusing in specific aspects
of the health of the dependency graph.

Index Terms—Dependency graph, Software components, Met-
rics, Health

I. INTRODUCTION

Contemporary software development relies on the reuse
of components, many of them open source. Each of these
components—a dependency—might have an independent soft-
ware development process, with its own developer’s team, and
release cycles. Dependencies can be described as direct or
transitive dependencies based on their visibility to develop-
ers. With current technologies such as automated bots from
GitHub, developers are only informed of the direct dependen-
cies they explicitly list. However, each of these dependencies

978-1-7281-9914-6/20/$31.00 ©2020 IEEE
DOI 10.1109/VISSOFT51673.2020.00011

61

Daniel M. German
University of Victoria
Victoria, Canada
dmg@uvic.ca

might rely on other dependencies for functioning (the transitive
dependencies). Security vulnerabilities are among the most
pressing problems in open-source software package libraries
[1]. Ducan et al. studied the ecosystem of (Node Package Man-
ager) NPM, the world’s largest JavaScript software distributor,
and identified the risk of depending on transitive dependencies
that have become obsolete or inactive [2]. Application project
developers should be more careful when seeking any library
update opportunity. The well-known November 2018 event-
stream incident! has also demonstrated how can a package
transitively break software that transitively relies on it. Kikas
et al. observed that the number of transitive dependencies has
grown 60% within a year (from April 2015 to April 2016),
but package dependency management practices have received
little attention despite being a crucial part of any software
development [3].

In this work, we propose a dependency graph visualization
that uses metrics of health (e.g. those that measure aspects
of the development process, such as quality, development
activity, etc.) and propagates these metrics up the dependency
graph. We call this visualization the Ripple Effect of Metrics
(REM) dependency graph. The REM graph uses a hierarchical
layout to distinguish the dependency relationship within the
dependency graph of a software application.

Our visualization is designed to help developers identify
potentially vulnerable dependencies based upon their metrics
of health, and how these potential vulnerabilities propagate
through the dependency graphs. The contributions of this work
are: 1) the definition of the REM graphs, 2) an illustration of
the usefulness of REM graphs in the analysis of two samples
of large open-source applications from developers’ point of
view of both, runtime and development dependencies, which
demonstrates that REM graphs help to (i) understand the
health of each dependency chain on the graph using metrics of
health of each individual dependency, (ii) identify vulnerable
dependencies that require further attention by recognizing a
second health metric and displays every valid path to the
software application through edges.

Uhttps://blog.npmjs.org/post/ 180565383 195/details-about-the-event-stream-
incident

II. BACKGROUND AND RELATED WORK

In contemporary software development process, developers
usually separate runtime from development dependencies. The
runtime dependencies are packages used when the application
is running and working, while development dependencies are
packages used during build time [4]. German et al. studied
the dependency graph of Debian GNU/Linux ecosystem using
building and running dependency information as defined in
a Stage section in Debian package management tool [5].
Similarly, in the NPM ecosystem, the running and building
dependencies are separated into two different types: depen-
dencies and devDependencies, respectively. Assume A is an
NPM package that provides some functionalities in helping
build another software B within the NPM ecosystem. A is
usually referred to as a dependency of B, and B is referred to
as a dependant package of A. We use the term dependency
and library interchangeably.

Many researchers have investigated the modeling and vi-
sualization of dependency graphs [3]-[10], [15], [16]. For
example, Falke et al. suggested a hierarchical graph layout
for visualizing the functional dependency graph of software
applications; using this hierarchical layout, users can view
the top-level nodes as a first overview and step-wise unfold
the nodes on demand to dig into details [9]. Dias et al.
implemented Hunter, a visual tool that includes node-link
diagrams as dependency graphs for understanding JavaScript
source code [15]. German used package management files
to visualize the dependency graph in the hierarchical layout
of three popular applications in Fink, one of the software
distribution for macOS, and attempted to identify the use of
applications in terms of different types of success [6]. Our vi-
sual tool extends German’s work by adapting the technique of
creating dependency graph and adding the visual annotations
that highlight specific dependencies’ information to create a
meaningful dependency graph.

In recent years, researchers have studied problems associ-
ated with dependency relationships using historical data [2],
[3]. Decan et al. have adopted the use of external sources
[1], [2]. Researchers conducted an empirical study on library
migration and showed that most of the studied projects keep
outdated dependencies [11]. Yau et al. investigated the ripple
effect from the location of a modification to other parts
of the system that are affected by such modification [12].
While researchers have been broadly studying the dependency
management, two areas have not gained much attention from
researchers: package deprecation as a vulnerability, and the use
of NPM package scores as information linked to the health of
a dependency. The former area can have a significant impact
on the ecosystem [13], and package scores provide valuable
information regarding the way a package is perceived by
its development process and community. Robbes et al. used
the ripple effects of deprecation to study the propagation of
changes in the ecosystem as a whole [13].

To identify library update opportunities, Kula et al. defined
a library-centric dependants diffusion plot that used a radial

62

layout and heat-map to show the change in dependencies on
the package’s release history. Their visualization shows the
library version usage and dependency change by assigning
different colours and shapes to the library nodes [7]. While
their work showed a history of package release on direct
dependencies, the visualization did not continue to show
any connection among these dependencies. In contrast, our
visualization contains both direct and transitive dependencies
and shows the relationship between each package node.
Todorov et al. extended on Kula’s work by developing
an orbital layout visualization that adapted the Wisdom of
the Crowd to show the libraries’ update opportunities [8].
In contrast, our work visualizes a filtered dependency graph
with both direct and transitive dependency to expose in-
depth dependency chains. Whereas, their visualization places
only the first-level dependencies around the application. Their
visualization contains node annotation representing the library
freshness status. However, our work includes two annotation
techniques on graph nodes: vulnerable dependencies (library
deprecation, as an example in this work) and other metrics of
health (NPM score metrics, as examples in this work). In ad-
dition to node annotations, our visualization also annotates the
edges to represent the ripple effect of vulnerable dependencies.

III. VISUALIZATION MODEL

Our visualization, the Ripple Effect of Metrics (REM), is
a dependency graph with a hierarchical layout where nodes
and edges are annotated in a way that helps in identifying
dependencies that are problematic, and the ripple effects that
these dependencies have over the entire dependency graph.
Our work has two variants of the visualization: a full depen-
dency graph and a filtered dependency graph. The latter variant
focuses more on the upper level of the dependency chain in
the graph by hiding and modifying lower level nodes that are
unlikely to be vulnerabilities (according to some metrics of
health).

In the following subsections, we first describe the design
of the REM. Then, we describe three main features that are
highlighted by the REM dependency graph: metric of health,
ripple effect metric, and graph filtering technique.

A. Graph Design

REM is a dependency graph; that is, a directed acyclic graph
(DAG) where the root of the graph represents the application
of which the visualization corresponds, and other nodes are
its dependencies. There exists an edge from node A to node
B if A explicitly requires the dependency B.

We have tested and compared many other graph layouts
such as circular and spectral layout, and we find the hierar-
chical layout to be the best in visualizing the dependency re-
lationship. Therefore, the REM dependency graph is rendered
using a hierarchical layout such that the root of the graph is
at the top, and upper-level nodes represent dependencies that
require those to which they are connected in lower-level nodes.
For instance, Fig. 1 is an example of the REM dependency
graph of a hypothetical application A. In this example there

A (NPM Application Software)

L1 (Development
Direct Library)

O

L2 (Runtime Direct
Library)

L3 (Runtime Direct £
Library)

Highlighted Metric
of Health

T1 (Transitive Library) T2 (Transitive Library)

@ “
|u

Interactive toggle for

. displaying development
dependency graph

Interactive toggle for
displaying runtime
dependency graph

[
Fig. 1: A REM dependency graph example

are three direct libraries that application A explicitly requires;
two of them are runtime libraries (node L2 and L3), and one is
a development library (node L1). The REM dependency graph
uses thicker edges to represent development dependencies in
order to distinguish them from runtime dependencies. Nodes
T1 and T2 on the third level of the graph are dependencies
of node L3 and hence, both are transitive dependencies of
application A.

In the REM, nodes are annotated to highlight two types
of information: (i) a metric of health, which is any numeric
score associated with a package, and (ii) a vulnerability
metric, which is a binary indicator associated with problematic
packages. This vulnerability might be provided by a third party
(e.g. GitHub listing packages that are known to have security
vulnerabilities), or it might be computed from another metric
by providing a value that divides the range of the metric into
vulnerable or not (we will discuss this method below).

The REM graph allows users to interactively choose the
highlighted metric. As shown in Fig. 1, at the right of the
REM, there is a colour-scale legend that explains the mapping
between the colours of the nodes and the value of the metric
of health in each node. We also implemented an interactive
function for users to only show runtime dependencies, devel-
opment dependencies or both at the same time. Another design
element is the tool-tip, namely the nodecard, assigned to each
node to display information on the node that user selects, as
shown as an example in Fig. 2. The nodecard uses the colour
of the highlighted metric of health according to the colour
scale; for example, it displays a red background according to
the defined colour-scale for the highlighted metric of health
maintenance score (as having italic font in the nodecard). The
metadata information includes data such as the name of the
dependency, metrics of health (all four examples in this work),
ripple effect(RE) metric (the library deprecation state in this
work), etc.

B. Metric of Health

A metric of health evaluates some aspects related to the
health of a dependency—such as its quality. In other words, a

63

ANV g A ¥ = 2

development dependencies (red outline means deprecation)

jZ SR
B quality: 0.85
1} -
type: NPM
m| version: 2.1.7 =
A}
(e 5 ¢

Fig. 2: A nodecard as tool-tip that displays information of the
example dependency node path-is-absolute

metric of health is a rating that a third party provides regarding
the health of the dependency.

Our implementation is focused on the analysis of NPM
applications and their dependencies. For every NPM package
(a dependency), NPM provides a set of metrics to evaluate
and rank different aspects of its quality, popularity and devel-
opment process. Specifically, we use the following metrics:
popularity, quality, maintenance and final. The popularity
score is an indicator on how many times the package has
been downloaded, the quality score includes considerations
such as the presence of a README file, stability, tests, up-to-
date dependencies, custom website, and code complexity, the
maintenance score associates with the attention from develop-
ers where higher scored package usually is more frequently
maintained in terms of release, commit, etc., and the final (or
optimal) score combines all three score metrics.

A REM graph shows information regarding one metric of
health at a time, which is selectable by the user. Nodes are
annotated with the corresponding metric of health. As shown
in Fig. 1, the node’s filling-colour highlights the value of the
selected metric for each of the dependency nodes. The range
of values of the metric is normalized from O to 1; hence, the
gradient colour-scale varies from red to green, representing
values from O to 1, respectively. In our example in Fig. 1,
node L3 and node T1 have lower scores than L1 and L2 based
on the colour of the node and legend on the left-hand side,
indicating that developers should be further looking into node
L3 and T1.

C. Ripple Effect (RE) Metric

The ripple effect is a concept of how an event affects another
through propagation. In REM, the ’event’ is the existence of
a dependency that is considered risky, and the propagation
(the ripple effect—RE) is any other dependency (including the
root of the graph) that uses the risky dependency. Whether
a dependency is risky is determined by a metric of health.
Some metrics, such as library deprecation, can be by definition
binary. In this case, if the dependency is deprecated, it is
considered to be risky. For metrics that have a range of
values (such as popularity, quality, number of downloads, etc.),
the user of the REM can define a value of the metric as

Zhttps://docs.npmjs.com/searching-for-and-choosing-packages-to-download

0.808.

metrlc of health: quallty

(a) Original Graph

L]
o @
@

e} =]
@
&0
00O

[eg:)

(o]

(b) After Filtering

Fig. 3: Before and After Graph Filtering Comparison - on the
runtime dependency graph for Photonstorm/Phaser(master)
using quality score metric.

threshold: when the metric is above (or below, depending on
the interpretation of the metric), the dependency is considered
to be risky. Consider the ripple effect of dependencies with
maintenance score lower than 0.5 as an example. Nodes with
maintenance score higher or equal than 0.5 are considered to
be the normal (non-vulnerable), and nodes with score lower
than 0.5 are considered risky (vulnerable).

We utilized the outline-colour of the node to represent
the RE metric. In REM, the ripple effect is represented as
the propagation from a risky dependency node up to the
application node. It forms a subgraph where the root is the
root of the original graph, and the leaf nodes are all the risky
dependencies (and all the nodes in any path between the root
and any risky dependency).

Visual-element wise, in the REM dependency graph, every
edge has a light grey colour, except for those edges affected by
risky dependency nodes through the ripple effect are annotated
with dark red colour. For instance, consider Fig. 1 as an
example that uses deprecation state of a dependency as the RE
metric; node T1 is considered vulnerable, since it has thicker
red outline-colour, which represents a deprecated dependency.
Node T1, A, and L3 are part of the ripple effect, because node
T1 is the vulnerable dependency, node A is the application,
and node L3 depends on vulnerable node T1 and is also the
direct dependency of application node A. This ripple effect is
visually represented by the node T1 annotated with red outline-
colour and every path from node T1 to node L3 and node L3
to application A is annotated with dark-red colour.

64

D. Graph Filtering

It is not uncommon for large applications to have depen-
dency graphs with dozens (if not hundreds) of nodes. Not only
the graphs are large in term of size, but also in complexity.
We have created the filtered REM to address this issue. It is
a variant of the REM in which dependencies are collapsed
(i.e. removed from the visualization) and grayed-out (i.e. had
filling-colour removed from the visualization).

The filtering is composed of two steps. First step: a node B,
which is a direct dependency of A, is collapsed if the following
two conditions are both satisfied: a) there is no ripple effect
between B and A; b) and the metric of health of node A is
less than the metric of health of all the descendent dependency
nodes that are reachable from node B including node B itself.
This collapsed graph will be the input of the second step.
The second step: a node B will be grayed-out if its metric of
health is better than the metric of health of all of its ancestors
that are explicit dependencies of the application (i.e. direct
dependencies of the root of the dependency graph). In other
words: B (and the edges that connect it) is hidden if B and
all of its descendants have better health than the nodes that
directly require it, and B is grayed-out if B has better health
than the direct dependency nodes that directly or transitively
require it.

More specifically, the algorithm is:

o The root of the the filtered REM is the root of the REM

o All nodes directly connected to the root in the original
REM are part of the filtered REM, along with the edges
that connect the root to them

o The graph is iteratively built until no more changes are
observed:

« For any node B not yet part of the filtered REM, if there
exist an edge from another node A that is already part
of the filtered REM, and the minimum metric among the
nodes that B has a path to including B is no better than
the metric of A, then B is added to the filtered REM.
Also, any edge in the REM connecting B to any other
node already in the filtered REM is also added to the
REM

e Any node or edge that is part of the Ripple Effect are
also added to the filtered REM

o Nodes that have at least one child removed in the filtered
REM are annotated as such (i.e. they are collapsed). We
use the @ symbol to represent collapsed nodes.

« Finally, run a second pass that goes through each node in
the filtered graph and compare its metric of health against
every ancestors in direct dependency nodes. The node
will be modified to have white filling-colour and metric
of health as outline-colour if its metric is no worse than
those ancestors that are direct dependency nodes.

Fig. 3 exemplifies the graph filtering. Fig. 3a is the full run-
time REM graph of Photonstorm/Phaser’, a popular GitHub
2D game framework for HTML 5, that has 4 direct depen-
dencies and 34 transitive dependencies. The example uses

3https://github.com/photonstorm/phaser

quality as a metric of health. Fig. 3b is the filtered version
of Fig. 3a. As a result, the graph size has been filtered down
to 4 direct dependencies and 15 transitive dependencies. Nodes
that were removed (by collapsing) are having better metrics
of health than their parents (as depicted in having greener
filling-colour). After the collapsing, A group of green nodes
located at right side of the graph updated their filling-colours to
white and outline-colours changed to the colours according to
their metric of health. Filtered REM highlights the dependency
that has a worse numerical metric (yellow filling-colour) by
collapsing healthier nodes (greener filling-colour) and graying-
out non problematic nodes (greener filling-colour than the
direct dependency). In the visualization, we annotate a cross
symbol (+) on the circle shape (O) to nodes with at least one
of their dependencies collapsed.

IV. IMPLEMENTATION

The visualization of REM is implemented using a third-
party Python graphing library, Plotly*. The following sections
describe our process for creating the dependency graph model
and obtaining data required in the REM dependency graph.

A. Building the Dependency Graph

1) Data Collection: Before constructing a dependency
graph, it is necessary to obtain the dependency information
of an application. Researchers [3], [4] have been obtaining
the NPM package data via its public API endpoint’. However,
after the NPM official announced in 2016 in the official blog®
that the API registry endpoint that queries all NPM metadata
has been deprecated. Therefore, we retrieved metadata from
an alternative domain, namely the replicate registry’, which
is similar to the public NPM registry and is hosted on
CouchDB?® by the NPM official team. We executed the GET
/db/_all_docs view with include_docs=true built-in CouchDB
feature enabled and successfully extracted a recent list of NPM
package. json metadata.

2) Data Pre-processing: From the collected NPM meta-
data, we extracted the information from dependencies and
devDependencies field to obtain the dependency relationships
and store in a SQLite3° database for both runtime and devel-
opment dependencies, respectively.

3) Graph Rendering: We implemented a Python script
that creates the dependency graph from Networkx'® DiGraph
Model. The layout of the graph is done using the hierarchical
layout from Graphviz dot model''. The user interface to
navigate, inspect, and filter for the graph was done using the
Plotly graphing library'2.

“https://plotly.com/python/

Sregistry.npmjs.org/-/all

Shttps://blog.npmijs.org/post/157615772423/deprecating-the-all-registry-
endpoint

"http://replicate.npmjs.com/

Shttps://couchdb.apache.org/

https://www.sqlite.org/

Ohttps://networkx. github.io/

https://www.graphviz.org/pdf/dotguide.pdf

Zhttps://plotly.com/python/

65

B. Metrics of Health

The metric of health is used to annotate the nodes in a REM
dependency graph. Such a metric can be any numerical value
(in the actual visualization we normalize the range of a metric
to values between 0 and 1). In this work, we used four package
score metrics from the NPM search engine (as described
above, these were final, popularity, quality, and maintenance).
These metrics are computed by NPM and provided to its users
as a method to evaluate and rank each package. We collected
the score metrics using the NPM public registry API'3. The
user can interactively choose the metric of health he or she is
interested to inspect.

C. Ripple Effect (RE) Metric

In this work, we implemented a version of the REM depen-
dency graph that uses the deprecation state of a dependency
as the RE metric and shows the ripple effect of deprecated
dependencies (the condition) as an example. We extracted
the deprecated field from NPM metadata, which is a field
attribute that will only be presented in a deprecated package.
To compute the ripple effect of the deprecated dependencies,
we calculated every path from each deprecated dependency to
the application node and marked those paths as ripples through
the visualization of graph edges.

V. APPLICATION EXAMPLES

In this section, we will illustrate the use of the REM
dependency graph using the four NPM’s metrics of health
from a developer’s point of view. We applied the REM on two
selected examples from popular GitHub JavaScript software
that use NPM as their dependency package manager.

We first wanted to see what the typical dependency graphs
of an NPM application looks like. For this reason we decided
to use GitHub applications that use NPM packages that are
not themselves hosted in NPM. This way we expect to retrieve
actual applications and not libraries. We downloaded the top
107,467 (in terms of number of stars) NPM applications that
satisfied this conditions. Using the package.json we created
their dependency graphs. We noticed that many of these
applications did not have any dependencies. So we further
filtered them to at least have one runtime dependency and one
development dependency. We were left with 54,736 applica-
tions. Fig. 4 shows scatter plots for runtime and development
dependencies for these GitHub NPM application. As these
figures shows, the number of direct runtime dependencies
tends to be small (median 7) but the number of total transitive
dependencies is very large (median 80). The numbers for de-
velopment dependencies are even more skewed with a median
of 9 direct development dependencies and 408 transitive ones.

From these GitHub applications we then chose two software
applications: Adobe Brackets and Wekan as examples to show
the use of REM graph. These are the two top popular GitHub
JavaScript repositories that are real-world NPM applications
(there are some NPM repositories that are more popular, but

B3https://github.com/npm/registry/blob/master/docs/REGISTRY-APL.md

Runtime Dependencies

10000 -

1000 -

Transitive (log)
=

=)

0 50 100 150

Direct

o

(

) direct and transitive runtime dependencies distribution

Development Dependencies

10000 -

1000 -

Transitive (log)
=

=)

0

50 100 150

Direct
(b) direct and transitive development dependencies distribu-
tion
Fig. 4: Two scatter plots that show distributions of the re-
lationship between direct and transitive dependencies across
over 100,000 popular GitHub NPM/JavaScript applications

they are tutorials). For each application we built their REM
dependency graphs by parsing the file package. json from
which we extracted both the runtime and the development
dependencies information of each application.

A. Example - Adobe Brackets

Adobe Brackets'* is a popular open-source code editor
for the web written in JavaScript with over 30,000 stars
on GitHub. It has 12 direct runtime dependencies and 30
development dependencies. Fig. 5 shows a full REM graph of
the Adobe Brackets with final score metric of health and library
deprecation ripple effect. As it can be seen, this small number
of dependencies has exploded into a graph that contains a total
of 432 runtime dependencies and 592 development dependen-
cies. This size of the graph for this application highlights the
scalability problem that developers encounter. To alleviate this
problem, the user has several mechanisms. First, the ability to
zoom-in and out of regions of interest. Second, the ability
to choose either run-time or development dependencies, and
finally, the filtering (collapsing and graying-out) on nodes.

Fig. 6 is an example of selecting only runtime dependencies
with filtering. It shows the graph using two different health
metrics. Fig. 6a uses the final score metric, while Fig 6b
uses the maintenance score metric. As we can see the final

14https://github.com/adobe/brackets

66

score metrics on most nodes look relatively healthy (as having
mostly green nodes). However, the maintenance score shows
a large number of nodes with low maintenance (as having
yellow to red node filling-colours), suggesting that most of its
dependencies might not be well-maintained (i.e. lack of the
attention from development team).

We then take a close look at the ripple effect of library
deprecation by zooming in the graph from Fig. 6a, as shown
in Fig. 7. We noticed that Adobe Brackets has 4 dependencies
(out of 12 dependencies) affected by the ripple effect of
library deprecation (as connected by dark-red edges), and two
of them have been deprecated: opn and request. Therefore,
these two dependencies show update opportunities and need
to be further examined carefully by developers. Specifically,
this graph highlights that the ripple effect originates in three
transitive dependencies: path-is-absolute, os-tmpdir, and os-
homedir, and they affect three direct dependencies (npm, temp
and decompress-zip). This suggests that there is a potential risk
of using npm, temp and decompress-zip, hence the developers
should take a careful look at the transitive dependencies that
have been deprecated.

B. Example - Wekan

In the second example, we selected Wekan'®, a popular
open-source kanban board software that has over 15,000 stars
on GitHub. Fig. 8 is the full REM graph of Wekan with final
score metric and library deprecation ripple effect. As opposed
to the previous example, we will focus on the development
dependencies in this example. Fig. 9 shows development
dependencies on two filtered REM graphs of Wekan. Fig. 9a
shows a REM graph with the NPM popularity score and
Fig. 9b shows a REM graph with the quality score metric
as their metrics of health. Both graphs use the deprecation
state of a dependency as RE metric. Fig. 10 is a closer look
of Fig. 9a, and we added names to the dependencies on the
graph that we will be discussing later on.

Fig. 9a shows the popularity score of development depen-
dencies of Wekan on a REM graph. From Fig. 10, we noticed
three direct dependencies are having relatively bad metrics on
the graph: eslint-import-resolver-meteor, eslint-plugin-meteor,
and eslint-config-meteor. It suggests that these three dependen-
cies are less popular than other dependencies (i.e. less down-
loads, etc.). To further examine them, we look at all three de-
pendencies using the quality score metric, as shown in Fig. 9b.
And we see that the overall quality of the REM graph of Wekan
is good since there are no red nodes on the graph. Because
Wekan is built with Meteor framework, and the three depen-
dencies we examined (eslint-import-resolver-meteor, eslint-
plugin-meteor, eslint-config-meteor) are designed to support
this framework which cannot be replaced, therefore, they do
not need to be further inspected.

Another aspect of the graph we looked at is the ripple effect.
From the REM graph in Fig. 10, We noticed that two direct

I5https://github.com/wekan/wekan

full REM graph for

00 o)
37 0000®' V@, 0 Q

0000.0-00 @0Q _DA.>)

00000.0.0-0 1 G0/a0 0.0- DD

50/0/6-00 | IO 0 G006

o ol I 0o

—_— R

— s
GOTID (IO GIODO DOCOTOIDED (IBOEII0 0TS T3, ° 0| @o
NS s ﬁ/ S
00'@WO, @O/ |0 DO PHID - ®.0COCKD D00 LR e edeoens oleeiterses 0-0.00 ©o0 ™ ® o
S 0.2
o <} @00 o o ©OUIERXD ©) 0 000 WD o @0 0. ® o
o o0 D 0 a>-® o 000 00
o 00 © o
o
untime dependency relstonships (dark-red means i affected by package deprecation) ~—— development dependency relationships (dark-red means s afected by library deprecation)
@ runtime dependencies (red outline means deprecation) @ development dependencies (red outine means deprecation)

Fig. 5: a full REM graph of Adobe Brackets with metric of health (final score) and RE metric (library deprecation)

filtered REM dependency graph for adobe:brackets(master)

°
ce s
5 04 F
coe

02

oo °

000 o

o

(dark-red means s affected by
O runtime dependencies (red outiine means deprecation)

(a) a filtered REM graph on runtime dependencies with ripple effect of library deprecation and NPM final score metric

filtered REM dependency graph for adobe:brackets(master)

os
0s £
£
®
o 2
. 01g
.
.
o2
e
vee o
° oo - .

relationships by package deprecation)
runtime dependencies (red outline means deprecation)

(b) a filtered REM graph on runtime dependencies with ripple effect of library deprecation and NPM maintenance
score metric

Fig. 6: Two filtered REM graphs of Adobe Brackets (master branch) runtime dependencies

67

o (e}

path-is-absolute

/ \ _ os-tmpdir
os-homedir

Fig. 7: a zoomed version of Fig. 6a with added names for focused dependencies

full REM dependency graph for wekan:wekan(master)

00 1] o o ot & e O
© 9 /0 e @~

00 | oomo chammo g 0o o @

0-0.E0EXBO ADLHTHAR0— O

{j&;oocmmmo @09

000 “0"0060D.

05000 0 0 90 EAKDOKDADXDEO 47

0603 || w0 CIIIPOTH G O WO-00- 06 LMD W00

000000 0w 0 0-Q 0 00 0000 ED

o000 o 800000700 00000

00 o 000 ®

-] 00 oo o

)

@ooamo

00.

REDO0000BO0 0 RPOD

5 STIAD GBI 0T | © H
O 0QMOTT 00, 900 © 0/\0 =
S w960 on\e [b
o s @
o o [e°] No
© o o o [e]} I
(] @ o]] ° 5

Fig. 8: A full REM graph of Wekan with metric of health (final score) and RE metric (library deprecation)

dependencies (prettier-eslint and eslint) are affected by the
ripple effect of a deprecated dependency (path-is-absolute).
Because this deprecated dependency is hidden in the deepest
of the dependency chain, developers might not be aware of
its existence. It suggests that the dependency path-is-absolute
needs to be reviewed by developers, and developers should
take actions (such as look for alternative suggested from
deprecation message that owner of the deprecated package
would often offer) if any risk has found in this dependency.

VI. DISCUSSION
A. Data Reliability

1) NPM Package Data Source: A robust dependency graph
is built upon reliable data source. We implemented the REM
graph based on the data collected from the data source, namely
the replicate registry', which is a registry database containing
NPM package metadata. However, NPM uses another one as
its official data source, namely the public registry!’, which
has more recent and accurate package metadata than what we
used in our work. But ever since the public registry removed
its API endpoint for large data collection, the replicate registry
becomes one of the few choices. Another source we have

16https://replicate.npmjs.com/
Thttp://registry.npmjs.org/

68

found that contains package data is the libraries.io'®, which
had been used as the data source by many researchers in their
works [2], [14]. We chose to use the replicate registry as
our data source mainly because it is the suggested solution
provided by NPM to collect package data!®. Although we
have not systematically tested the data integrity on either data
source, we still believe the official team’s data source is more
reliable and consistent than third-party platforms.

2) Metrics Data Source: We presented four scores as
examples of the metric of health in the REM graph. These
four metrics, also known as NPM search rank criteria, are
what developers see when searching for packages. However,
sometimes community members claim that these scores are
often broken and have unreliable results?®. We noticed that
one of the NPM official blogs?' mentioned that the NPM
uses scores from a third-party platform, namely npms.io?>.
We looked at services from npms.io and found out that the
scoring system in npms.io is similar to NPM search rank

18https://libraries.io/

https://blog.npmjs.org/post/157615772423/deprecating-the-all-registry-
endpoint

20https://npm.community/t/package-search-scores-are-broken/10188/4

2l https://docs.npmjs.com/searching-for-and-choosing-packages-to-
download

2https://npms.io/

filtered REM dependency graph for wekan:wekan(master)

L L

c.@
] (9] @

BeE

| 0.8
e |

) e o®oCH O bl - Frisocani) @ =

ad o OEO0E0 0| O T 6 GIIEEGO @ 0 -
00 g o o o) Zgg_o/'b @0 0 2

& o . 0080 000 ® Z
0@ @00 \0 o a s

6 o8 O ® o g

[] @ [&] (]
@] @ o 0.2
(@]

(a) a filtered REM graph on development dependencies with ripple effect of library deprecation and NPM popularity score

metric
filtered REM dependency graph for wekan:wekan(master)
1
@ @
0.8
@
p-' ce [oll::] =
80 o o © [oR =1 o le) 6 86 .0 @60 s
- =
o e} e—0 0.®/ 0 "}’/ E
o @ 000 g
& 00 o & 2
¢ @ o @ =)
@ @ 92
o 9]

(b) a filtered REM graph on development dependencies with ripple effect of library deprecation and NPM quality score metric

Fig. 9: Two filtered REM dependency graphs of Wekan (master branch)

criteria according to its documentation??.

B. Limitations and Threats to Validity

1) Defined Dependencies: We built the dependency graph
based on the dependency relationship defined in the run-
time and development dependency fields defined in the
package. json file of the respective application. Therefore,
our implementation might be biased and does not properly
include or describe the information on every dependency for
several reasons: 1) dependencies can be required directly
through the JavaScript file, 2) private or non-NPM published
dependencies will either have inaccurate or no metric of

2 https://github.com/npms-io/npms-analyzer/blob/master/docs/architecture.md

69

health; therefore, can hide from the REM graph, 3) the list of
dependencies required might include some that are not used.

2) Dependency Version Constraints: Another factor that
might affect the accuracy of the build process of the depen-
dency graph is the dependency version constraint. Although
there are few package management systems such as CRAN
that only allows applications to use the latest dependency,
most of other package managers for variety of programming
languages such as NPM that allows developers to define
the range of the release of a dependency to accept. Our
implementation of REM graph for NPM applications ignores
the version constraint that might exclude certain dependency
releases by only accepting the latest release, and therefore,

eslint-import-
eslint-plugin-meteor

/

@

resolver-meteor

eslint-config-meteor

prettier-eslint

& (]
/
i |
®0 O (9] (6]
00 ® 2
@ W (o] L] [ele)::e] elyelc] L]
09 900 O (e] c
© oe o ® o]

path-is-absolute

Fig. 10: a zoomed version of Fig. 9a with added names for focused dependencies

may result in inaccurate information on the dependency graph,
due to the lack of differentiation between project versions in
NPM [3].

3) Graphing Library: In this work, we implemented the
visualization using a Python graphing library, Plotly. It offers
an easy access to a wide range of tools that helped in
constructing REM graph such as built-in colour-scale, zoom
feature, and HTML output option. However, Plotly generates
a static REM graph and lacks of many interaction features
when comparing to an other library, D3.js>*, which makes
the current implementation hard to expand any new features
without changing to other graphing libraries.

4) Huge Graph Presentation: Because nodes and edges are
two dimensional in REM, the visibility of the edge on huge
graphs can be difficult to see. Especially when developers
try to inspect the dependency relationships between certain
packages, they can get confused because of the overlapping
edges in static REM. However, this has not been tested and
evaluated by the developers.

VII. FUTURE WORK

For future work, one significant change we plan to add to
our current implementation is to include the consideration of
dependency version constraint. We plan to test our REM graph
based on different dependency graph construction approaches
that Kikas et al. has discussed [3]. And to test REM graph, we
plan to work on the evaluation of the usefulness of the REM
graph by r it up as a GitHub plugin on the Marketplace?
for developers to use on their NPM software projects and
collecting their feedback. We will adjust and create more
features to the visualization based on the feedback.

Since our implementation currently generates separate REM
graphs on different metrics, that is, for every application,
there will be a full and a filtered version of the REM graph

24https://d3js.org/
2https://github.com/marketplace

70

for each application with metrics selected (one metric of
health and one RE metric). Therefore, the second future work
is divided into two tasks: 1) to develop a mechanism that
interactively compares different metrics of health on the same
REM dependency graph, 2) to have an interactive way to allow
user view ripple effect of different RE metrics.

Lastly, the fast pace of the software development process
requires developers to assess their dependencies every short
period of time due to fast release cycle. Therefore, we would
like to see the possibility of complementing the REM graph
with real-time data instead of the collected data that we used
in this work which can quickly age over time. To achieve
this, we need to investigate a cost-efficient way to keep NPM
metadata updated and reflect it on the real-time version of the
REM.

VIII. CONCLUSION

Dependency management has been a critical task for devel-
opers in the contemporary software development process. Our
analysis has shown that NPM applications on GitHub are using
a large number of dependencies, which have further resulted
the increasing complexity in software. The challenge for devel-
opers has become to be aware of the transitive dependencies,
their health, and their potential impact in the dependency graph
of a given application. In this work, with the goal to help
developers study the dependency health of the application, we
proposed a Ripple Effect of Metrics (REM) dependency graph
using four metrics (final, popularity, quality, and maintenance)
and one Ripple Effect metric (library deprecation). We also
demonstrated, using two NPM applications and several NPM
metrics of health, how the REM graphs can be used to identify
potentially problematic libraries in their dependency graphs.

[1]

[2]

[3]

[4

=

[5]

[6]

[7]

[8]

9

—

[10]

[11]

[12]

[13]

[14]

[15]

[16]

REFERENCES

A. Decan, T. Mens and E. Constantinou, “On the Impact of Security
Vulnerabilities in the npm Package Dependency Network”, IEEE/ACM
15th International Conference on Mining Software Repositories (MSR),
2018, pp. 181-191.

A. Decan, T. Mens, P. Grosjean, “An empirical comparison of depen-
dency network evolution in seven software packaging ecosystems”, Em-
pir Software Eng 24, 381-416 (2019). https://doi.org/10.1007/s10664-
017-9589-y

R. Kikas, G. Gousios, M. Dumas, D. Pfahl, “Structure and Evolution of
Package Dependency Networks”, IEEE/ACM 14th International Confer-
ence on Mining Software Repositories (MSR), 2017.

E. Witten, P. Suter, S. Rajagopalan, “A Look at the Dynamics of the
JavaScript Package Ecosystem”, IEEE/ACM 14th International Confer-
ence on Mining Software Repositories (MSR), 2016.

D. M. German, J. M. Gonzalez-Barahona and G. Robles, “A Model to
Understand the Building and Running Inter-Dependencies of Software”,
14th Working Conference on Reverse Engineering (WCRE 2007), 2007,
pp. 140-149, doi: 10.1109/WCRE.2007.5.

D. M. German, “Using Software Distributions to Understand the Re-
lationship among Free and Open Source Software Projects”, Fourth
International Workshop on Mining Software Repositories, 2007.

R. G. Kula, C. D. Roover, D. German, T. Ishio, K. Inoue, “Visualizing
the Evolution of Systems and their Library Dependencies”, Second IEEE
Working Conference on Software Visualization, 2014.

B. Todorov, R. G. Kula, T. Ishio, K. Inoue, “SoL Mantra: Visualizing
Update Opportunities Based on Library Coexistence”, IEEE Working
Conference on Software Visualization, 2017.

R. Falke, R. Klein, R. Koschke and J. Quante. “The Dominance Tree in
Visualizing Software Dependencies”, 3rd IEEE International Workshop
on Visualizing Software for Understanding and Analysis, 2005, pp. 1-6,
doi: 10.1109/VISSOF.2005.1684311.

R. G. Kula, C. D. Roover, D. M. German, T. Ishio and K. Inoue, “A gen-
eralized model for visualizing library popularity, adoption, and diffusion
within a software ecosystem”, IEEE 25th International Conference on
Software Analysis, Evolution and Reengineering (SANER), 2018, pp.
288-299, doi: 10.1109/SANER.2018.8330217.

R. G. Kula, D. M. German, Ouni, A. Ouni, T. Ishio, K. Inoue. Do
developers update their library dependencies?. Empir Software Eng 23,
384-417 (2018). https://doi.org/10.1007/s10664-017-9521-5

S. S. Yau, J. S. Collofello and T. MacGregor, “Ripple effect analysis
of software maintenance”, The IEEE Computer Society’s Second In-
ternational Computer Software and Applications Conference, 1978. pp.
60-65, doi: 10.1109/CMPSAC.1978.810308.

R. Robbes, M. Lungu, D. Rothlisberger, “How Do Developers React to
API Deprecation? The Case of a Smalltalk Ecosystem”, Proceedings of
the ACM SIGSOFT 20th International Symposium on the Foundations
of Software Engineering, 2012.

A. Zerouali, E. Constantinou, T. Mens, G Robles, J. Gonzilez-Barahona,
“An Empirical Analysis of Technical Lag in npm Package Dependen-
cies”, New Opportunities for Software Reuse. ICSR 2018. Lecture Notes
in Computer Science, vol 10826. Springer, 2018

M. Dias, D. Orellana, S. Vidal, L. Merino, A. Bergel, “Evaluating
a Visual Approach for Understanding JavaScript Source Code”, 28th
International Conference on Program Comprehension (ICPC 20). 2020.
https://doi.org/10.1145/3387904.3389275

K. E. Isaacs and T. Gamblin, "Preserving Command Line Workflow for
a Package Management System Using ASCII DAG Visualization,” in
IEEE Transactions on Visualization and Computer Graphics, vol. 25,
no. 9, pp. 2804-2820, 1 Sept. 2019, doi: 10.1109/TVCG.2018.2859974.

71

