
N-way Diff: Set-based Comparison of Software Variants

Slawomir Duszynski
Fraunhofer Institute for Experimental

Software Engineering (IESE) *
Kaiserslautern, Germany
slawomir@duszynski.it *

Vasil L. Tenev
Fraunhofer Institute for Experimental

Software Engineering (IESE)
Kaiserslautern, Germany

vasil.tenev@iese.fraunhofer.de

Martin Becker
Fraunhofer Institute for Experimental

Software Engineering (IESE)
Kaiserslautern, Germany

martin.becker@iese.fraunhofer.de

Abstract—Software is frequently developed in many similar
copies, called forks or cloned software variants. During this
development, pairwise comparison is routinely used for finding
differences between the cloned copies, assessing their similarity,
and merging the content. However, analyzing the similarity of a
large group of variants using pairwise comparison is a relatively
difficult task, as the number of compared pairs grows quadratically
with the number of variants. Furthermore, the result of such
group of pairwise comparisons is difficult to visualize.

In this paper, we discuss the problem of N-way comparison of
cloned software variants. We represent the N-way comparison
result as a model of N intersecting sets. By aggregating the sets
along the system decomposition hierarchy, we construct the sets
at every level of the system structure (files, folders, and whole
systems). We define a generalized approach for set model
construction, and instantiate it for an N-way diff on the textual
code representation. We propose set-based visualizations for the
N-way comparison, which scale for more than ten component
variants and MLOC-sized components. We evaluate the
approach by applying it to several groups of industrial software
system variants and by performing a controlled experiment with
a comparison of 5 software forks. In the experiment, the group
using set-based comparison solved the tasks in 58% less time
and with 92% fewer incorrect answers than the group using
pairwise comparison. Finally, we propose a generalization of the
approach beyond software, to enable set-based comparison and
similarity visualization for hierarchically structured models and
data, for example genomes.

Keywords—software comparison, software reuse, similarity,
set model, set visualization, software variability, product lines

I. INTRODUCTION
A comparison of two source code trees is a routine task in

software development. Typically, the two compared folder
trees are displayed side by side, with overlay icons
representing additions, deletions, or changes inside the content
of every folder and file. By navigating the folder tree, the user
can explore the differences, down to the atomic content level
of the text lines inside a code file. At this lowest level, the text
differences between two files are found using the diff [1]
algorithm and indicated using text highlighting. The two-way
comparison is easy to understand, works for code trees of any
realistic size, and enables data exploration by providing both
abstract and detailed views on the differences. In a general
sense, the same kind of comparison is also available for other
artefact types such as software models [2][3], genomes [4],
statistical data [5], any many more.

Problem. In many science and engineering applications,
the problem of characterizing similarities and differences
among many artefact variants arises. This is for example the
case for comparing the code of many software variants to
assess reuse potential [6][7][8][9], for comparative analysis of
many genomes [10][11][12][13], or for comparing the results
of multiple medical test methods [14]. If none of the input

variants is distinguished (e.g., as a base or reference to which
the others should be compared), and there is no meaningful
ordering of the variants (e.g., such as time ordering of
subsequent code revisions), a comparison of N variants needs
to represent all ������

�
 pairwise comparison results. Only after

all these pairs are compared, it becomes possible to identify
common content occurring in all the variants, unique content
found in just one variant, or to find groups of variants similar
to each other, as well as the variants dissimilar from the rest.

Goal of the paper. In this paper we discuss the problem
of N-way comparison, which we previously confronted in our
work on software variants and branching [15][16][17][18][19].
We propose a set-based approach to measure and visualize
similarity information across N software implementation
variants, for any level of abstraction: from complete systems,
through components, folders and files, down to individual
content elements. The approach can be used in maintenance
and reengineering of software forks. It supports finding
components highly similar across variants, and identifying
groups of variants particularly similar to each other. It enables
result exploration from high-level abstraction down to detail
across any selection of input variants or their fragments. The
approach can accommodate different definitions of similarity,
provided by different analysis algorithms. Hence, the focus of
this paper is the set-based representation and visualization of
similarity information for N-way comparison, and the generic
methods to construct this representation for compared assets.

Contribution. We define the N-way comparison result as
a set of tuples of equivalent elements (and not pairs, as in the
pairwise comparison case), and propose the data structure of
hierarchical set models, based on trees and intersecting sets,
which represents the N-way comparison results. We also propose
set-based visualizations displaying for which variants and
elements the content is similar, and how high that similarity is.
While we discuss algorithms to construct the comparison
result, the main contribution of this paper is thus the N-way
comparison framework, consisting of the data structure and
the visualizations. The comparison framework can be utilized
by various similarity detection algorithms – we describe an
instantiation of the approach in the form of an N-way diff.

We generalize the approach to N-way comparison of any
hierarchically structured content (e.g., using folders, packages,
sections) containing equivalent atomic content elements (text
lines, tokens, model elements). So far, we applied the approach
mainly to software and text comparisons. However, we hypothesize
that it could also be applied to other content types found in
software development, data science, or genetics and bioinformatics.

Finally, we evaluate the set-based comparison approach in
a controlled experiment, where the group using set-based
N-way software comparison solved the analysis tasks in 58%
less time and with 92% fewer incorrect answers than the group
using pairwise comparison. We also report application
experience of the approach to industrial software system
variants, illustrating its scalability for many software variants
of large sizes. The contributions of this paper are therefore: * This work was created while the author was with Fraunhofer IESE.

72

2020 Working Conference on Software Visualization (VISSOFT)

978-1-7281-9914-6/20/$31.00 ©2020 IEEE
DOI 10.1109/VISSOFT51673.2020.00012

• Definition of N-way comparison approach, based on
tuples of equivalent elements, the data structure of
hierarchical set models, and set-based visualizations.

• Instantiation of the approach and discussion of the
algorithms for an N-way diff.

• Generalization of the approach beyond software.
• Evaluation of the approach in a controlled experiment

and practical application to industrial software variants.

Paper structure. In Section 2, we discuss the related work
on N-way software comparison. In Section 3, we introduce a
running example of 5 compared software systems, and present
a set-based approach to file content comparison. In Section 4,
we address folder and system comparison. In Section 5, we
present set-based similarity visualizations. We report the
controlled experiment results in Section 6, and the industrial
application experiences in Section 7. In Section 8 we discuss
the benefits and drawbacks of the proposed set-based N-way
comparison approach, and the generalization of the approach
beyond software. Section 9 concludes the paper.

II. RELATED WORK
The development of software components or whole

systems in many parallel variants or forks is a common
phenomenon. In open source, it occurs for Android app
development [20], for projects hosted on collaboration
platforms such as Github [21], as well as for whole operating
systems such as the BSD family [22]. In industrial software
development, cloning of software systems is practiced as a
form of reuse [6]. At the same time, maintaining parallel
variants incurs redundant efforts [6][23]. This motivates a
multitude of approaches for analysis and reengineering of
parallel software variants, with goals such as finding or tracing
features [24][25], supporting maintenance of forks
[26][27][28], merging the fork implementations [29], or
recovering product line architecture [30].

Focus on the similarity representation. This paper focuses
on the exploration of similarity between software variants,
both in the system structure dimension (e.g., to find which
components are similar to components of other variants), as
well as in the variant dimension (e.g., to find which variants
are similar to each other). Hence, in this section we focus on
the similarity representation aspect in the related papers.

Finding pairwise similar software variants.
Yamamoto et al. [8], Yoshimura et al. [9], and Mende et al.
[7] use clone detection to measure the share of similar code
(in terms of clone coverage) between all pairs of software
variants. In the first and third approach, also the similarity
between corresponding components pairs across the variants
is computed. The similarity metrics are presented in a square
matrix (see Fig. 1 left for a schematic depiction). For
visualization of such metrics, Kamiya et al. [31] propose to
use scatterplots. Cordy [32] extends that idea by proposing
live scatterplots, which can be expanded or collapsed to
aggregate scatterplot rows and columns based on the system
hierarchy, e.g., aggregating files to parent folders, and the
folders upwards to the complete system (see Fig. 1 right). On
user demand, the scatterplots provide detailed data for each
scatterplot cell.

However, this representation which is based only on
pairwise similarity hides important information when used for
three or more variants, such as for example the size of the
common code shared by all analyzed variants. The pairwise
similarity matrix is also ambiguous, as the same matrix can be

constructed for different distributions of similarities across
three or more variants. Both these points are illustrated in
Fig. 2 below, where two groups of three software variants,
represented by sets A, B, and C, are analyzed. In the group on
the left side of Fig. 2, the complete common code is similar
across all three sets, while on the right side of Fig. 2 only one
element is similar across three sets. However, for both
situations the cardinalities of the three sets A, B, C, as well as
the cardinalities of A∩B, A∩C and B∩C are the same, so that
the same Jaccard similarity values result, and the same similarity
matrix is created (in the middle of Fig. 2). This illustrates that
the pairwise similarity does not deliver full information about
the analyzed variants. In contrast to that, a set-based
representation can provide information about the similarity of
any possible variant group, as illustrated later in this paper.

Chen et al. [33] compare tens of thousands of mobile apps,
to find software products that are likely cloned, by computing
system-level similarity. However, they do not investigate the
similarity of internal app components. Hemel and Koschke [34]
compare a group of forks to a reference implementation.
However, the forks are not compared to each other, so this
approach cannot detect component variants that are similar
between forks but not similar to the reference. The Diffuse file
differencing tool [35] applies the same principle by comparing
N file variants to a reference file but not against each other.

Finding reusable components. Koschke et al. [36], Wu
et al. [37] and Shatnawi et al. [30] recover the architectures of
the variant systems and measure component similarity to
identify common and variable components. However, these
approaches focus on the membership of the components in
variants, and do not report how far the different
implementations of the components are similar.

Analysis of N software versions is a problem different from
an N-way comparison, because the versions are ordered in time.
Hence, the techniques for multi-version analysis (Eick et al.
[38], Kagdi et al. [39], Hurter et al. [40], Telea and Auber [41]),
focus on comparing the N-1 pairs of consecutive versions: the
difference between any other two versions can be treated as a
sum of the intermediate changes. Without the time ordering
however, all ������

�
 possible variant pairs need to be compared.

Fig. 1 Example of a pairwise similarity matrix for three systems A, B, C
(left), and its visualisation using expandable scatterplots (right). The color
intensity in a scatterplot cell corresponds to the value of the simiarity metric.

CBA

0.380.331

0.310.33

10.30.38

A

B

C

X∩Y
X∪Y

A

Fi
le

1
Fi

le
2

Fi
le

3
Fi

le
4

Fi
le

5
Fi

le
6

Fi
le

7
Fi

le
8

Fi
le

9
Fi

le
10

Fi
le

11
Fi

le
12

File1
File2
File3
File4
File5
File6
File7
File8
File9

File10
File11
File12

A

B

C

B C

A B
2

3
4

C

CBA

0.380.331

0.310.33

10.30.38

A

B

C

X∩Y
X∪Y

3

0

00

A B
0

1
2

C

1

2

22

Fig. 2 Similarity of two different groups of systems A, B, C, represented
by intersecting sets (left and right) and by a pair-wise similarity matrix (center).
While the set models allow for distinguishing the different situations, the pair-
wise matrix is less informative as it shows the same values for both cases.

73

N-way matching and merging. Rubin and Chechik [42],
Reuling et al. [43], and Schlie et al. [44] propose algorithms
for finding similar elements across N software models. Rubin
and Chechik group the matching elements into tuples, while
the other approaches provide an equivalent solution by
annotating the merged elements with variability information.
Ishio et al. [45] define an approach to detect similar folders
and files across software systems. Sakaguchi et al. [46]
construct a unified directory tree which matches the
corresponding directories even if some of them were renamed
or moved in the variant systems. We see the finding and matching
approaches as complementary to our work. The matched system
components and content elements, found using these
approaches, can be used to construct a set model and
corresponding visualizations in our comparison framework.

Visualization of sets. The approaches for visualization of
sets and set intersections, such as these described by Lex et al.
[47], Lamy and Tsopra [48], and Alsallakh and Ren [49] are
complementary to our work: they can be used to visualize a
set model for N variants of software systems or components.
Several further such approaches are presented by Alsallakh et
al. [50] in their survey of the state of the art of set visualization.

Our previous work. This paper presents a redefinition of
our former analysis approach [15]. We now refine and extend
the approach, use the set models as the basic data structure,
define set-based visualizations, and experimentally evaluate
the benefits of set-based similarity representation. More details
about the approach are available in a PhD thesis [16], and the
tooling aspects are described in a separate paper [19].

III. N-WAY CONTENT COMPARISON WITH A SET MODEL
In our approach, we combine two main ideas. First, we

represent variant software components as intersecting sets of
atomic content elements. The elements similar across any K
variants belong to the respective intersection of corresponding
K sets. Second, we aggregate the sets along the system
structure hierarchy, constructing the sets for container
elements (e.g., folders) based on the sets of their constituent
parts (e.g., files). This section details the set model
construction for files, while the next section concerns the
hierarchical aggregation of the file-based models for folders.

System structure. For the purpose of comparison, we assume
that the input system variants are structured according to the
model in Fig. 3: they form a tree of Container elements (e.g.,
folders, packages), where the leaves of the tree (e.g., files,
classes) are Content Units as they contain the actual content of
the system (e.g., source code). The content itself is then formed
by Content Elements (e.g., text lines, tokens) which are the
base elements for content comparison and size measurement.
We define no further assumptions on the nature of Structure Tree
Elements and the Content Elements. For example, we do not
define how the Content Elements are stored inside a Content Unit:
they can be stored as an ordered list (e.g., as text lines in a
file), as a tree (e.g., as an abstract syntax tree of tokens), or in
an unordered form (e.g., as classes in an UML diagram). The
depicted structure is generic and can represent system variants
in the form of a source code tree, software model, or others.

Set model construction is illustrated in Fig. 4 for four
example Content Units, each belonging to a different system
variant. We treat the Content Units as sets of their contained
Content Elements, and use a comparison function to identify
tuples of similar Content Elements between the variants. Each
tuple contains at most one Content Element from each variant,
and each Content Element belongs to exactly one tuple. Then,
the tuples are placed in the set intersections of the set model
according to the variant membership of the elements they
contain: for example, a tuple containing only elements of S3
and S4 is placed in the �	�
������S3S4 intersection.

The comparison function is an equivalence function, i.e.,
it is symmetric, reflexive and transitive. It defines which Content
Elements are considered similar when the variant Content Units
are compared. Hence, the equivalence function is a variable
part of our approach: it needs to be defined depending on type
of the analyzed content (text, model, etc.) and on the required
notion of content similarity. In Fig. 4, the similarity is based
on the shape of the elements, but not on their fill pattern.
Similarly, in the comparison of text lines the equivalence can
consider the text content, but ignore the formatting. In Section
4 we introduce a second comparison function, matching tuples
of Structure Tree Elements across the variants.

Example N-way comparison. We now illustrate the set-
based comparison for an example group of five software systems,
depicted in Fig. 5. In this case, the system structure consists of
folders (as Containers) and files (as Content Units), and the
Content Elements are text lines. The example comparison function
is an N-way diff, which is based on the output of pairwise diff for
all file variant pairs. As diff uses the Longest Common Sequence
algorithm [1][51], two text lines are only matched if they are
identical and are part of the common sequence (for example, in
sequences ABC and CAB, the longest common sequence is AB,
and C is not matched). To construct the set model for N variants,

Fig. 5 Five example system variants, which differ slightly in their folder
structure and the file content (top). Abstracted content of five variants of the
io.c file (bottom).

A
src

sys
io.c
proc.c

drv
con.c

B
src

sys
io.c
proc.c

drv
con.c

C
src

sys
io.c

drv
con.c
ext.c

D
src

sys
io.c
proc.c
con1.c

E
src

sys
io.c
proc.c
fun.c
drv.c
ext.c

S1 S2 S3 S4

S1

S2

S3 S4

S1

S3 S4

S2

Fig. 4 Four Content Units, each from a different system variant, contain
similar Content Elements. The set model is constructred by forming tuples
of similar Content Elements, and placing the tuples in the set intersections.

Fig. 3 An UML diagram of the generalized system variant structure.

System Variant

<<abstract>>
Structure Tree Element

Container Content Unit Content Element

1
*

1 *

1

*

<<abstract>>
System Element

74

the function creates a tuple of text lines if and only if every pair of
lines within the tuple was identified as similar by the pairwise diff.
The bottom part of Fig. 5 depicts an abstracted content of the
io.c file in five variants. Each small rectangle represents a text
line, a number within a rectangle is the consecutive line
number within that file, and the letters symbolize the line content.

Fig. 6 shows pairwise comparison of the five io.c file variants,
where ten file pairs are compared. This result is complex to
analyze: although the matches and differences for every file
pair are shown, it is difficult to identify facts related to a higher
number of variants. For example, it requires time to find text
lines common across all variants, or unique to just a single
variant. In the N-way diff, we aggregate the pairs of matched
lines shown in Fig. 6 to tuples: two lines are in the same tuple
if and only if a pairwise match between them exists. The
resulting set model is depicted in the left part of Fig. 7. Using
the set model, it is easy to recognize in which variants the
particular lines occur: for example, the lines B and C are
common to all five variants, lines H and I occur in all variants
except variant D, and line Y is unique to variant E. It is also
visible that all the lines of variant B occur in other variants,
while the variant D has the highest number of unique lines (4).

Bar diagrams. To visualize the basic similarity metrics for
N intersecting sets, we use a bar diagram with N+1 bars, as
depicted in the right part of Fig. 7. Each of the N bars
corresponds to a different set, and the last bar depicts the union
of all N sets. The length of each bar is equal to the size of the
respective set. Each bar is divided into three parts, with their
lengths equal to the number of set elements falling into three
categories: core (elements belonging to all N sets), shared
(belonging to 2..N-1 sets), and unique (belonging to just 1 set).
The legend for the used colors is provided in Fig. 8. The bar
diagram provides a quick overview over the amount of
elements falling into each category for each set, and over the
sizes of the sets and their union. It is particularly useful for a
higher number of sets, when a Venn diagram such as the one
in the left part of Fig. 7 becomes difficult to read.

Showing element membership. For each compared element
it is known to which sets its corresponding tuple belongs. This
information can be visualized in their Content Unit, by
coloring the elements according to their set membership as
shown in Fig. 8. Hence, this visualization is an N-way analogy
to the match and difference information visualized in Fig. 6.
Furthermore, the elements belonging to any group or
intersection of sets (e.g., shared with other selected set) can be
shown in that view using an additional color, as discussed below.

Set theoretic operations on the set model can be
performed on user demand to investigate the variant similarity.
A visualization of an example operation result, using an
additional color in the bar diagram, is shown in Fig. 9. As
described by Alsallakh et al. [50], set-typed data is suitable
for a large variety of similarity analysis tasks, for example:

• Find or count elements which fulfill a condition on set
membership, e.g. elements in set A and in B but not in C.

• Compare set and set intersection cardinalities, e.g., |A|
with |B|, or |A∩B| with |A∩C|, and identify the sets and
intersections with the largest or smallest cardinality.

• Analyze set inclusion relations, e.g., whether set A is
fully included in B, or in B∪C.

• Analysis of element reuse: for a specific element, find
or count all sets in which that element occurs.

• Find or count elements in a set with a specific degree of
reuse: e.g., elements unique to a set, shared by a given
group of sets, shared by at least/exactly K sets, or by all sets.

• Compare sets based on element reuse, e.g. check if set
A contains more unique elements than B, or more elements
shared with C, or more elements shared with 1 or K other sets.

In our approach we construct set models for every element
of system structure tree, as well as for whole variant systems.
The above analysis tasks, applied to these set models, are highly
relevant when analyzing software variants with the goal of
finding reusable components or finding similar variant groups.
With the set model, performing these analysis tasks is much
easier than in the case of pairwise comparison.

Non-transitive similarity. In the above case of N-way diff,
a set model for N variants is constructed from ������

�
 pairwise

comparison results. To create a tuple, the match graph between
the element pairs is used. If the graph is complete, all its
elements form the tuple. However, the match graph can also be
incomplete, that is, the similarity relation built from the
matches can be non-transitive. Fig. 10 depicts an example case
of incomplete match graph (left), as well as an incomplete match
graph containing two elements from the same file variant (right).

Fig. 7 The set model constructed for five variants of the io.c file (left).
A bar diagram visualizing the similarity between the io.c variants (right).

A
G

D
E L

J
K
M

Z

Y B
C W

F

X

H
I

E

A

D

B

C

A
B
C
D
E

2
2
2
2
2

2

5
6

4
3

5

7

4
1

2

7

1

8

8

9

9

8 17ALL

Fig. 9 An example set theoretic operation on the set model (left) and its
visualization in the bar diagram using an additional color (right).

A
G

D
E L

J
K
M

Z

Y B
C W

F

X

H
I

E

A

D

B

C

A
B
C
D
E

5
4

3
5

4

5

2
4

3

3

4

4
1

2

7

1

8

8

9

9

8 17ALL
A∩D

Fig. 8 The content of the five file variants colored according to the set
membership of the text lines.

io.c (A)
1 A
2 B
3 C
4 D
5 E
6 F
7 G
8 H
9 I

io.c (B)
1 W
2 B
3 C
4 X
5 D
6 E
7 H
8 I

io.c (C)
1 W
2 B
3 C
4 Z
5 F
6 H
7 I

io.c (D)
1 L
2 B
3 C
4 D
5 E
6 F
7 J
8 K
9 M

io.c (E)
1 Y
2 B
3 C
4 X
5 D
6 E
7 H
8 I

Legend
Core

Belongs to
all N variants

Shared
Belongs to
2..N-1 variants

Belongs to
1 variant

Unique

Fig. 6 Pairwise comparison of the five io.c file variants. White text lines
represent matches, grey text lines represent differences.

io.c (B)
1 W
2 B
3 C
4 X
5 D
6 E

7 H
8 I

io.c (C)
1 W
2 B
3 C
4 Z

5 F

6 H
7 I

io.c (D)
1 L
2 B
3 C
4D
5E
6F
7J
8K
9M

io.c (E)
1 Y
2 B
3 C
4 X
5 D
6 E

7H
8I

io.c (A)
1 A
2 B
3 C

4 D
5 E
6 F
7 G
8 H
9 I

io.c (A)
1 A
2 B
3 C
4 D
5 E
6 F
7 G
8 H
9 I

io.c (A)
1 A
2 B
3 C

4 D
5 E
6 F
7 G
8 H
9 I

io.c (A)
1 A
2 B
3 C

4 D
5 E
6 F
7 G
8 H
9 I

io.c (B)
1 W
2 B
3 C
4 X
5 D
6 E
7 H
8 I

io.c (C)
1 W
2 B
3 C
4Z
5F

6 H
7 I

io.c (B)
1 W
2 B
3 C
4 X
5 D
6 E
7 H
8 I

io.c (B)
1 W
2 B
3 C
4 X
5 D
6 E
7 H
8 I

io.c (C)
1 W
2 B
3 C
4 Z

5 F
6 H
7 I

io.c (C)
1 W
2 B
3 C
4 Z
5 F

6 H
7 I

io.c (D)
1 L
2 B
3 C

4 D
5 E
6 F
7 J
8 K
9 M

io.c (D)
1 L
2 B
3 C

4 D
5 E
6 F
7 J
8 K
9 M

io.c (D)
1 L
2 B
3 C
4 D
5 E
6 F
7 J
8 K
9 M

io.c (E)
1 Y
2 B
3 C
4 X
5 D
6 E
7 H
8 I

io.c (E)
1 Y
2 B
3 C
4 X
5 D
6 E
7 H
8 I

io.c (E)
1 Y
2 B
3 C
4X
5D
6E
7H
8I

75

To build element tuples from a non-transitive match graph,
we find cliques (complete subgraphs) in the graph, and form
the tuples from these cliques, as illustrated in the bottom part of
Fig. 10. With this approach, each two elements in every tuple
are pairwise similar, and the match edges which do not belong to
any clique are ignored. The process of finding the cliques can be
optimized towards different, partially conflicting criteria: finding
the largest cliques, finding the least amount of cliques, or
minimizing the amount of original graph edges not included in
any clique. Algorithms for each of these criteria exist [16]. In our
implementation, we iteratively use the largest clique algorithm.

While a strongly non-transitive similarity cannot be fully
represented with a set model, as some similarity matches need
to be ignored, we found that this problem is not significant in
the practice when building the set model based on pairwise
diff. We analyzed 9 groups of variant systems, each having
from 4 to 15 variants. For each group, we needed to ignore at
most 0.75% of the pairwise text line matches to obtain fully
transitive similarity and build the set model [16].

IV. COMPARING STRUCTURE TREES AND SYSTEM VARIANTS
The previous section details the construction of a set

model for a group of Content Units, such as files, on an
example of an N-way diff. In this section we continue using
that example to illustrate the set-based comparison for
Containers (folders) and complete system variants, structured
hierarchically according to the model in Fig. 3.

Finding similar files. As the system variants were cloned
(forked) from each other, a large part of their tree structure
could remain identical. However, some Content Units or
Containers could be renamed or moved in the structure tree.
Hence, a comparison of a group of system variants starts with
the search for corresponding Content Units and Containers,
based on their similarity, across the system variants. As in the
case of content comparison, we model the similarity of
structure trees by forming tuples of tree elements: each such
tuple contains at most one Content Unit or Container from
each variant tree, and each Unit or Container belongs to exactly
one tuple. Hence, in the case of N-way diff a tuple represents
a group of matched files or folders. Naturally, we only match
Units to Units and Containers to Containers. In result, a
unified structure tree is constructed from the variant trees, as
illustrated on the example in Fig. 11. The unified structure tree
contains a Unit or Container for each tree location and
element name which occurs in any of the compared trees. The
tree elements which have different names or locations, but are

matched to each other, are modeled as hard links analogously
to hard links in a file system. This means that such hard link
elements in the unified tree lead to the same tuple of matched
tree elements and to the same set model, as shown by the color
coding of the elements in Fig. 11. In the opposite case, when
two variant elements having the same name and system-
relative location are not matched, the unified structure tree
contains two different, not linked elements, with a suffix string
added to their name for unambiguous identification.

The search for similar files and folders can be performed
using many algorithms. As in the case of equivalence function
for content elements, the file search algorithm is a variable
part of our approach, which can be exchanged depending on
the required notion of tree and file similarity. The simplest file
matching algorithm is based on the equality of element names
and system-relative paths, hence matching elements located in
the same locations of the variant trees. In our experience, this
algorithm is sufficient for many industrial software variant groups,
where the move or rename operations were rare.

To search for renamed or moved files, we extend the
existing algorithms for DNA aligning. We define an algorithm
for pairwise aligning of file trees, based on textual file
similarity. Then, we iteratively use the Gusfield’s Center Star
method [52] to construct a multiple tree alignment. We document
the multiple tree alignment algorithm in detail in [17]. Further
algorithms, such as those discussed in the related work
section, can be likewise applied. We require however that the
algorithm returns tuples of matched elements, to enable the
unified structure tree construction described above.

Hierarchical set aggregation. The set models of Content
Elements are first constructed for the tuples of matched
Content Units, as described in Section 3. Afterwards, we

Fig. 10 Top: two examples of pairwise diff comparisons which result in
transitive (full lines) and non-transitive (dashed lines) match graphs.
Bottom: cliques found in the non-transitive graphs are used to form tuples.

1 A
1.txt

2 B

1 A
2.txt

2 B

3 C

4 D

1 A
3.txt

2 C

3 D

4 B

2.txt

2 B
3.txt

4 B

1.txt

2 B

1 A
1.txt

2 B

3 C

1 A
2.txt

2 B

3 C

1 A
3.txt

2 D

3 B

2.txt

2 B
3.txt

3 B

1.txt

2 B

4 D

5 B

5 B

Fig. 12 Hierarchical aggregation of set models, using the unified structure
tree for variants A, B, C of the example system variant group.

src
sys

io.c

proc.c

drv

con.c

ext.c

A B
A

C
D

CE

B

GF

A B
H

J
LK

I

A B
M

P
O

CR

N

Q

S

CT U

A

C
D

E

B

GF
H
I

K J
L

A B

C

U

P
O

R

N

Q
M

S T

A B

C

A, B, C

A, B

A, B, C

C

M

P

O

R

N

Q

S TU

A

C
D

E

B

GF

H
I

K J
L

A B

C

A, B, C

Fig. 11 The unified structure tree (right) for example systems (left). Each tuple
of matched files or folders is indicated by a different color – for example, the
files con.c, con1.c and drv.c are matched in the same tuple. The unified tree
contains hard links between matched elements having different name or location.

A
src
sys

io.c
proc.c

drv
con.c

B
src
sys

io.c
proc.c

drv
con.c

C
src
sys
io.c

drv
con.c
ext.c

D
src
sys

io.c
proc.c
con1.c

E
src
sys

io.c
proc.c
fun.c
drv.c
ext.c

drv
con.c
ext.c

src
sys

io.c
proc.c
fun.c
drv.c
ext.c
con1.c

76

create the set models for Containers: such a model contains
all Content Elements, which are contained in the Content
Units belonging to the Container (as direct children, or
through child Containers). This aggregation method is
illustrated in Fig. 12 for the files and folders of the example
system variant group: the set model for the sys folder contains
the text lines of the io.c and proc.c files, the model for the drv
folder is built using the models of con.c and ext.c files, and the
model for the root folder contains all text lines of every variant
of every file. As the content similarity between folder variants,
as well as between whole system variants, is expressed using
set models, the same analysis tasks, the same set theoretic
operations and the same set-based visualizations can be applied
likewise to files, folders, and system variants.

Inclusive and exclusive aggregation. The set aggregation
principle described above is straightforward for unified structure
trees which are created by the equal name and location algorithm.
In such a name-based unified structure tree, the containment
relation between the tuples forms a tree: for any tuple of
Containers TCONTAINER and any tuple of Content Units TUNIT,
either every member of TUNIT has a parent in TCONTAINER, or
none of them has. However, that property does not hold for
unified trees containing hard links: as illustrated in Fig. 13, the
folder tuple of sys contains the tuple of con.c and con1.c files,
but for the conc.c file variants the parent folder is drv,
belonging to a different folder tuple. In this case, we can use
an inclusive or exclusive aggregation method to construct the
set models for folders, as illustrated in Fig. 13:

• In the inclusive method, a set model of a TCONTAINER
tuple is built from the set models of all TUNIT tuples in
which at least one member Content Unit is a child of
any of the TCONTAINER members.

• In the exclusive method, a set model of a TCONTAINER
tuple is built from the set models of all TUNIT tuples in
which all member Content Units are children of any of
the TCONTAINER members.

Hence, the inclusive aggregation method includes the set
models of TUNIT tuples where some of the member Content
Units are not children of TCONTAINER members, while the
exclusive method excludes such tuples from the aggregation.

Naturally, the set model of a given TUNIT tuple is
aggregated just once, even if the tuple contains many hard
links to that model. Note that both aggregation methods
produce the same result for the root folders of the system
variants, as these folders are parents of all files in their trees.

V. SET-BASED SIMILARITY VISUALIZATION
In this section we present N-way comparison visualizations

based on the unified structure tree and the set models. Since
the set models are available for Content Units, Containers, and
complete system variants, the same visualizations can be used
for all these elements. The visualized data is an N-way diff
analysis of six systems from the BSD Unix family, i.e. 386BSD
0.1, FreeBSD 2.0.5, NetBSD 1.1, NetBSD 1.2, NetBSD 1.3,
and OpenBSD 2.0. For each visualization we indicate the
analysis task it supports by underlining the task description.

Unified structure tree view. To navigate through the
unified structure tree, we use a system structure view in a
UML-like representation (Fig. 14). Initially, the view shows
the children elements of the root folder. The folders can be
further expanded to show their contained elements. Each tree
element shown in the view displays its name, the number of
variants it belongs to (in the bottom left corner), number of
lines in the set union of its associated set model (bottom right
corner) and a graphic showing the proportion of core, shared
and unique code in the set union. On user demand, also the
result of a set theoretic operation, e.g. counting set elements
fulfilling a specific membership condition, can be visualized
on every element using an additional color in the bar diagram.
By selecting any element in this view, the user can display
further visualizations of the similarity information, listed below.

Tree map structural diagram is an alternative way of
system structure visualization (Fig. 15). A tree map [53] displays
all elements of a system tree or a component subtree, visualized as
rectangles and nested according to the tree hierarchy. The
rectangles have areas proportional to the size of the respective

Fig. 13 File con1.c in variant D is matched to the file con.c in variants A and C.
The respective structure tree nodes are treated as a hard link, connected to the
same set model (left). The set models for folders can be aggregated using the
inclusive or exclusive approach (right).

src
sys

io.c

proc.c

drv

con.c

ext.c

A D
A

C
V

CE

B

GF

A D
H

J
LK

I

A D
M

P
Y

CR

N

Q

S

CT U

A

C
V

E

B

GF
H
I

K J L
A D

C

U

P

R

N

Q
M

S T

A D

C

A, C, D

A, D

A, C, (D)

C

M

P

R

N

Q

S TU

A

C
V

E

B

GF

H
I

K J
L

A D

C

con1.c
(A,C),D

X

X

X

Inclusive aggregation:
io.c,proc.c, con(1).c

Y

M N A

C
V

E

B

GF
H
I

K J L

A D

C

X
Y

PQ
R

Inclusive aggregation:
con(1).c, ext.c

Y

Exclusive aggregation:
ext.c

S

CT U

Exclusive aggregation:
io.c, proc.c

Z Z

Z

Z

Inclusive and exclusive aggregation:
all files

A, C, D

Fig. 14 A screenshot of the navigable visualization of the unified structure
tree for the group of six BSD Unix systems.

Fig. 15 A screenshot of the tree map diagram of the unified structure tree.
The intensity of red color in an element corresponds to the proportion of the
containted code that belongs to at least 4 variant systems.

77

set model, and their color indicates the value of a user-selected
metric, such as the proportion of code fulfilling a set membership
condition. Hence, a tree map supports identification of elements
with an interesting combination of sizes and metric values, while
also indicating whether these elements are located nearby in
the system structure.

Bar diagrams, such as presented in Fig. 7 in Section 3, are
available for every unified structure tree element. The bar
diagram can display the result of arbitrary set theoretic
operation, as shown in Fig. 9. Hence, it is used to count and
compare the cardinalities of sets and any selection of set
intersections. For convenience, the sizes of displayed bar areas
are also provided in a table. In Fig. 16, we present the bar
diagram for the root folder of six example BSD Unix systems.

Tree map set diagram is a size-preserving visualization
of all existing set intersections. Hence, it provides another way
to count and compare set intersection cardinalities. In this
diagram, we combine the ideas of a Venn diagram [54] and of
a tree map [53]. Fig. 17 shows a Venn diagram of 4 software
system variants, and a corresponding tree map set diagram.
Instead of showing structure hierarchy elements, the tree map
areas are used to display set intersections. The name of each
area indicates its membership in the input sets (in Fig. 17 we
use binary name coding for readability), and the area size
corresponds to the cardinality of the set intersection. In
contrast to the Venn diagrams, this visualization can present
the set intersections for a higher number of sets in an
understandable way, while also graphically indicating the
relative area sizes. Furthermore, it uses similar shapes for the
shown areas, which facilitates visual comparison. Different
diagram layouts (grouping of intersections in the visualized tree
structure) can be used depending on the analysis task. Fig. 18
shows the diagram for six example BSD systems. We provide
more details on this visualization in [16]. Similar visualization
was independently published later by Alsallakh and Ren [49].

Content view, already schematically drawn in Fig. 8 in
Section 3, is used for viewing the similarity information on the
lowest detail level of source code. Fig. 19 shows a screenshot
from the tool, annotated with explanations of the visualization
mechanisms. The set membership of each text line (core, shared,
unique, or a user-defined set theoretic operation) is indicated
with line background coloring and an icon – except for lines
which were ignored during the analysis, such as empty lines.
A tooltip showing set membership details is provided on user
demand. Hence, the defined visualizations show the set-based
similarity information on every level of system hierarchy, from
the system structure root down to every single content element.

Phylogenetic distance diagram, shown in Fig. 20,
supports identification of system and folder variant pairs and
groups which exhibit particularly high similarity. The diagram
uses the branch layout to visualize the identified variant
groups, and indicates the relative similarities between and
within the groups using the branch length [55]. Hence, it
provides a third way of investigating set similarity, together
with the bar diagrams and the tree map set diagram.

Phylogenetic variant-version diagram, shown in Fig. 21,
uses the set similarity information to reconstruct a probable
evolution history of the analyzed system, folder or file variants.
We start its construction by ignoring all set intersections with
cardinality falling below a defined threshold – by default, 1%
of the union code size. Then, we construct a Hasse diagram of
the remaining intersections and lay out the diagram as a tree,
with branch lengths proportional to the sizes of particular
intersections [18]. Hence, the diagram shows an inclusion

Fig. 19 An annotated screenshot of code-level similarity visualization with
line background coloring, category icons, and on demand details.

Fig. 17 A Venn diagram for four intersecting sets (left). A tree map set
diagram for the same sets, using color coding as in the bar diagram (right).

S1

S2 S3

S4

663618

18679
54964 17157399893

914

104887
19350215738 8162

561999

237799

53346
3417

23257

bit coding

S1S2S3S4
1 1 1 1

0001
(193 502)

0100
(54 964)

0010
(171 573)

1000
(104 887)

1101 1110 0111

1010
(561 999)

0101
(237 799)

1100
(99 893)

1001
(53 346)

0110

1111
(663 618)

Fig. 16 A bar diagram screenshot for the example group of six BSD systems.
“Query” is a user-defined set theoretic operation.

Fig. 20 Phylogenetic distance diagram (dendrogram) for the BSD systems.
Location of branching points corresponds to the similarity of the tree branches.

0% 100%

FreeBSD 2.0.5

NetBSD1.1

NetBSD1.2

OpenBSD2.0

NetBSD1.3

386BSD 0.1

50%

Fig. 18 A screenshot of the tree map set diagram for the root folder of the
example six BSD systems.

78

hierarchy of the sets and the larger intersections. The diagram
layout coincides with the software evolution history: as the
software typically grows with time, an earlier software version
contains less code than a later one, and the code of the earlier
version is almost fully included in the code of the later version
(see the three analyzed NetBSD versions for an example).
Hence, the diagram shows these versions as successors on a
single branch. In contrast to that, two cloned variants developed
in parallel both contain a larger amount of unique code, and
appear in the diagram as parallel branches. Consequently, the
diagram helps to distinguish component versions from
variants, and indicates the relative changes between them. In
most cases, the Hasse diagram can be reduced to a tree. If the
reduction is not possible, the alternative locations of a variant
can be displayed as parallel, alternative tree branches.

A table view of the similarity information can be obtained
by exporting the basic set model metrics, such as the amount
of core, shared and unique code, to an Excel table for all
unified tree elements. This is useful for tasks such as sorting
and filtering the tree elements according to metrics values.

VI. A CONTROLLED EXPERIMENT ON SET-BASED COMPARISON
The core idea of our approach is the use of set similarity

model for N-way comparison. We postulate that the similarity
abstraction in the form of a set model is easier to analyze and
understand than the similarity abstraction of pairwise comparison.
In this section we describe a controlled experiment we performed
to evaluate this claim. A detailed experiment description, including
all documents and the raw data, is provided in the thesis [16].

Experiment goal. An evaluation of complete comparison
approaches would not determine if the measured differences
were caused by the use of the set model, the abstractions, the
visualizations, or the different user interface, but would only
provide results for a combination of those. Consequently, in
the experiment we decided to evaluate just the core idea of our
approach, the set similarity model, in isolation from the other
factors. The experiment goal [56] was therefore to:

TABLE I. THE GOAL OF THE CONTROLLED EXPERIMENT

Analyze the pairwise and set-based similarity models
for the purpose of comparison
with respect to analysis efficiency, correctness and cognitive load
from the
viewpoint of a software developer

in the context of Software Product Lines university course, with
students analyzing file variants for code similarity.

The experimental hypotheses we evaluated were:
• H1 Efficiency. The use of the set similarity model

reduces the effort for analyzing similarity information
as compared to the use of pairwise comparison model
(metric: analysis time).

• H2 Correctness. The use of the set similarity model
allows for understanding the similarity information

with a higher correctness compared to the use of pairwise
comparison model (metric: ratio of incorrect answers).

• H3 Cognitive Load. The use of the set similarity
model allows for analyzing the similarity information
with a lower cognitive load compared to the use of
pairwise comparison model (metric: the SMEQ scale [57]).

Experiment Process. The experiment participants were
22 computer science students attending the Software Product
Lines course at the Technical University of Kaiserslautern.
None of the students had a prior contact with our approach or
tool. We presented the experiment procedure to all
participants, and then randomly assigned them to one of the
two groups of 11 students each: the treatment group, using only
the set similarity model, or the control group, using only the
pairwise similarity model. After the groups split, each
participant received an identical printed document containing
the introductory information, the briefing questionnaire, the
experimental tasks, and the debriefing questionnaire. After
answering the briefing questions, they received a printed tool
tutorial, which was also presented to them as a slide show. The
tutorial was identical for both groups, except for the part concerning
the similarity model. After the tutorial, the participants
familiarized themselves with the tool and answered two
sample warm-up questions. Then, all participants were
individually solving the experimental tasks. Finally, they
filled out the debriefing questionnaire.

Independent and Dependent Variables. The only
independent variable varied between the experimental groups
was the used similarity model: pairwise or set-based. All other
differences were removed: the groups solved identical tasks,
used identical documents, and worked in parallel in two
equivalent laboratories. The same system variants were
analyzed by both groups, and the used similarity information
was technically the same – we verified that all the pairwise
similarity relations were included in the constructed set model.
The dependent variables investigated in the experiment are the
analysis effort, the answer correctness, and the cognitive load.

Tasks. The participants analyzed the code similarity in
files of five system variants, written in Java. The systems
contained ca. 20 files each in a simple package structure. The
participants answered 16 questions, printed in the experiment
documents, concerning file variant similarity. The terms used
in the questions (similar code, common or unique code) were
explained before in the tutorial. Example questions were:

• Which two variants of the file EclipseFigure.java are
the most similar to each other?

• Which variants of the file UndoableTool.java have
identical code?

All questions needed only a short answer, such as stating
the names of the variants. To view the similarity information,
the students used a reduced variant of our analysis tool, in
which we disabled all visualizations and mechanisms except
for the system hierarchy navigation (as in Fig. 14, but with no
similarity information) and the code view (as in Fig. 19).
Hence, the students were only able to locate the files in the
system structure diagram, identical for both groups, and to
view the code of file variants in the code editor. In the editor,
the background of the displayed code lines was colored
according to the similarity information provided by the pairwise
(control group) or set-based (treatment group) similarity model.
The icons and tooltips provided for each line were also model-
dependent. Except for these differences, all other user interface
mechanisms were identical for both groups. The participants
were not allowed to use other tools, but could take notes on paper.

Fig. 21 Phylogenetic variant-version diagram for the six BSD systems. The
length of branch sections is proportional to the amount of shared or unique code.

386BSD 0.1

NetBSD1.1
NetBSD1.2

OpenBSD2.0

NetBSD1.3

0 2434 185 LOC

FreeBSD 2.0.5

79

The briefing questionnaire focused on the participant
background: field of study, semester, and color blindness. We
further asked about participants’ experience in programming
and in the use of comparison methods and tools, all rated on a
five-point Likert scale. The differences between the groups
were not statistically significant (two-tailed Mann-Whitney U
test at p = 0.05), except for one question: the control group had
more experience in using diff tools than the treatment group.
Hence, the control group was more experienced in a method
similar to the one they used in the experiment. However, as
reported below, the control group achieved consistently worse
task results. Hence, we consider the different experience to not
influence the hypothesis evaluation, as the control group result
would be probably worse if its members had less experience.

The debriefing questionnaire focused on the
experienced cognitive load (discussed below) and a number of
control questions using five-point Likert scale: whether the
participants understood the tasks, used the tool as intended,
and had sufficient time. The 22 participants confirmed that
they understood the tasks and the tool and had sufficient time,
with no statistically significant difference between the groups.

Hypothesis testing. In Fig. 22 we use boxplots to present
the results of time and answer correctness measurements. All
participants from the treatment group, using the set model,
finished their tasks faster (maximum: 18 minutes) than the
fastest participant from the control group (25 minutes). The
treatment group participants needed on average 14.0 minutes
to complete the tasks (median: 14.0 min, σ=2.28 min), while
the control group participants needed on average 33.7 minutes
(median: 32.0 min, σ=7.38 min). One control group participant
did not provide the finishing time, so we report the task time
results for a group size of 10. However, we know that this
participant was neither the fastest, nor the slowest in the group.

The task correctness was higher in the set group (Fig. 22),
where one participant made 2 errors and all others provided fully
correct answers (sum: 2, average: 0.18, median: 0.0, σ=0.60). In the
pairwise (control) group, only three participants provided correct
answers for all 16 questions, while the others made between 1
and 6 errors (sum: 25, average: 2.27, median: 2.0, σ=2.05).

To evaluate the cognitive load, we use the Subjective
Mental Effort Question (SMEQ) scale [57], validated in
usability research. The SMEQ presents a continuous scale,
labeled in nine locations with categories ranging from
“absolutely no effort” to “extreme effort” (see Fig. 23 left).
The respondents indicate their subjectively felt cognitive load,
experienced during the tasks, by placing a mark on the scale
and then converting it to an integer value between 0 and 150.
The SMEQ measurements are provided on an interval scale,
as the category locations were psychometrically calibrated [57].
This allows a convenient response analysis, as the calculation
of averages and distances is meaningful for interval scale data.
In Fig. 23 we present the cognitive load results provided by
the participants. The treatment group cognitive load (average:
19.0, median: 15.0, σ=9.06) was much lower than the control
group load (average: 50.0, median: 48.5, σ=35.56). In the
control group, one participant did not provide an answer.
Consequently, we report the data for 10 group participants.

Table II presents the results of hypothesis testing. We
tested the task time and cognitive load data with the Student's
t-test, as they are normally distributed (Shapiro-Wilk normality
test) and on at least interval scale. The task error series, where
the data of the treatment group is not normally distributed
according to the normality test, were tested using the Mann-
Whitney U test. For all three hypotheses we also provide the

p value. Finally, we quantify the observed improvement by
comparing the averages for both groups: the treatment group
needed 58% less time and made 92% fewer errors. All three
evaluated hypotheses were accepted in the experiment. Hence,
the experiment result indicates that the use of the set-based
comparison allows for analyzing code similarity of file
variants with a lower effort, higher correctness, and lower
cognitive load, as compared to the use of pairwise comparison.

Threats to validity. The internal validity concerns the
degree to which the experiment outcome was caused by the
treatment. We mitigated this threat by random assignment of
participants to groups, and by removing all differences between
the groups whenever possible. We consider the only difference,
which was the higher experience of the control group in using
diff tools, to not endanger the validity, as discussed above. We
also mitigated the effects of learning a new method and tool by
a pre-experiment tutorial and providing example analysis tasks.

The external validity (generalizability) of the experiment
result is affected by the choice of experiment participants,
compared systems, and tasks. The external validity threats can
be mitigated by a replication of the presented experiment in
different settings. It would be especially interesting to
understand how the differences in effort and correctness of
similarity understanding, using the set-based and pairwise
methods, vary with a growing number of compared variants.

Fig. 22 Boxplots showing the experiment results: task time (left) and task
errors (right) for the two groups.

0
5

10
15
20
25
30
35
40
45
50

Time [min]

Set Model (N = 11)
Treatment Group

Pairwise (N=10)
Control Group 0

2

4

6

8

10
Errors (for 16 tasks)

Set Model (N=11)
Treatment Group

Pairwise (N=11)
Control Group

Fig. 23 The SMEQ scale for the cognitive load (left) and the boxplots
showing the distribution of the load values for the two experiment groups.

0

10

20

30

40

50

60

70

80

90

100

SMEQ scale

Set Model (N=11)
Treatment Group

Pairwise (N=10)
Control Group

120

110

Absolutely no effort 2
Almost no effor t 13

Some effor t 38

A little effor t 26

Rather much effor t 57

Considerable effort 71

Great effor t 85

Very great effor t 102
Extreme effor t 112

130

140

150

TABLE II. STATISTICAL TESTING OF THE EXPERIMENT HYPOTHESES

Hypothesis Accepted at p<0.05 p Observed improvement
HS1
Efficiency Yes (t-test) 3.7e-08 Avg.: 14.0 to 33.7→ 58.5%

HS2
Correctness Yes (U test) 0.0048 Avg.: 0.18 to 2.27→ 92.1%

HS3 Cognitive
load Yes (t-test) 0.0057 Avg.: 19.0 to 50.0→ more

than 1 category

80

VII. INDUSTRIAL APPLICATION
We implemented the N-way diff approach in our Variant

Analysis tool [19], including all visualizations listed in
Section 5. During the industrial consultancy projects at
Fraunhofer IESE, we applied the approach to several groups
of software systems. The goal of the analyses was to find reusable
components and to identify if some variants cover the code of
other variants. A representative choice of these systems is
summarized in Table III, and described in more detail in [16].

User feedback. In all cases, the information provided by
the analyses was assessed by the customers as useful in their
maintenance decisions, and not possible to obtain with other
means. The analyses confirmed the already known similarity,
while revealing new, previously unknown similarity facts.
The possibility to trace the component differences down to the
code level using diff was considered to be very helpful.

VIII. DISCUSSION
In this paper, we show how the set-based similarity

representation can be constructed for the task of N-way
comparison, even if the input similarity relation is not
transitive and the input structure trees were modified. In turn,
the set-based similarity representation enables many benefits for
the N-way comparison. The similarity of sets is simple to
understand, as it bases only on element membership in sets, set
theoretic operations, and on counting the elements.
Furthermore, using sets makes it possible to reuse many of
the existing approaches for set processing and visualization.
Set types data supports a broad range of analysis tasks, as
discussed in Section 3. Intersecting sets scale well with the
growing number of variants: they can be understood and
visualized even if the number of sets is large (50 or more) [58].
Finally, the concept of sets is very generic and can be applied
to many types of analyzed content.

Transitivity of the similarity relation is a prerequisite for
expressing the similarity with sets. If the input similarity is not
transitive, we propose to use a transitive subset of the
similarity graph for set model construction. In the case of diff,
the transitive subset retains 99.25% or more of the original
edges of element similarity graphs. In our opinion, the
advantages of using the set model and visualizations
overweight the possibility of a minor underestimation of the
found similarity. However, for each content type and similarity
detection algorithm this tradeoff needs to be evaluated.
Providing the percentage of ignored graph edges for each group
of sets can inform the user about the degree of inaccuracy in
the set-based representation of input similarity.

System structure. We show how to construct a set model
on every level of the system structure hierarchy, in spite of different
structures of the system variants. In consequence, the same
set-based concepts and visualizations can be applied for files,
components, and whole systems, both small and large (as shown
for the MLOC-sized BSD systems). This results in a scalable
and understandable abstraction of the analysis result, for both
dimensions of the system size and of the number of variants.

Generalization. We used an example of an N-way diff to
illustrate the set-based comparison. The diff algorithm has
several drawbacks: for example, it cannot recognize text blocks
moved within the file, and cannot recognize code having only
semantic similarity. However, note that the particular similarity
functions used for the tree structure matching and set model
construction can be independently exchanged, while still
using the overall analysis framework and the visualizations.
For example, a variant of diff which recognizes moves [59]
can be used. Furthermore, similarity functions known from
clone detection can be applied if we represent the code not as
text lines, but as tokens or syntax tree nodes. In general, the
set-based approach can be used for similarity analysis of
any artifacts, not only software ones, given two conditions.
First, the artifacts should be decomposable in a tree structure,
as defined in Section 3. Second, an equivalence function for
tuple-matching needs to be defined for the tree structure
elements and the basic Content Elements.

Performance and scalability measurements of the N-way
diff are documented in [16]. For example, the 4 variants from
the first row of Table III, where no search for renamed files
was needed, were analyzed in 263 seconds on a standard laptop.
Set theoretic operations on the resulting MLOC-sized set model
were calculated in 102 ms, thanks to a fast implementation of
set membership information with bit vectors. However, the
search for renamed files requires more time: from a few minutes
for mid-sized systems having hundreds of files, to a few hours
for systems having thousands of files.

IX. CONCLUSION
In this paper we discuss the code-level comparison and

similarity analysis of software system variants. We propose to
represent the N-way comparison result as a model of N
intersecting sets, and show how to construct the model for any
level of the system hierarchy (files, folders, and whole
systems). On an example of an N-way diff, we present the
mechanisms for hierarchical aggregation of the set models in
the structure tree, and define set-based visualizations supporting
a range of similarity analysis tasks. We discuss the problems
of non-transitive input similarity and of matching the elements
of modified system structure trees. The proposed mechanisms
and visualizations are general and can be applied for different
kinds of input content (e.g., software, model, or genomes),
different similarity analysis algorithms, and different
approaches to structure tree matching across the variants.

 We postulate that the similarity abstraction in the form of
a set model is easy to analyze and understand. We performed a
controlled experiment which indicates that the use of the set-
based comparison allows for analyzing code similarity of file
variants with a lower effort, higher correctness, and lower
cognitive load, as compared to the use of pairwise comparison.
We also obtained positive feedback from industrial collaborations.

An interesting future work is to define further instances of
the described hierarchical set-based similarity analysis approach,
especially for models and non-software content such as
genomes. Moreover, the N-way software comparison can be
extended by other comparison and matching algorithms, as
well as by other set visualization techniques, such as those
listed in the related work section. Furthermore, more
evaluation is needed to investigate the benefits of set-based
similarity analysis, and of the different similarity
visualizations, from the psychology and program
understanding point of view. Finally, in the future we would
like to provide an open source version of our analysis framework.

TABLE III. GROUPS OF ANALYZED INDUSTRIAL SYSTEM VARIANTS

Domain Variants Average variant
code size Core code size Average unique

code size
Machine
construction 4 1319 KLOC 664 KLOC 131 KLOC

Power
electronics 10 427 KLOC 161 KLOC 152 KLOC

Automotive 14 186 KLOC 132 KLOC 2 KLOC
Telecommu
-nication 6 202 KLOC 145 KLOC 36 KLOC

81

REFERENCES
[1] J.W. Hunt and M.D. McIlroy, “An algorithm for differential file

comparison”. Computing Science Technical Report 41, Bell
Laboratories, 1976.

[2] Z. Xing and E. Stroulia, “UMLDiff: an algorithm for object-oriented
design differencing”. 20th IEEE/ACM International Conference on
Automated Software Engineering (ASE ‘05), pp. 54—65,
doi: 10.1145/1101908.1101919

[3] U. Kelter, J. Wehren, and J. Niere, “A generic difference algorithm for
UML models“. In Software Engineering, Lecture Notes in Informatics
Vol. 64, pp. 105—116, 2005.

[4] T. J. Carver, K. M. Rutherford, M. Berriman, M.-A. Rajandream, B. G.
Barrell, and J. Parkhill, “ACT: the Artemis comparison tool,”
Bioinformatics, vol. 21, no. 16, pp. 3422–3423, June 2005,
doi: 10.1093/bioinformatics/bti553

[5] E. Heinzen, R. Lennon, and A. Hanson, “arsenal: An arsenal of ’R’
functions for large-scale statistical summaries. The comparedf
function.” [Online]. Available: https://cran.r-
project.org/web/packages/arsenal/vignettes/comparedf.html Last visited:
22 June 2020.

[6] Y. Dubinsky, J. Rubin, T. Berger, S. Duszynski, M. Becker, and
K. Czarnecki, “An exploratory study of cloning in industrial software
product lines”. 17th European Conference on Software Maintenance
and Reengineering (CSMR 2013), pp. 25–34, doi:
10.1109/csmr.2013.13

[7] T. Mende, F. Beckwermert, R. Koschke, and G. Meier, “Supporting the
grow-and-prune model in software product lines evolution using clone
detection”. 12th European Conference on Software Maintenance and
Reengineering (CSMR 2008), pp. 163–172, doi:
10.1109/csmr.2008.4493311

[8] T. Yamamoto, M. Matsushita, T. Kamiya, and K. Inoue, “Measuring
similarity of large software systems based on source code
correspondence”. 6th International Conference on Product Focused
Software Process Improvement (PROFES 2005), pp. 530–544, doi:
10.1007/11497455_41

[9] K. Yoshimura, D. Ganesan, and D. Muthig, “Assessing merge potential
of existing engine control systems into a product line”. 2006
International Workshop on Software Engineering for Automotive
Systems (SEAS ‘06), pp. 61–67, doi: 10.1145/1138474.1138485

[10] X. Argout, J. Salse, J.M. Aury, M.J. Guiltinan, G. Droc, J. Gouzy, et
al., “The genome of theobroma cacao”. Nature Genetics, vol. 43, no. 2,
pp. 101–108, Dec. 2010, doi: 10.1038/ng.736

[11] K. Jahn, H. Sudek, and J. Stoye, “Multiple genome comparison based
on overlap regions of pairwise local alignments,” BMC Bioinformatics,
vol. 13, no. S7, Dec. 2012, doi: 10.1186/1471-2105-13-s19-s7

[12] Z. Madak-Erdogan, T.-H. Charn, Y. Jiang, E. T. Liu, J. A.
Katzenellenbogen, and B. S. Katzenellenbogen, “Integrative genomics
of gene and metabolic regulation by estrogen receptors � and �, and
their coregulators,” Molecular Systems Biology, vol. 9, no. 1, p. 676,
2013, doi: 10.1038/msb.2013.28

[13] M. Wang, Y. Zhao, and B. Zhang, “Efficient test and visualization of
multi-set intersections”. Scientific Reports, vol. 5, no. 1, Nov. 2015,
doi: 10.1038/srep16923

[14] H. M. Walline, C. Komarck, J.B. McHugh, S.A. Byrd, M.E. Spector,
S.J. Hauff, et al., “High-risk human papillomavirus detection in
oropharyngeal, nasopharyngeal, and oral cavity cancers - comparison
of multiple methods”. In JAMA Otolaryngology–Head & Neck
Surgery, vol. 139, no. 12, pp. 1320–1327, Dec. 2013,
doi: 10.1001/jamaoto.2013.5460

[15] S. Duszynski, J. Knodel, and M. Becker, “Analyzing the source code
of multiple software variants for reuse potential”. 18th Working
Conference on Reverse Engineering (WCRE 2011), pp. 303–307,
doi: 10.1109/WCRE.2011.44

[16] S. Duszynski, “Analyzing similarity of cloned software variants using
hierarchical set models”. Dissertation, Technical University of Kaiserslautern,
Germany, 2015. [Available online]. Permalink:
http://publica.fraunhofer.de/documents/N-332392.html.

[17] V. L. Tenev, “Directed coloured multigraph alignments for variant
analysis of software systems”. Bachelor Thesis, Fraunhofer IESE
Report 112.11/E, Kaiserslautern, Germany, 2011.

[18] V. L. Tenev and S. Duszynski, “Applying bioinformatics in the
analysis of software variants”. 20th IEEE International Conference on
Program Comprehension (ICPC 2012), 2012, pp. 259–260,
doi: 10.1109/ICPC.2012.6240499

[19] V. L. Tenev, S. Duszynski, and M. Becker, “Variant Analysis: set-
based similarity visualization for cloned software systems”. 21st
International Systems and Software Product Line Conference
(SPLC 2017), Vol. B, pp. 22–27, doi: 10.1145/3109729.3109753

[20] J. Businge, M. Openja, S. Nadi, E. Bainomugisha, and T. Berger,
“Clone-based variability management in the Android ecosystem”.
IEEE International Conference on Software Maintenance and
Evolution (ICSME 2018), doi: 10.1109/icsme.2018.00072

[21] G. Gousios, M. Pinzger, and A. van Deursen, “An exploratory study of
the pull-based software development model”. 36th International
Conference on Software Engineering (ICSE 2014), doi:
10.1145/2568225.2568260

[22] B. Ray and M. Kim, “A case study of cross-system porting in forked
projects”. 20th International Symposium on the Foundations of
Software Engineering - FSE 12, 2012, doi: 10.1145/2393596.2393659

[23] S. Stanciulescu, S. Schulze, and A. Wasowski, “Forked and integrated
variants in an open-source firmware project”. IEEE International
Conference on Software Maintenance and Evolution (ICSME 2015),
doi: 10.1109/icsm.2015.7332461

[24] J. Martinez, T. Ziadi, T. F. Bissyandé, J. Klein, and Y. l. Traon,
“Automating the extraction of model-based software product lines
from model variants”. 30th IEEE/ACM International Conference on
Automated Software Engineering (ASE 2015), pp. 396–406, doi:
10.1109/ASE.2015.44

[25] H. Abukwaik, A. Burger, B. K. Andam, and T. Berger, “Semi-
automated feature traceability with embedded annotations”. IEEE
International Conference on Software Maintenance and Evolution
(ICSME 2018), pp. 529–533, doi: 10.1109/ICSME.2018.00049

[26] J. Rubin, K. Czarnecki, and M. Chechik, “Managing cloned variants”.
17th International Software Product Line Conference (SPLC 2013),
2013, doi: 10.1145/2491627.2491644

[27] T. Pfofe, T. Thüm, S. Schulze, W. Fenske, and I. Schaefer,
“Synchronizing software variants with variantsync”. 20th International
Systems and Software Product Line Conference (SPLC 2016), 2016,
doi: 10.1145/2934466.2962726

[28] S. Zhou, “Improving collaboration efficiency in fork-based
development”. 34th IEEE/ACM International Conference on
Automated Software Engineering (ASE 2019), 2019, pp. 1218–1221,
doi: 10.1109/ASE.2019.00144

[29] W. Fenske, J. Meinicke, S. Schulze, S. Schulze, and G. Saake,
“Variant-preserving refactorings for migrating cloned products to a
product line”. IEEE 24th International Conference on Software
Analysis, Evolution and Reengineering (SANER 2017), 2017, doi:
10.1109/saner.2017.7884632

[30] A. Shatnawi, A.-D. Seriai, and H. Sahraoui, “Recovering software
product line architecture of a family of object-oriented product
variants”. Journal of Systems and Software, vol. 131, pp. 325–346, Sep.
2017, doi: 10.1016/j.jss.2016.07.039

[31] T. Kamiya, S. Kusumoto, and K. Inoue, “CCFinder: a multilinguistic
token-based code clone detection system for large scale source code”.
IEEE Transactions on Software Engineering, vol. 28, no. 7, pp. 654–
670, July 2002, doi: 10.1109/tse.2002.1019480

[32] J. R. Cordy, “Exploring large-scale system similarity using incremental
clone detection and live scatterplots”. IEEE 19th International
Conference on Program Comprehension (ICPC 2011), 2011,
doi: 10.1109/icpc.2011.25

[33] K. Chen, P. Liu, and Y. Zhang, “Achieving accuracy and scalability
simultaneously in detecting application clones on Android markets”.
36th International Conference on Software Engineering (ICSE 2014),
2014, doi: 10.1145/2568225.2568286

[34] A. Hemel and R. Koschke, “Reverse engineering variability in source
code using clone detection: a case study for Linux variants of consumer
electronic devices”. 19th Working Conference on Reverse Engineering
(WCRE 2012), 2012, doi: 10.1109/wcre.2012.45

[35] D. Moser and H. Menke, “Diffuse – graphical tool for merging and
comparing text files”. [Online]. Available:
http://diffuse.sourceforge.net Last visited: 22 June 2020.

[36] R. Koschke, P. Frenzel, A. P. J. Breu, and K. Angstmann, “Extending
the reflexion method for consolidating software variants into product
lines”. Software Quality Journal, vol. 17, no. 4, pp. 331–366,
Mar. 2009, doi: 10.1007/s11219-009-9077-8.

[37] Y. Wu, Y. Yang, X. Peng, C. Qiu, and W. Zhao, “Recovering object-
oriented framework for software product line reengineering”.
International Conference on Software Reuse (ICSR 2011), 2011,
pp. 119–134, doi: 10.1007/978-3-642-21347-2_10

82

[38] S. Eick, T. Graves, A. Karr, A. Mockus, and P. Schuster, “Visualizing
software changes“. IEEE Transactions on Software Engineering,
vol. 28, no. 4, Apr. 2002, pp. 396-412, doi: 10.1109/TSE.2002.995435

[39] H. Kagdi, M. Collard, and J. Maletic, “A survey and taxonomy of
approaches for mining software repositories in the context of software
evolution”. Journal of Software Maintenance and Evolution: Research
and Practice, vol. 19, issue 2, 2007, pp. 77-131, doi: 10.1002/smr.344

[40] C. Hurter, O. Ersoy, and A. Telea, “Smooth bundling of large
streaming and sequence graphs”. IEEE Pacific Visualization
Symposium (PacificVis), 2013, doi: 10.1109/PacificVis.2013.6596126

[41] A. Telea and D. Auber, “Code Flows: visualizing structural evolution
of source code”. Computer Graphics Forum, vol. 27, issue 3,
pp. 831-838, 2008, doi: 10.1111/j.1467-8659.2008.01214.x

[42] J. Rubin and M. Chechik, “N-way model merging”. 2013 9th Joint
Meeting on Foundations of Software Engineering (ESEC/FSE 2013),
2013, doi: 10.1145/2491411.2491446

[43] D. Reuling, M. Lochau, and U. Kelter, “From imprecise N-way model
matching to precise N-way model merging”. The Journal of Object
Technology, vol. 18, no. 2, p. 8:1, 2019, doi: 10.5381/jot.2019.18.2.a8

[44] A. Schlie, S. Schulze, and I. Schaefer, “Recovering variability
information from source code of clone-and-own software systems”.
14th International Working Conference on Variability Modelling of
Software-Intensive Systems (VAMOS 2020), 2020, doi:
10.1145/3377024.3377034

[45] T. Ishio, Y. Sakaguchi, K. Ito, and K. Inoue, “Source file set search for
clone-and-own reuse analysis”. IEEE/ACM 14th International
Conference on Mining Software Repositories (MSR 2017), 2017, doi:
10.1109/msr.2017.19

[46] Y. Sakaguchi, T. Ishio, T. Kanda, and K. Inoue, “Extracting a unified
directory tree to compare similar software products”. IEEE 3rd
Working Conference on Software Visualization (VISSOFT 2015),
2015, doi: 10.1109/vissoft.2015.7332430

[47] A. Lex, N. Gehlenborg, H. Strobelt, R. Vuillemot, and H. Pfister,
“UpSet: visualization of intersecting sets”. IEEE Transactions on
Visualization and Computer Graphics, vol. 20, no. 12, pp. 1983–1992,
Dec. 2014, doi: 10.1109/tvcg.2014.2346248

[48] J.-B. Lamy and R. Tsopra, “RainBio: proportional visualization of
large sets in biology”. IEEE Transactions on Visualization and
Computer Graphics, p. 1, 2019, doi: 10.1109/tvcg.2019.2921544

[49] B. Alsallakh and L. Ren, “PowerSet: a comprehensive visualization of
set intersections”. IEEE Transactions on Visualization and Computer
Graphics, vol. 23, no. 1, pp. 361–370, Jan. 2017, doi:
10.1109/tvcg.2016.2598496

[50] B. Alsallakh, L. Micallef, W. Aigner, H. Hauser, S. Miksch, and P.
Rodgers, “The state-of-the-art of set visualization”. Computer
Graphics Forum, vol. 35, no. 1, pp. 234–260, Nov. 2015, doi:
10.1111/cgf.12722

[51] D. S. Hirschberg, “A linear space algorithm for computing maximal
common subsequences”. Communications of the ACM, vol. 18, no. 6,
pp. 341–343, Jun. 1975, doi: 10.1145/360825.360861

[52] D. Gusfield, “Efficient methods for multiple sequence alignment with
guaranteed error bounds”. Bulletin of Mathematical Biology, vol. 55,
no. 1, pp. 141–154, Jan. 1993, doi: 10.1007/bf02460299

[53] B. B. Bederson, B. Shneiderman, and M. Wattenberg, “Ordered and
quantum treemaps”. ACM Transactions on Graphics (TOG), vol. 21,
no. 4, pp. 833–854, Oct. 2002, doi: 10.1145/571647.571649

[54] J. Venn, “I. On the diagrammatic and mechanical representation of
propositions and reasonings”. The London, Edinburgh, and Dublin
Philosophical Magazine and Journal of Science, vol. 10, no. 59, pp. 1–
18, Jul. 1880, doi: 10.1080/14786448008626877

[55] L. L. McQuitty, “Similarity analysis by reciprocal pairs for discrete and
continuous data”. Educational and Psychological Measurement, vol.
26, no. 4, pp. 825–831, Dec. 1966, doi: 10.1177/001316446602600402

[56] L. C. Briand, C. M. Differding, and H. D. Rombach, “Practical
guidelines for measurement-based process improvement”. Software
Process: Improvement and Practice, vol. 2, no. 4, pp. 253–280, Dec.
1996, doi: 10.1002/(sici)1099-1670(199612)2:4<253::aid-
spip53>3.0.co;2-g

[57] F. Zijlstra, “Efficiency in work behaviour: a design approach for
modern tools”. Delft: Delft University Press, 1993.

[58] M. Wortschack, “A scalable visualization of set-typed data”. Thesis
(Diplom), Technische Universität Wien, 2016 [Online]. Available:
https://repositum.tuwien.ac.at/urn:nbn:at:at-ubtuw:1-2757

[59] W. F. Tichy, “The string-to-string correction problem with block
moves”. ACM Transactions on Computer Systems (TOCS), vol. 2, no.
4, pp. 309–321, Nov. 1984, doi: 10.1145/357401.357404.

83

