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Abstract—Software is frequently developed in many similar 
copies, called forks or cloned software variants. During this 
development, pairwise comparison is routinely used for finding 
differences between the cloned copies, assessing their similarity, 
and merging the content. However, analyzing the similarity of a 
large group of variants using pairwise comparison is a relatively 
difficult task, as the number of compared pairs grows quadratically 
with the number of variants. Furthermore, the result of such 
group of pairwise comparisons is difficult to visualize. 

In this paper, we discuss the problem of N-way comparison of 
cloned software variants. We represent the N-way comparison 
result as a model of N intersecting sets. By aggregating the sets 
along the system decomposition hierarchy, we construct the sets 
at every level of the system structure (files, folders, and whole 
systems). We define a generalized approach for set model 
construction, and instantiate it for an N-way diff on the textual 
code representation. We propose set-based visualizations for the 
N-way comparison, which scale for more than ten component 
variants and MLOC-sized components. We evaluate the 
approach by applying it to several groups of industrial software 
system variants and by performing a controlled experiment with 
a comparison of 5 software forks. In the experiment, the group 
using set-based comparison solved the tasks in 58% less time 
and with 92% fewer incorrect answers than the group using 
pairwise comparison. Finally, we propose a generalization of the 
approach beyond software, to enable set-based comparison and 
similarity visualization for hierarchically structured models and 
data, for example genomes. 

Keywords—software comparison, software reuse, similarity, 
set model, set visualization, software variability, product lines 

I. INTRODUCTION 
A comparison of two source code trees is a routine task in 

software development. Typically, the two compared folder 
trees are displayed side by side, with overlay icons 
representing additions, deletions, or changes inside the content 
of every folder and file. By navigating the folder tree, the user 
can explore the differences, down to the atomic content level 
of the text lines inside a code file. At this lowest level, the text 
differences between two files are found using the diff [1] 
algorithm and indicated using text highlighting. The two-way 
comparison is easy to understand, works for code trees of any 
realistic size, and enables data exploration by providing both 
abstract and detailed views on the differences. In a general 
sense, the same kind of comparison is also available for other 
artefact types such as software models [2][3], genomes [4], 
statistical data [5], any many more. 

Problem. In many science and engineering applications, 
the problem of characterizing similarities and differences 
among many artefact variants arises. This is for example the 
case for comparing the code of many software variants to 
assess reuse potential [6][7][8][9], for comparative analysis of 
many genomes [10][11][12][13], or for comparing the results 
of multiple medical test methods [14]. If none of the input 

variants is distinguished (e.g., as a base or reference to which 
the others should be compared), and there is no meaningful 
ordering of the variants (e.g., such as time ordering of 
subsequent code revisions), a comparison of N variants needs 
to represent all ������

�
 pairwise comparison results. Only after 

all these pairs are compared, it becomes possible to identify 
common content occurring in all the variants, unique content 
found in just one variant, or to find groups of variants similar 
to each other, as well as the variants dissimilar from the rest. 

Goal of the paper. In this paper we discuss the problem 
of N-way comparison, which we previously confronted in our 
work on software variants and branching [15][16][17][18][19]. 
We propose a set-based approach to measure and visualize 
similarity information across N software implementation 
variants, for any level of abstraction: from complete systems, 
through components, folders and files, down to individual 
content elements. The approach can be used in maintenance 
and reengineering of software forks. It supports finding 
components highly similar across variants, and identifying 
groups of variants particularly similar to each other. It enables 
result exploration from high-level abstraction down to detail 
across any selection of input variants or their fragments. The 
approach can accommodate different definitions of similarity, 
provided by different analysis algorithms. Hence, the focus of 
this paper is the set-based representation and visualization of 
similarity information for N-way comparison, and the generic 
methods to construct this representation for compared assets. 

Contribution. We define the N-way comparison result as 
a set of tuples of equivalent elements (and not pairs, as in the 
pairwise comparison case), and propose the data structure of 
hierarchical set models, based on trees and intersecting sets, 
which represents the N-way comparison results. We also propose 
set-based visualizations displaying for which variants and 
elements the content is similar, and how high that similarity is. 
While we discuss algorithms to construct the comparison 
result, the main contribution of this paper is thus the N-way 
comparison framework, consisting of the data structure and 
the visualizations. The comparison framework can be utilized 
by various similarity detection algorithms – we describe an 
instantiation of the approach in the form of an N-way diff. 

We generalize the approach to N-way comparison of any 
hierarchically structured content (e.g., using folders, packages, 
sections) containing equivalent atomic content elements (text 
lines, tokens, model elements). So far, we applied the approach 
mainly to software and text comparisons. However, we hypothesize 
that it could also be applied to other content types found in 
software development, data science, or genetics and bioinformatics.  

Finally, we evaluate the set-based comparison approach in 
a controlled experiment, where the group using set-based 
N-way software comparison solved the analysis tasks in 58% 
less time and with 92% fewer incorrect answers than the group 
using pairwise comparison. We also report application 
experience of the approach to industrial software system 
variants, illustrating its scalability for many software variants 
of large sizes. The contributions of this paper are therefore: * This work was created while the author was with Fraunhofer IESE.
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• Definition of N-way comparison approach, based on 
tuples of equivalent elements, the data structure of 
hierarchical set models, and set-based visualizations. 

• Instantiation of the approach and discussion of the 
algorithms for an N-way diff. 

• Generalization of the approach beyond software. 
• Evaluation of the approach in a controlled experiment 

and practical application to industrial software variants. 

Paper structure. In Section 2, we discuss the related work 
on N-way software comparison. In Section 3, we introduce a 
running example of 5 compared software systems, and present 
a set-based approach to file content comparison. In Section 4, 
we address folder and system comparison. In Section 5, we 
present set-based similarity visualizations. We report the 
controlled experiment results in Section 6, and the industrial 
application experiences in Section 7. In Section 8 we discuss 
the benefits and drawbacks of the proposed set-based N-way 
comparison approach, and the generalization of the approach 
beyond software. Section 9 concludes the paper. 

II. RELATED WORK 
The development of software components or whole 

systems in many parallel variants or forks is a common 
phenomenon. In open source, it occurs for Android app 
development [20], for projects hosted on collaboration 
platforms such as Github [21], as well as for whole operating 
systems such as the BSD family [22]. In industrial software 
development, cloning of software systems is practiced as a 
form of reuse [6]. At the same time, maintaining parallel 
variants incurs redundant efforts [6][23]. This motivates a 
multitude of approaches for analysis and reengineering of 
parallel software variants, with goals such as finding or tracing 
features [24][25], supporting maintenance of forks 
[26][27][28], merging the fork implementations [29], or 
recovering product line architecture [30].  

Focus on the similarity representation. This paper focuses 
on the exploration of similarity between software variants, 
both in the system structure dimension (e.g., to find which 
components are similar to components of other variants), as 
well as in the variant dimension (e.g., to find which variants 
are similar to each other). Hence, in this section we focus on 
the similarity representation aspect in the related papers.  

Finding pairwise similar software variants. 
Yamamoto et al. [8], Yoshimura et al. [9], and Mende et al. 
[7] use clone detection to measure the share of similar code 
(in terms of clone coverage) between all pairs of software 
variants. In the first and third approach, also the similarity 
between corresponding components pairs across the variants 
is computed. The similarity metrics are presented in a square 
matrix (see Fig. 1 left for a schematic depiction). For 
visualization of such metrics, Kamiya et al. [31] propose to 
use scatterplots. Cordy [32] extends that idea by proposing 
live scatterplots, which can be expanded or collapsed to 
aggregate scatterplot rows and columns based on the system 
hierarchy, e.g., aggregating files to parent folders, and the 
folders upwards to the complete system (see Fig. 1 right). On 
user demand, the scatterplots provide detailed data for each 
scatterplot cell. 

However, this representation which is based only on 
pairwise similarity hides important information when used for 
three or more variants, such as for example the size of the 
common code shared by all analyzed variants. The pairwise 
similarity matrix is also ambiguous, as the same matrix can be 

constructed for different distributions of similarities across 
three or more variants. Both these points are illustrated in 
Fig. 2 below, where two groups of three software variants, 
represented by sets A, B, and C, are analyzed. In the group on 
the left side of Fig. 2, the complete common code is similar 
across all three sets, while on the right side of Fig. 2 only one 
element is similar across three sets. However, for both 
situations the cardinalities of the three sets A, B, C, as well as 
the cardinalities of A∩B, A∩C and B∩C are the same, so that 
the same Jaccard similarity values result, and the same similarity 
matrix is created (in the middle of Fig. 2). This illustrates that 
the pairwise similarity does not deliver full information about 
the analyzed variants. In contrast to that, a set-based 
representation can provide information about the similarity of 
any possible variant group, as illustrated later in this paper. 

Chen et al. [33] compare tens of thousands of mobile apps, 
to find software products that are likely cloned, by computing 
system-level similarity. However, they do not investigate the 
similarity of internal app components. Hemel and Koschke [34] 
compare a group of forks to a reference implementation. 
However, the forks are not compared to each other, so this 
approach cannot detect component variants that are similar 
between forks but not similar to the reference. The Diffuse file 
differencing tool [35] applies the same principle by comparing 
N file variants to a reference file but not against each other. 

Finding reusable components. Koschke et al. [36], Wu 
et al. [37] and Shatnawi et al. [30] recover the architectures of 
the variant systems and measure component similarity to 
identify common and variable components. However, these 
approaches focus on the membership of the components in 
variants, and do not report how far the different 
implementations of the components are similar. 

Analysis of N software versions is a problem different from 
an N-way comparison, because the versions are ordered in time. 
Hence, the techniques for multi-version analysis (Eick et al. 
[38], Kagdi et al. [39], Hurter et al. [40], Telea and Auber [41]), 
focus on comparing the N-1 pairs of consecutive versions: the 
difference between any other two versions can be treated as a 
sum of the intermediate changes. Without the time ordering 
however, all ������

�
 possible variant pairs need to be compared. 

 
Fig. 1 Example of a pairwise similarity matrix for three systems A, B, C 
(left), and its visualisation using expandable scatterplots (right). The color 
intensity in a scatterplot cell corresponds to the value of the simiarity metric.
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Fig. 2 Similarity of two different groups of systems A, B, C, represented 
by intersecting sets (left and right) and by a pair-wise similarity matrix (center). 
While the set models allow for distinguishing the different situations, the pair-
wise matrix is less informative as it shows the same values for both cases.  
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N-way matching and merging. Rubin and Chechik [42], 
Reuling et al. [43], and Schlie et al. [44] propose algorithms 
for finding similar elements across N software models. Rubin 
and Chechik group the matching elements into tuples, while 
the other approaches provide an equivalent solution by 
annotating the merged elements with variability information. 
Ishio et al. [45] define an approach to detect similar folders 
and files across software systems. Sakaguchi et al. [46] 
construct a unified directory tree which matches the 
corresponding directories even if some of them were renamed 
or moved in the variant systems. We see the finding and matching 
approaches as complementary to our work. The matched system 
components and content elements, found using these 
approaches, can be used to construct a set model and 
corresponding visualizations in our comparison framework. 

Visualization of sets. The approaches for visualization of 
sets and set intersections, such as these described by Lex et al. 
[47], Lamy and Tsopra [48], and Alsallakh and Ren [49] are 
complementary to our work: they can be used to visualize a 
set model for N variants of software systems or components. 
Several further such approaches are presented by Alsallakh et 
al. [50] in their survey of the state of the art of set visualization. 

Our previous work. This paper presents a redefinition of 
our former analysis approach [15]. We now refine and extend 
the approach, use the set models as the basic data structure, 
define set-based visualizations, and experimentally evaluate 
the benefits of set-based similarity representation. More details 
about the approach are available in a PhD thesis [16], and the 
tooling aspects are described in a separate paper [19]. 

III. N-WAY CONTENT COMPARISON WITH A SET MODEL 
In our approach, we combine two main ideas. First, we 

represent variant software components as intersecting sets of 
atomic content elements. The elements similar across any K 
variants belong to the respective intersection of corresponding 
K sets. Second, we aggregate the sets along the system 
structure hierarchy, constructing the sets for container 
elements (e.g., folders) based on the sets of their constituent 
parts (e.g., files). This section details the set model 
construction for files, while the next section concerns the 
hierarchical aggregation of the file-based models for folders. 

System structure. For the purpose of comparison, we assume 
that the input system variants are structured according to the 
model in Fig. 3: they form a tree of Container elements (e.g., 
folders, packages), where the leaves of the tree (e.g., files, 
classes) are Content Units as they contain the actual content of 
the system (e.g., source code). The content itself is then formed 
by Content Elements (e.g., text lines, tokens) which are the 
base elements for content comparison and size measurement. 
We define no further assumptions on the nature of Structure Tree 
Elements and the Content Elements. For example, we do not 
define how the Content Elements are stored inside a Content Unit: 
they can be stored as an ordered list (e.g., as text lines in a 
file), as a tree (e.g., as an abstract syntax tree of tokens), or in 
an unordered form (e.g., as classes in an UML diagram). The 
depicted structure is generic and can represent system variants 
in the form of a source code tree, software model, or others. 

Set model construction is illustrated in Fig. 4 for four 
example Content Units, each belonging to a different system 
variant. We treat the Content Units as sets of their contained 
Content Elements, and use a comparison function to identify 
tuples of similar Content Elements between the variants. Each 
tuple contains at most one Content Element from each variant, 
and each Content Element belongs to exactly one tuple. Then, 
the tuples are placed in the set intersections of the set model 
according to the variant membership of the elements they 
contain: for example, a tuple containing only elements of S3 
and S4 is placed in the �	�
������S3S4 intersection. 

The comparison function is an equivalence function, i.e., 
it is symmetric, reflexive and transitive. It defines which Content 
Elements are considered similar when the variant Content Units 
are compared. Hence, the equivalence function is a variable 
part of our approach: it needs to be defined depending on type 
of the analyzed content (text, model, etc.) and on the required 
notion of content similarity. In Fig. 4, the similarity is based 
on the shape of the elements, but not on their fill pattern. 
Similarly, in the comparison of text lines the equivalence can 
consider the text content, but ignore the formatting. In Section 
4 we introduce a second comparison function, matching tuples 
of Structure Tree Elements across the variants. 

Example N-way comparison. We now illustrate the set-
based comparison for an example group of five software systems, 
depicted in Fig. 5. In this case, the system structure consists of 
folders (as Containers) and files (as Content Units), and the 
Content Elements are text lines. The example comparison function 
is an N-way diff, which is based on the output of pairwise diff for 
all file variant pairs. As diff uses the Longest Common Sequence 
algorithm [1][51], two text lines are only matched if they are 
identical and are part of the common sequence (for example, in 
sequences ABC and CAB, the longest common sequence is AB, 
and C is not matched). To construct the set model for N variants, 

 

Fig. 5 Five example system variants, which differ slightly in their folder 
structure and the file content (top). Abstracted content of five variants of the 
io.c file (bottom). 
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Fig. 3 An UML diagram of the generalized system variant structure.
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the function creates a tuple of text lines if and only if every pair of 
lines within the tuple was identified as similar by the pairwise diff. 
The bottom part of Fig. 5 depicts an abstracted content of the 
io.c file in five variants. Each small rectangle represents a text 
line, a number within a rectangle is the consecutive line 
number within that file, and the letters symbolize the line content. 

Fig. 6 shows pairwise comparison of the five io.c file variants, 
where ten file pairs are compared. This result is complex to 
analyze: although the matches and differences for every file 
pair are shown, it is difficult to identify facts related to a higher 
number of variants. For example, it requires time to find text 
lines common across all variants, or unique to just a single 
variant. In the N-way diff, we aggregate the pairs of matched 
lines shown in Fig. 6 to tuples: two lines are in the same tuple 
if and only if a pairwise match between them exists. The 
resulting set model is depicted in the left part of Fig. 7. Using 
the set model, it is easy to recognize in which variants the 
particular lines occur: for example, the lines B and C are 
common to all five variants, lines H and I occur in all variants 
except variant D, and line Y is unique to variant E. It is also 
visible that all the lines of variant B occur in other variants, 
while the variant D has the highest number of unique lines (4). 

Bar diagrams. To visualize the basic similarity metrics for 
N intersecting sets, we use a bar diagram with N+1 bars, as 
depicted in the right part of Fig. 7. Each of the N bars 
corresponds to a different set, and the last bar depicts the union 
of all N sets. The length of each bar is equal to the size of the 
respective set. Each bar is divided into three parts, with their 
lengths equal to the number of set elements falling into three 
categories: core (elements belonging to all N sets), shared 
(belonging to 2..N-1 sets), and unique (belonging to just 1 set). 
The legend for the used colors is provided in Fig. 8. The bar 
diagram provides a quick overview over the amount of 
elements falling into each category for each set, and over the 
sizes of the sets and their union. It is particularly useful for a 
higher number of sets, when a Venn diagram such as the one 
in the left part of Fig. 7 becomes difficult to read. 

Showing element membership. For each compared element 
it is known to which sets its corresponding tuple belongs. This 
information can be visualized in their Content Unit, by 
coloring the elements according to their set membership as 
shown in Fig. 8. Hence, this visualization is an N-way analogy 
to the match and difference information visualized in Fig. 6. 
Furthermore, the elements belonging to any group or 
intersection of sets (e.g., shared with other selected set) can be 
shown in that view using an additional color, as discussed below. 

Set theoretic operations on the set model can be 
performed on user demand to investigate the variant similarity. 
A visualization of an example operation result, using an 
additional color in the bar diagram, is shown in Fig. 9. As 
described by Alsallakh et al. [50], set-typed data is suitable 
for a large variety of similarity analysis tasks, for example: 

• Find or count elements which fulfill a condition on set 
membership, e.g. elements in set A and in B but not in C. 

• Compare set and set intersection cardinalities, e.g., |A| 
with |B|, or |A∩B| with |A∩C|, and identify the sets and 
intersections with the largest or smallest cardinality. 

• Analyze set inclusion relations, e.g., whether set A is 
fully included in B, or in B∪C. 

• Analysis of element reuse: for a specific element, find 
or count all sets in which that element occurs. 

• Find or count elements in a set with a specific degree of 
reuse: e.g., elements unique to a set, shared by a given 
group of sets, shared by at least/exactly K sets, or by all sets. 

• Compare sets based on element reuse, e.g. check if set 
A contains more unique elements than B, or more elements 
shared with C, or more elements shared with 1 or K other sets. 

In our approach we construct set models for every element 
of system structure tree, as well as for whole variant systems. 
The above analysis tasks, applied to these set models, are highly 
relevant when analyzing software variants with the goal of 
finding reusable components or finding similar variant groups. 
With the set model, performing these analysis tasks is much 
easier than in the case of pairwise comparison. 

Non-transitive similarity. In the above case of N-way diff, 
a set model for N variants is constructed from ������

�
 pairwise 

comparison results. To create a tuple, the match graph between 
the element pairs is used. If the graph is complete, all its 
elements form the tuple. However, the match graph can also be 
incomplete, that is, the similarity relation built from the 
matches can be non-transitive. Fig. 10 depicts an example case 
of incomplete match graph (left), as well as an incomplete match 
graph containing two elements from the same file variant (right).   

Fig. 7 The set model constructed for five variants of the io.c file (left). 
A bar diagram visualizing the similarity between the io.c variants (right). 
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Fig. 9 An example set theoretic operation on the set model (left) and its 
visualization in the bar diagram using an additional color (right). 
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Fig. 8 The content of the five file variants colored according to the set 
membership of the text lines. 
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To build element tuples from a non-transitive match graph, 
we find cliques (complete subgraphs) in the graph, and form 
the tuples from these cliques, as illustrated in the bottom part of 
Fig. 10. With this approach, each two elements in every tuple 
are pairwise similar, and the match edges which do not belong to 
any clique are ignored. The process of finding the cliques can be 
optimized towards different, partially conflicting criteria: finding 
the largest cliques, finding the least amount of cliques, or 
minimizing the amount of original graph edges not included in 
any clique. Algorithms for each of these criteria exist [16]. In our 
implementation, we iteratively use the largest clique algorithm. 

While a strongly non-transitive similarity cannot be fully 
represented with a set model, as some similarity matches need 
to be ignored, we found that this problem is not significant in 
the practice when building the set model based on pairwise 
diff. We analyzed 9 groups of variant systems, each having 
from 4 to 15 variants. For each group, we needed to ignore at 
most 0.75% of the pairwise text line matches to obtain fully 
transitive similarity and build the set model [16]. 

IV. COMPARING STRUCTURE TREES AND SYSTEM VARIANTS 
The previous section details the construction of a set 

model for a group of Content Units, such as files, on an 
example of an N-way diff. In this section we continue using 
that example to illustrate the set-based comparison for 
Containers (folders) and complete system variants, structured 
hierarchically according to the model in Fig. 3. 

Finding similar files. As the system variants were cloned 
(forked) from each other, a large part of their tree structure 
could remain identical. However, some Content Units or 
Containers could be renamed or moved in the structure tree. 
Hence, a comparison of a group of system variants starts with 
the search for corresponding Content Units and Containers, 
based on their similarity, across the system variants. As in the 
case of content comparison, we model the similarity of 
structure trees by forming tuples of tree elements: each such 
tuple contains at most one Content Unit or Container from 
each variant tree, and each Unit or Container belongs to exactly 
one tuple. Hence, in the case of N-way diff a tuple represents 
a group of matched files or folders. Naturally, we only match 
Units to Units and Containers to Containers. In result, a 
unified structure tree is constructed from the variant trees, as 
illustrated on the example in Fig. 11. The unified structure tree 
contains a Unit or Container for each tree location and 
element name which occurs in any of the compared trees. The 
tree elements which have different names or locations, but are 

matched to each other, are modeled as hard links analogously 
to hard links in a file system. This means that such hard link 
elements in the unified tree lead to the same tuple of matched 
tree elements and to the same set model, as shown by the color 
coding of the elements in Fig. 11. In the opposite case, when 
two variant elements having the same name and system-
relative location are not matched, the unified structure tree 
contains two different, not linked elements, with a suffix string 
added to their name for unambiguous identification. 

The search for similar files and folders can be performed 
using many algorithms. As in the case of equivalence function 
for content elements, the file search algorithm is a variable 
part of our approach, which can be exchanged depending on 
the required notion of tree and file similarity. The simplest file 
matching algorithm is based on the equality of element names 
and system-relative paths, hence matching elements located in 
the same locations of the variant trees. In our experience, this 
algorithm is sufficient for many industrial software variant groups, 
where the move or rename operations were rare.  

To search for renamed or moved files, we extend the 
existing algorithms for DNA aligning. We define an algorithm 
for pairwise aligning of file trees, based on textual file 
similarity. Then, we iteratively use the Gusfield’s Center Star 
method [52] to construct a multiple tree alignment. We document 
the multiple tree alignment algorithm in detail in [17]. Further 
algorithms, such as those discussed in the related work 
section, can be likewise applied. We require however that the 
algorithm returns tuples of matched elements, to enable the 
unified structure tree construction described above. 

Hierarchical set aggregation. The set models of Content 
Elements are first constructed for the tuples of matched 
Content Units, as described in Section 3. Afterwards, we 

Fig. 10 Top: two examples of pairwise diff comparisons which result in
transitive (full lines) and non-transitive (dashed lines) match graphs. 
Bottom: cliques found in the non-transitive graphs are used to form tuples. 
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create the set models for Containers: such a model contains 
all Content Elements, which are contained in the Content 
Units belonging to the Container (as direct children, or 
through child Containers). This aggregation method is 
illustrated in Fig. 12 for the files and folders of the example 
system variant group: the set model for the sys folder contains 
the text lines of the io.c and proc.c files, the model for the drv 
folder is built using the models of con.c and ext.c files, and the 
model for the root folder contains all text lines of every variant 
of every file. As the content similarity between folder variants, 
as well as between whole system variants, is expressed using 
set models, the same analysis tasks, the same set theoretic 
operations and the same set-based visualizations can be applied 
likewise to files, folders, and system variants.  

Inclusive and exclusive aggregation. The set aggregation 
principle described above is straightforward for unified structure 
trees which are created by the equal name and location algorithm. 
In such a name-based unified structure tree, the containment 
relation between the tuples forms a tree: for any tuple of 
Containers TCONTAINER and any tuple of Content Units TUNIT, 
either every member of TUNIT has a parent in TCONTAINER, or 
none of them has. However, that property does not hold for 
unified trees containing hard links: as illustrated in Fig. 13, the 
folder tuple of sys contains the tuple of con.c and con1.c files, 
but for the conc.c file variants the parent folder is drv, 
belonging to a different folder tuple. In this case, we can use 
an inclusive or exclusive aggregation method to construct the 
set models for folders, as illustrated in Fig. 13: 

• In the inclusive method, a set model of a TCONTAINER 
tuple is built from the set models of all TUNIT tuples in 
which at least one member Content Unit is a child of 
any of the TCONTAINER members. 

• In the exclusive method, a set model of a TCONTAINER 
tuple is built from the set models of all TUNIT tuples in 
which all member Content Units are children of any of 
the TCONTAINER members. 

Hence, the inclusive aggregation method includes the set 
models of TUNIT tuples where some of the member Content 
Units are not children of TCONTAINER members, while the 
exclusive method excludes such tuples from the aggregation.  

Naturally, the set model of a given TUNIT tuple is 
aggregated just once, even if the tuple contains many hard 
links to that model. Note that both aggregation methods 
produce the same result for the root folders of the system 
variants, as these folders are parents of all files in their trees. 

V. SET-BASED SIMILARITY VISUALIZATION 
In this section we present N-way comparison visualizations 

based on the unified structure tree and the set models. Since 
the set models are available for Content Units, Containers, and 
complete system variants, the same visualizations can be used 
for all these elements. The visualized data is an N-way diff 
analysis of six systems from the BSD Unix family, i.e. 386BSD 
0.1, FreeBSD 2.0.5, NetBSD 1.1, NetBSD 1.2, NetBSD 1.3, 
and OpenBSD 2.0. For each visualization we indicate the 
analysis task it supports by underlining the task description. 

Unified structure tree view. To navigate through the 
unified structure tree, we use a system structure view in a 
UML-like representation (Fig. 14). Initially, the view shows 
the children elements of the root folder. The folders can be 
further expanded to show their contained elements. Each tree 
element shown in the view displays its name, the number of 
variants it belongs to (in the bottom left corner), number of 
lines in the set union of its associated set model (bottom right 
corner) and a graphic showing the proportion of core, shared 
and unique code in the set union. On user demand, also the 
result of a set theoretic operation, e.g. counting set elements 
fulfilling a specific membership condition, can be visualized 
on every element using an additional color in the bar diagram. 
By selecting any element in this view, the user can display 
further visualizations of the similarity information, listed below. 

Tree map structural diagram is an alternative way of 
system structure visualization (Fig. 15). A tree map [53] displays 
all elements of a system tree or a component subtree, visualized as 
rectangles and nested according to the tree hierarchy. The 
rectangles have areas proportional to the size of the respective 

Fig. 13 File con1.c in variant D is matched to the file con.c in variants A and C. 
The respective structure tree nodes are treated as a hard link, connected to the
same set model (left). The set models for folders can be aggregated using the
inclusive or exclusive approach (right). 
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Fig. 15 A screenshot of the tree map diagram of the unified structure tree. 
The intensity of red color in an element corresponds to the proportion of the 
containted code that belongs to at least 4 variant systems.  
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set model, and their color indicates the value of a user-selected 
metric, such as the proportion of code fulfilling a set membership 
condition. Hence, a tree map supports identification of elements 
with an interesting combination of sizes and metric values, while 
also indicating whether these elements are located nearby in 
the system structure. 

Bar diagrams, such as presented in Fig. 7 in Section 3, are 
available for every unified structure tree element. The bar 
diagram can display the result of arbitrary set theoretic 
operation, as shown in Fig. 9. Hence, it is used to count and 
compare the cardinalities of sets and any selection of set 
intersections. For convenience, the sizes of displayed bar areas 
are also provided in a table. In Fig. 16, we present the bar 
diagram for the root folder of six example BSD Unix systems. 

Tree map set diagram is a size-preserving visualization 
of all existing set intersections. Hence, it provides another way 
to count and compare set intersection cardinalities. In this 
diagram, we combine the ideas of a Venn diagram [54] and of 
a tree map [53]. Fig. 17 shows a Venn diagram of 4 software 
system variants, and a corresponding tree map set diagram. 
Instead of showing structure hierarchy elements, the tree map 
areas are used to display set intersections. The name of each 
area indicates its membership in the input sets (in Fig. 17 we 
use binary name coding for readability), and the area size 
corresponds to the cardinality of the set intersection. In 
contrast to the Venn diagrams, this visualization can present 
the set intersections for a higher number of sets in an 
understandable way, while also graphically indicating the 
relative area sizes. Furthermore, it uses similar shapes for the 
shown areas, which facilitates visual comparison. Different 
diagram layouts (grouping of intersections in the visualized tree 
structure) can be used depending on the analysis task. Fig. 18 
shows the diagram for six example BSD systems. We provide 
more details on this visualization in [16]. Similar visualization 
was independently published later by Alsallakh  and Ren [49]. 

Content view, already schematically drawn in Fig. 8 in 
Section 3, is used for viewing the similarity information on the 
lowest detail level of source code. Fig. 19 shows a screenshot 
from the tool, annotated with explanations of the visualization 
mechanisms. The set membership of each text line (core, shared, 
unique, or a user-defined set theoretic operation) is indicated 
with line background coloring and an icon – except for lines 
which were ignored during the analysis, such as empty lines. 
A tooltip showing set membership details is provided on user 
demand. Hence, the defined visualizations show the set-based 
similarity information on every level of system hierarchy, from 
the system structure root down to every single content element. 

Phylogenetic distance diagram, shown in Fig. 20, 
supports identification of system and folder variant pairs and 
groups which exhibit particularly high similarity. The diagram 
uses the branch layout to visualize the identified variant 
groups, and indicates the relative similarities between and 
within the groups using the branch length [55]. Hence, it 
provides a third way of investigating set similarity, together 
with the bar diagrams and the tree map set diagram. 

Phylogenetic variant-version diagram, shown in Fig. 21, 
uses the set similarity information to reconstruct a probable 
evolution history of the analyzed system, folder or file variants. 
We start its construction by ignoring all set intersections with 
cardinality falling below a defined threshold – by default, 1% 
of the union code size. Then, we construct a Hasse diagram of 
the remaining intersections and lay out the diagram as a tree, 
with branch lengths proportional to the sizes of particular 
intersections [18]. Hence, the diagram shows an inclusion 

Fig. 19 An annotated screenshot of code-level similarity visualization with 
line background coloring, category icons, and on demand details. 

Fig. 17 A Venn diagram for four intersecting sets (left). A tree map set 
diagram for the same sets, using color coding as in the bar diagram (right). 

S1

S2 S3

S4

663618

18679
54964 17157399893

914

104887
19350215738 8162

561999

237799

53346
3417

23257

bit coding

S1S2S3S4
1 1 1 1

0001
(193 502)

0100
(54 964)

0010
(171 573)

1000
(104 887)

1101 1110 0111

1010
(561 999)

0101
(237 799)

1100
(99 893)

1001
(53 346)

0110

1111
(663 618)

Fig. 16 A bar diagram screenshot for the example group of six BSD systems. 
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Fig. 20 Phylogenetic distance diagram (dendrogram) for the BSD systems. 
Location of branching points corresponds to the similarity of the tree branches.
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Fig. 18 A screenshot of the tree map set diagram for the root folder of the 
example six BSD systems.
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hierarchy of the sets and the larger intersections. The diagram 
layout coincides with the software evolution history: as the 
software typically grows with time, an earlier software version 
contains less code than a later one, and the code of the earlier 
version is almost fully included in the code of the later version 
(see the three analyzed NetBSD versions for an example). 
Hence, the diagram shows these versions as successors on a 
single branch. In contrast to that, two cloned variants developed 
in parallel both contain a larger amount of unique code, and 
appear in the diagram as parallel branches. Consequently, the 
diagram helps to distinguish component versions from 
variants, and indicates the relative changes between them. In 
most cases, the Hasse diagram can be reduced to a tree. If the 
reduction is not possible, the alternative locations of a variant 
can be displayed as parallel, alternative tree branches. 

A table view of the similarity information can be obtained 
by exporting the basic set model metrics, such as the amount 
of core, shared and unique code, to an Excel table for all 
unified tree elements. This is useful for tasks such as sorting 
and filtering the tree elements according to metrics values. 

VI. A CONTROLLED EXPERIMENT ON SET-BASED COMPARISON 
The core idea of our approach is the use of set similarity 

model for N-way comparison. We postulate that the similarity 
abstraction in the form of a set model is easier to analyze and 
understand than the similarity abstraction of pairwise comparison. 
In this section we describe a controlled experiment we performed 
to evaluate this claim. A detailed experiment description, including 
all documents and the raw data, is provided in the thesis [16]. 

Experiment goal. An evaluation of complete comparison 
approaches would not determine if the measured differences 
were caused by the use of the set model, the abstractions, the 
visualizations, or the different user interface, but would only 
provide results for a combination of those. Consequently, in 
the experiment we decided to evaluate just the core idea of our 
approach, the set similarity model, in isolation from the other 
factors. The experiment goal [56] was therefore to: 

TABLE I.  THE GOAL OF THE CONTROLLED EXPERIMENT 

Analyze the pairwise and set-based similarity models 
for the purpose of comparison 
with respect to analysis efficiency, correctness and cognitive load
from the 
viewpoint of a software developer 

in the context of Software Product Lines university course, with 
students analyzing file variants for code similarity.

The experimental hypotheses we evaluated were: 
• H1 Efficiency. The use of the set similarity model 

reduces the effort for analyzing similarity information 
as compared to the use of pairwise comparison model 
(metric: analysis time). 

• H2 Correctness. The use of the set similarity model 
allows for understanding the similarity information 

with a higher correctness compared to the use of pairwise 
comparison model (metric: ratio of incorrect answers). 

• H3 Cognitive Load. The use of the set similarity 
model allows for analyzing the similarity information 
with a lower cognitive load compared to the use of 
pairwise comparison model (metric: the SMEQ scale [57]). 

Experiment Process. The experiment participants were 
22 computer science students attending the Software Product 
Lines course at the Technical University of Kaiserslautern. 
None of the students had a prior contact with our approach or 
tool. We presented the experiment procedure to all 
participants, and then randomly assigned them to one of the 
two groups of 11 students each: the treatment group, using only 
the set similarity model, or the control group, using only the 
pairwise similarity model. After the groups split, each 
participant received an identical printed document containing 
the introductory information, the briefing questionnaire, the 
experimental tasks, and the debriefing questionnaire. After 
answering the briefing questions, they received a printed tool 
tutorial, which was also presented to them as a slide show. The 
tutorial was identical for both groups, except for the part concerning 
the similarity model. After the tutorial, the participants 
familiarized themselves with the tool and answered two 
sample warm-up questions. Then, all participants were 
individually solving the experimental tasks. Finally, they 
filled out the debriefing questionnaire. 

Independent and Dependent Variables. The only 
independent variable varied between the experimental groups 
was the used similarity model: pairwise or set-based. All other 
differences were removed: the groups solved identical tasks, 
used identical documents, and worked in parallel in two 
equivalent laboratories. The same system variants were 
analyzed by both groups, and the used similarity information 
was technically the same – we verified that all the pairwise 
similarity relations were included in the constructed set model. 
The dependent variables investigated in the experiment are the 
analysis effort, the answer correctness, and the cognitive load. 

Tasks. The participants analyzed the code similarity in 
files of five system variants, written in Java. The systems 
contained ca. 20 files each in a simple package structure. The 
participants answered 16 questions, printed in the experiment 
documents, concerning file variant similarity. The terms used 
in the questions (similar code, common or unique code) were 
explained before in the tutorial. Example questions were: 

• Which two variants of the file EclipseFigure.java are 
the most similar to each other? 

•  Which variants of the file UndoableTool.java have 
identical code? 

All questions needed only a short answer, such as stating 
the names of the variants. To view the similarity information, 
the students used a reduced variant of our analysis tool, in 
which we disabled all visualizations and mechanisms except 
for the system hierarchy navigation (as in Fig. 14, but with no 
similarity information) and the code view (as in Fig. 19). 
Hence, the students were only able to locate the files in the 
system structure diagram, identical for both groups, and to 
view the code of file variants in the code editor. In the editor, 
the background of the displayed code lines was colored 
according to the similarity information provided by the pairwise 
(control group) or set-based (treatment group) similarity model. 
The icons and tooltips provided for each line were also model-
dependent. Except for these differences, all other user interface 
mechanisms were identical for both groups. The participants 
were not allowed to use other tools, but could take notes on paper. 

Fig. 21 Phylogenetic variant-version diagram for the six BSD systems. The
length of branch sections is proportional to the amount of shared or unique code.
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The briefing questionnaire focused on the participant 
background: field of study, semester, and color blindness. We 
further asked about participants’ experience in programming 
and in the use of comparison methods and tools, all rated on a 
five-point Likert scale. The differences between the groups 
were not statistically significant (two-tailed Mann-Whitney U 
test at p = 0.05), except for one question: the control group had 
more experience in using diff tools than the treatment group. 
Hence, the control group was more experienced in a method 
similar to the one they used in the experiment. However, as 
reported below, the control group achieved consistently worse 
task results. Hence, we consider the different experience to not 
influence the hypothesis evaluation, as the control group result 
would be probably worse if its members had less experience. 

The debriefing questionnaire focused on the 
experienced cognitive load (discussed below) and a number of 
control questions using five-point Likert scale: whether the 
participants understood the tasks, used the tool as intended, 
and had sufficient time. The 22 participants confirmed that 
they understood the tasks and the tool and had sufficient time, 
with no statistically significant difference between the groups. 

Hypothesis testing. In Fig. 22 we use boxplots to present 
the results of time and answer correctness measurements. All 
participants from the treatment group, using the set model, 
finished their tasks faster (maximum: 18 minutes) than the 
fastest participant from the control group (25 minutes). The 
treatment group participants needed on average 14.0 minutes 
to complete the tasks (median: 14.0 min, σ=2.28 min), while 
the control group participants needed on average 33.7 minutes 
(median: 32.0 min, σ=7.38 min). One control group participant 
did not provide the finishing time, so we report the task time 
results for a group size of 10. However, we know that this 
participant was neither the fastest, nor the slowest in the group. 

The task correctness was higher in the set group (Fig. 22), 
where one participant made 2 errors and all others provided fully 
correct answers (sum: 2, average: 0.18, median: 0.0, σ=0.60). In the 
pairwise (control) group, only three participants provided correct 
answers for all 16 questions, while the others made between 1 
and 6 errors (sum: 25, average: 2.27, median: 2.0, σ=2.05). 

To evaluate the cognitive load, we use the Subjective 
Mental Effort Question (SMEQ) scale [57], validated in 
usability research. The SMEQ presents a continuous scale, 
labeled in nine locations with categories ranging from 
“absolutely no effort” to “extreme effort” (see Fig. 23 left). 
The respondents indicate their subjectively felt cognitive load, 
experienced during the tasks, by placing a mark on the scale 
and then converting it to an integer value between 0 and 150. 
The SMEQ measurements are provided on an interval scale, 
as the category locations were psychometrically calibrated [57]. 
This allows a convenient response analysis, as the calculation 
of averages and distances is meaningful for interval scale data. 
In Fig. 23 we present the cognitive load results provided by 
the participants. The treatment group cognitive load (average: 
19.0, median: 15.0, σ=9.06) was much lower than the control 
group load (average: 50.0, median: 48.5, σ=35.56). In the 
control group, one participant did not provide an answer. 
Consequently, we report the data for 10 group participants.  

Table II presents the results of hypothesis testing. We 
tested the task time and cognitive load data with the Student's 
t-test, as they are normally distributed (Shapiro-Wilk normality 
test) and on at least interval scale. The task error series, where 
the data of the treatment group is not normally distributed 
according to the normality test, were tested using the Mann-
Whitney U test. For all three hypotheses we also provide the 

p value. Finally, we quantify the observed improvement by 
comparing the averages for both groups: the treatment group 
needed 58% less time and made 92% fewer errors. All three 
evaluated hypotheses were accepted in the experiment. Hence, 
the experiment result indicates that the use of the set-based 
comparison allows for analyzing code similarity of file 
variants with a lower effort, higher correctness, and lower 
cognitive load, as compared to the use of pairwise comparison. 

Threats to validity. The internal validity concerns the 
degree to which the experiment outcome was caused by the 
treatment. We mitigated this threat by random assignment of 
participants to groups, and by removing all differences between 
the groups whenever possible. We consider the only difference, 
which was the higher experience of the control group in using 
diff tools, to not endanger the validity, as discussed above. We 
also mitigated the effects of learning a new method and tool by 
a pre-experiment tutorial and providing example analysis tasks.  

The external validity (generalizability) of the experiment 
result is affected by the choice of experiment participants, 
compared systems, and tasks. The external validity threats can 
be mitigated by a replication of the presented experiment in 
different settings. It would be especially interesting to 
understand how the differences in effort and correctness of 
similarity understanding, using the set-based and pairwise 
methods, vary with a growing number of compared variants. 

Fig. 22 Boxplots showing the experiment results: task time (left) and task 
errors (right) for the two groups. 
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Fig. 23 The SMEQ scale for the cognitive load (left) and the boxplots 
showing the distribution of the load values for the two experiment groups. 
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TABLE II. STATISTICAL TESTING OF THE EXPERIMENT HYPOTHESES 

Hypothesis Accepted at p<0.05 p Observed improvement 
HS1 
Efficiency Yes (t-test) 3.7e-08 Avg.: 14.0 to 33.7→ 58.5% 

HS2 
Correctness Yes (U test) 0.0048 Avg.: 0.18 to 2.27→ 92.1% 

HS3 Cognitive 
load Yes (t-test) 0.0057 Avg.: 19.0 to 50.0→ more 

than 1 category 
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VII. INDUSTRIAL APPLICATION 
We implemented the N-way diff approach in our Variant 

Analysis tool [19], including all visualizations listed in 
Section 5. During the industrial consultancy projects at 
Fraunhofer IESE, we applied the approach to several groups 
of software systems. The goal of the analyses was to find reusable 
components and to identify if some variants cover the code of 
other variants. A representative choice of these systems is 
summarized in Table III, and described in more detail in [16].  

User feedback. In all cases, the information provided by 
the analyses was assessed by the customers as useful in their 
maintenance decisions, and not possible to obtain with other 
means. The analyses confirmed the already known similarity, 
while revealing new, previously unknown similarity facts. 
The possibility to trace the component differences down to the 
code level using diff was considered to be very helpful.  

VIII. DISCUSSION 
In this paper, we show how the set-based similarity 

representation can be constructed for the task of N-way 
comparison, even if the input similarity relation is not 
transitive and the input structure trees were modified. In turn, 
the set-based similarity representation enables many benefits for 
the N-way comparison. The similarity of sets is simple to 
understand, as it bases only on element membership in sets, set 
theoretic operations, and on counting the elements. 
Furthermore, using sets makes it possible to reuse many of 
the existing approaches for set processing and visualization. 
Set types data supports a broad range of analysis tasks, as 
discussed in Section 3. Intersecting sets scale well with the 
growing number of variants: they can be understood and 
visualized even if the number of sets is large (50 or more) [58]. 
Finally, the concept of sets is very generic and can be applied 
to many types of analyzed content. 

Transitivity of the similarity relation is a prerequisite for 
expressing the similarity with sets. If the input similarity is not 
transitive, we propose to use a transitive subset of the 
similarity graph for set model construction. In the case of diff, 
the transitive subset retains 99.25% or more of the original 
edges of element similarity graphs. In our opinion, the 
advantages of using the set model and visualizations 
overweight the possibility of a minor underestimation of the 
found similarity. However, for each content type and similarity 
detection algorithm this tradeoff needs to be evaluated. 
Providing the percentage of ignored graph edges for each group 
of sets can inform the user about the degree of inaccuracy in 
the set-based representation of input similarity. 

System structure. We show how to construct a set model 
on every level of the system structure hierarchy, in spite of different 
structures of the system variants. In consequence, the same 
set-based concepts and visualizations can be applied for files, 
components, and whole systems, both small and large (as shown 
for the MLOC-sized BSD systems). This results in a scalable 
and understandable abstraction of the analysis result, for both 
dimensions of the system size and of the number of variants. 

Generalization. We used an example of an N-way diff to 
illustrate the set-based comparison. The diff algorithm has 
several drawbacks: for example, it cannot recognize text blocks 
moved within the file, and cannot recognize code having only 
semantic similarity. However, note that the particular similarity 
functions used for the tree structure matching and set model 
construction can be independently exchanged, while still 
using the overall analysis framework and the visualizations. 
For example, a variant of diff which recognizes moves [59] 
can be used. Furthermore, similarity functions known from 
clone detection can be applied if we represent the code not as 
text lines, but as tokens or syntax tree nodes. In general, the 
set-based approach can be used for similarity analysis of 
any artifacts, not only software ones, given two conditions. 
First, the artifacts should be decomposable in a tree structure, 
as defined in Section 3. Second, an equivalence function for 
tuple-matching needs to be defined for the tree structure 
elements and the basic Content Elements. 

Performance and scalability measurements of the N-way 
diff are documented in [16]. For example, the 4 variants from 
the first row of Table III, where no search for renamed files 
was needed, were analyzed in 263 seconds on a standard laptop. 
Set theoretic operations on the resulting MLOC-sized set model 
were calculated in 102 ms, thanks to a fast implementation of 
set membership information with bit vectors. However, the 
search for renamed files requires more time: from a few minutes 
for mid-sized systems having hundreds of files, to a few hours 
for systems having thousands of files. 

IX. CONCLUSION 
In this paper we discuss the code-level comparison and 

similarity analysis of software system variants. We propose to 
represent the N-way comparison result as a model of N 
intersecting sets, and show how to construct the model for any 
level of the system hierarchy (files, folders, and whole 
systems). On an example of an N-way diff, we present the 
mechanisms for hierarchical aggregation of the set models in 
the structure tree, and define set-based visualizations supporting 
a range of similarity analysis tasks. We discuss the problems 
of non-transitive input similarity and of matching the elements 
of modified system structure trees. The proposed mechanisms 
and visualizations are general and can be applied for different 
kinds of input content (e.g., software, model, or genomes), 
different similarity analysis algorithms, and different 
approaches to structure tree matching across the variants. 

 We postulate that the similarity abstraction in the form of 
a set model is easy to analyze and understand. We performed a 
controlled experiment which indicates that the use of the set-
based comparison allows for analyzing code similarity of file 
variants with a lower effort, higher correctness, and lower 
cognitive load, as compared to the use of pairwise comparison. 
We also obtained positive feedback from industrial collaborations. 

An interesting future work is to define further instances of 
the described hierarchical set-based similarity analysis approach, 
especially for models and non-software content such as 
genomes. Moreover, the N-way software comparison can be 
extended by other comparison and matching algorithms, as 
well as by other set visualization techniques, such as those 
listed in the related work section. Furthermore, more 
evaluation is needed to investigate the benefits of set-based 
similarity analysis, and of the different similarity 
visualizations, from the psychology and program 
understanding point of view. Finally, in the future we would 
like to provide an open source version of our analysis framework. 

TABLE III. GROUPS OF ANALYZED INDUSTRIAL SYSTEM VARIANTS

Domain Variants Average variant 
code size Core code size Average unique

code size 
Machine 
construction 4 1319 KLOC 664 KLOC 131 KLOC 

Power 
electronics 10 427 KLOC 161 KLOC 152 KLOC 

Automotive 14 186 KLOC 132 KLOC 2 KLOC 
Telecommu
-nication 6 202 KLOC 145 KLOC 36 KLOC 
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