
Interactive Visualization for OSGi-based Projects

Niklas Rentz, Reinhard von Hanxleden
Department of Computer Science

Kiel University, Kiel, Germany

{nre, rvh}@informatik.uni-kiel.de

Christian Dams
Scheidt & Bachmann System Technik GmbH

Melsdorf, Germany

dams.christian@scheidt-bachmann-st.de

Abstract—Big software projects often use architectural frame-
works for a consistent structure. OSGi is such a framework to
create modular Java applications. The architecture of individual
projects, however, is often hidden in configuration files.

We propose to visualize projects in a modular framework such
as OSGi with an approach to allow users to comprehend the
connections within a system. We assist this comprehension using
filtering and automatically generated, interactive views of the
project. We extend the notion of interactive views with a concept
to reproduce configured views for arbitrary system revisions to
enhance up-to-date documentation.

We have implemented this proposal in the publicly available
KIELER project, and have validated it with a large software
project in the railway domain.

I. INTRODUCTION

Development for software projects requires knowledge

about these projects to efficiently find problems and to imple-

ment new features. Having such knowledge, in turn, requires

to read documentation, time, and, before that, to create that

documentation in the first place. Early studies such as by

Lientz et al. [1] have shown that the maintenance cost of soft-

ware ranges as high as 80 percent for some projects, showing

that good and up-to-date documentation is important. Much

time is needed just to understand the code and documentation

compared to handling problems or implementing new features.

The need for documentation is quite natural when projects age,

and the knowledge about the code disappears because project

personnel is changing with time, as noted by Ball and Eick [2].

Visual code comprehension tools can help to solve these

problems when they contain visuals generated automatically

from the underlying project. This frees users from reading

through specific implementation details just to find what can be

extracted from the project files directly. For the best usability

for architects and the developers, the views should be close

to the development environment, or even with interactivity

with the source model to allow for roundtrip visualizations,

as suggested by Charters et al. [3].

The work presented here is motivated by needs identified for

the development of complex software systems for the railway

domain. The development and maintenance productivity and

quality for such systems are the leading goals of the project.

We therefore aim to provide solutions for more visible code

for developers and architects, where existing solutions did not

answer their specific questions yet.

This work has been supported by the project Visible Code, a cooperation
between Kiel University and Scheidt & Bachmann System Technik GmbH.

A. Related Work

Seider et al. [4] already proposed automatically generated

views for OSGi1-based applications. Their views show differ-

ent metrics of bundles, packages, services, as well as their de-

pendencies. They present a browser-based viewer and a Virtual

Reality (VR) environment. As their views focus on graphical

aspects to be further inspected via interaction in these tools, the

usability of their tools as static documentation is constrained.

Furthermore, they mention that “the benefit of the service

graph is limited. . . . [It] lacks in supporting the comprehension

of their dependencies.” We here propose solutions to these

problems, with a focus on persisting reproducible views.

The work by Seider et al. was also built upon further, mainly

with VR tools [5] and using speech to interact with those [6].

While that is a good way to present the architecture, it is not

wide spread to have the hardware available for VR or the

knowledge to ask specific questions about the architecture.

Therefore we present a tool accompanying the development

environment and not using VR to be more accessible.

Petre [7] investigated what expert programmers want from

visualizations. Some of the key points they mention to be

critical are insight, selectivity, and domain knowledge. Pro-
grammers want insight to be able to seek information about
otherwise obscure data and to be able to identify the key

information about a system. The selectivity should provide a
useful focus on parts of the system, and the domain knowledge
states that the tool needs to be specific enough to provide

useful information about the system at hand. With the visuals

we present, we follow these recommendations and provide a

tool to give good architectural insight.

Gallagher et al. [8] present seven key areas to improve

software architecture visualization practice, such as static
representation and task support. We use these areas to validate
our work and provide more details on that in Section IV.

B. Contribution and Outline

• We propose the use of intermediate models to browse
projects and to allow reproducible views for documenta-

tion purposes on the example of OSGi in Section II.

• We contribute a new interactive visualization for projects
using the OSGi technology, including a dependency hier-

archy view for bundles and packages, as well as a view

for the cooperation of services, see Section III.

1OSGi™ is a trademark of the OSGi Alliance in the US and other countries.

84

2020 Working Conference on Software Visualization (VISSOFT)

978-1-7281-9914-6/20/$31.00 ©2020 IEEE
DOI 10.1109/VISSOFT51673.2020.00013

• We implemented and validated the proposed visualiza-
tion within the Kiel Integrated Environment for Lay-

out Eclipse Rich Client (KIELER) project harnessing

the modeling pragmatics approach by Fuhrmann and
von Hanxleden [9] to allow interactivity with automat-

ically laid out diagrams, see Section IV.

Section V concludes the paper and summarizes future im-

provements and ideas on the topic.

II. MODELS FOR THE VISUALIZATION

To create an insight into projects using some architectural

framework, we first have to look at which parts of their

specification suggest visualizable components. We present our

proposed visualization concepts for the Java framework OSGi,

which covers a variety of architectural ideas. The models,

visualizations, and interactions are in principle applicable to

other architectural frameworks as well.

A. The OSGi Model

OSGi is a Java framework to allow an easy deployment of

big applications and extends the architecture of Java projects

with multiple levels of functionality. Of particular interest

for the visualization in the OSGi specification [10] are the

module layer, the life cycle layer, and the service layer.
Modularity in OSGi is handled via bundles in the module
layer. They combine classes and packages of the Java world
and structure the dependencies between each other as well

as requirements for packages provided by unspecified other

bundles. For structuring, these bundles can be put into bundle
categories. As mentioned by Bosschaert [11], this modularity
will be extended by features in the next release of the
OSGi specification, as implementations of that need further

reusable components. Some implementations already use their

own solutions, there are for example Apache Karaf Features,

Eclipse features, and others. This structure is reflected in our

proposed OSGi model (OM) we use as a basis for creating
views for projects using OSGi, as shown in Figure 1. In

addition to this generic structure, the OM keeps everything

in a top-level OsgiProject object and allows features to be
grouped in products, akin to Eclipse products, to allow the
visualization of product-specific configurations.

Connections between parts as dependencies and structuring

into higher-level components are not concepts that are specific

to OSGi. Dependencies of some kind are included in almost all

programming languages and architectures for them. Further-

more, most of them use some kind of file, module, or package

equivalent that define some hierarchical structure, and they

define some product equivalent for executing an application,

so the concepts described here for the module layer are also

applicable to other architectures.

More specific to OSGi again is the life cycle layer. It
includes possibilities to visualize runtime data of bundles and

services. We focus on the static views here and do not include

such views in this paper yet.

Finally, the service layer can be visualized as one of the
core pieces of OSGi. Bundles cooperate via services that are

Fig. 1. Class structure of our OSGi model abstraction.

Fig. 2. The architectural model and the visualization context model and their
possible interactions.

declared by service interfaces and implemented in service
objects. In addition to this service communication, using
Eclipse e4 allows to use injection to inject service objects

into specific classes. As that directly extends the OSGi service

concept, we include it in the OM.

B. The Visualization Context Model

We propose to have an interactive view that does not limit

the user to filter through a global view showing every con-

tainment and other dependency between objects. Instead, we

let the user choose freely which elements and dependencies to

view, with the ability to generate and persist specific views of

the project. Therefore we use a second model that contains the

current context of the visualization, the visualization context
model (VCM). An impression of the model interacting with
an architectural model such as the OM is shown in Figure 2.

Per default, the VCM describes a generic view on the

structure of projects. During interaction, this model can be

modified to indicate which parts of the connected model are

currently shown. The view then has to ensure to show hints

to what is not shown in the current context, which is further

explained in Section III.

To use the models and the views as documentation, both

intermediate models can be persisted. Persisting the architec-

tural model, for example, can be done as a nightly job or

immediately during development of the project that the model

is for. Persisting the VCM is important for documentation

purposes. The model describes an abstract way on which parts

should be shown in the view, such as an overview of all

85

Fig. 3. Hierarchy of service interfaces and service objects providing them. Service objects implementing or requiring interfaces are presented with connections
similar to the ball-and-socket notation of the UML specification [12] for a familiar look and quick understanding.

Fig. 4. Overviews of products and bundles within a product using contain-
ment. Model generated from example project for this visualization. View
presented in the KLighD viewer next to part of the actions and diagram
options.

Fig. 5. Dependency hierarchy of the central bundle of KLighD, showing
required and requiring bundles. Model generated from the KLighD framework
found at https://github.com/kieler/KLighD.

bundles with dependencies to some central UI plugin, or all

bundles that use a specific service interface and the service

objects providing that. The idea is that no matter what revision

of the architectural model is used, the viewer can use the VCM

and that architectural model to provide the same view on the

wanted revision of the project. For the documentation there

is the option to either integrate an interactive viewer for the

model or generated static images.

III. VIEWS AND INTERACTION

In consultation with potential users from our industry

partner, we identified three view concepts that we want to

visualize, namely containment, connection, and context. Note
that even though the work presented here is carried out in

the OSGi context, we consider these view concepts as rather

general. Thus, we also hope that the approach presented here

should be of interest beyond OSGi.

The containment can be handled in UML style as used in the
class diagram in Figure 1, but for specific instances this can get

confusing quickly if a single element contains more than a few

other elements. Therefore we propose to visualize containment

by physical containment of nested element representations,

such as shown in Figure 4. Dependencies by elements on

the same hierarchical level can be visualized via connections,
similar to the connections in Figure 1. When viewing de-

pendency hierarchies, we provide a comprehensible model of

which elements are on the top or the bottom of the hierarchy

as shown in Figures 3 and 5. The advantages of the used

layout approach are further explained in Section IV. Finally,

we visualize the context by various filtering and interaction
techniques that allow the user to keep the view at a manageable

level, as described below.

The initial view is the same for any project and allows the

user to navigate to the context they want to investigate. The

navigation allows for three main types of views:

• product, feature, bundle, or service overviews that show
those elements and possible connections within some sub-

context via containment (see Figure 4),

• a bundle and package dependency hierarchy that uses
connections to show the global hierarchy or the hierarchy

within some sub-context (see Figure 5), and

• a service dependency hierarchy that uses connections
similar to the bundle dependencies (see Figure 3).

The buttons and diagram elements in the figures also show

some of the possible interactions. We provide to

• show more or less details for all elements to see the
element names, IDs, and descriptive texts or only the ID,

• highlight direct connections of focused elements,
• connect the required or requiring bundles and packages
for bundles via clicking the ports to their side. Black ports

indicate that not all connections are shown, while white

ports indicate complete connections for that element. This

is visible in Figure 5 where only all connections for

the central bundle are shown. Hovering over the ports

hints the user how many elements will be connected

by clicking them via a tool tip. The overview also

provides the functionality to show all connections at once.

Furthermore, a user can

• connect references and implementations of services sim-
ilarly to bundles. This view can also be configured to

show all service objects contained in representations of

the bundles that define them. The tool also allows to

• connect representations for classes that inject service
interfaces via Eclipse injection, to

86

• filter shown elements by their IDs or names, and to
• undo and redo past interactions.
With these interactive features we let the user dive into the

domain specific parts of the architecture to gain insight about

the whole structure or selected parts of it.

IV. IMPLEMENTATION AND VALIDATION

A. Implementation—KIELER, KLighD, and ELK

We implemented the OM analysis and extraction as well as

the visualization as part of the open source project KIELER2.

The visualization is split into two individual parts.

The first part is the project analysis tool to generate the

OM from the sources of an OSGi project using Eclipse Plug-

in Development Environment (PDE) build infrastructure. This

tool can be executed as a command line Java application,

integrated into a Maven build as a mojo or from within the
developer’s Eclipse IDE.

The second part is the visualization of that model. We use

KIELER Lightweight Diagrams (KLighD) as the visualization

framework, which is presented by Schneider et al. [13].

KLighD allows to view and interact with node-link diagrams

generated from arbitrary models. We use the framework to

generate views from the OM, or, more specifically, from the

VCM and use the OM as its data source. The interactions

described above change the VCM and therefore update the

view, while the OM remains unchanged. KLighD uses auto-

matic layout using sophisticated layout algorithms with the

Eclipse Layout Kernel (ELK)3 and the concept of modeling
pragmatics, which describes customizable views to aid doc-
umentation and navigation, as described by Fuhrmann and

von Hanxleden [9]. For the dependency hierarchies shown

above we utilize the ELK Layered layout algorithm, which

is based on the layered approach by Sugiyama et al. [14],

for a natural and consistent reading direction of dependencies

and requirements. In our experience this approach has shown

to be helpful for understanding connections and hierarchies

in graphs. Many other program and system comprehension

tools use other layout algorithms, such as a force-based layout

algorithm, however, that lacks persisting layout directions and

therefore does not render hierarchies as well.

The initial implementation of KLighD is based on a Pic-

colo2D view that can be integrated into Eclipse as a plug-in.

That view allows to browse the model and interact with it

in real-time. Changes are integrated into and animated in the

view to enable a mental model of the user. Further actions

and filters can be applied using a sidebar next to the view.

Figure 4 shows this view within Eclipse together with some

of the buttons and options for interaction with the diagram.

In addition to the Eclipse view, a web view to be plugged

into websites for documentation purposes or a standalone

website is current work in progress. The master’s thesis of

Rentz [15] is a possible basis for that, as it describes the

migration of the KLighD framework to web technologies using

2https://github.com/kieler/osgiviz
3https://www.eclipse.org/elk/

the Sprotty4 viewer in the web-based Theia IDE5. Currently,

the same diagrams can be shown in a web browser, but only

within Theia and not as a standalone browser plugin yet.

B. Validation—Visualization Practice and Industrial Users

The results presented in this paper were incrementally

proposed to the industry partner and revised according to the

needs for the data visualization and the feedback on the current

progress. To further validate the presented visualization, we

compare its possibilities to the seven key areas for software

architecture visualization practice proposed to characterize and

improve such visualizations by Gallagher et al. [8].

Their first area is the static representation. This area char-
acterizes the accessibility of architectural information from

architectural and non-architectural sources. This is supported

by our tool, as it was the primary goal to support a view on

the static architectural data in the system.

Opposing that, the second area describing a dynamic repre-
sentation of runtime data is not supported. It is part of future
work to visualize the service and bundle runtime data of OSGi.

Next, the view area asks for multiple (simultaneous) per-
spectives on the architecture. It is a key part that we allow

different views to highlight different parts of the architecture.

KLighD allows to open multiple views showing different per-

spectives of the same model, therefore this is also supported.

The fourth area of navigation and interaction comes natu-
rally by using the KLighD framework. Navigation via zooming

and panning is built into its core. Furthermore, as we support

filters on elements and element types, as well as interaction

to modify the view, we consider this area to be supported.

The task support area cannot be classified as easily, as
the authors describe a wide variety of tasks that users might

need. Some are supported, such as the comprehension of the

architecture, representing anomalies in dependency hierarchies

by utilizing the layout, or showing the evolution of software

via using the same VCM for multiple revisions of an OM

instance. Some are not supported and also not planned, such

as the support to construct software architectures or plan and

develop them from the visualization directly. There are other

tools specifically designed for this that we recommend to use

rather than to implement such a feature as well.

Finally, the implementation and representation quality areas
highlight the ease of use, automatic generation of the views,

and accurate information within the views. This is also given

for the static representation by extracting the data from the

sources directly. Overall, our approach already supports sev-

eral of the critical areas, while some are part of future work.

Also important but not mentioned by Gallagher et al. is the

reactivity of the tool. We measured the time needed for the

OM generation and for viewing the entire bundle and package

dependency hierarchy of a project with 147 bundles. The

initial OM generation is done in 13 seconds and the view for

the dependency hierarchy is generated in less than a second,

4https://eclipse.org/sprotty
5https://theia-ide.org/

87

allowing for interactive browsing even with bigger projects

and unfiltered views.

We presented this work at the Nordic Coding Symposium

in Kiel in December 2019 to about 100 participants. We also

conducted a workshop and presented this tool to about 20

programmers and architects from our industry partner. The

feedback from these events so far was positive. Especially

the textual context filtering and the bundle dependency hi-

erarchy were anonymously reviewed to be very helpful by

programmers, the automatic layout also got a special mention.

We also asked architects for use cases. So far, they created

architectural overviews or detail views manually by some

generic UML tool. For OSGi they used UML component

diagrams to depict relations between OSGi artifacts. One

experiment showed that diagrams created by this automatic

visualization revealed results that were likewise usable for the

architects to document their system. Our approach also helped

to communicate the structure and some degree of data and

event-flow to stakeholders, e.g. fresh developers in the team.

Overall, the tool seems to be helping the comprehension of

projects already. A thorough experiment is part of future work.

V. CONCLUSION AND FUTURE WORK

In this paper we presented an approach to visualize the

architecture of applications that use a modular architecture,

on the example of OSGi. Even for visual representations we

follow an approach to not only use graphical elements, but also

to use textual elements to represent parts of the system. This

combination allows for views that can be viewed interactively

for browsing or as graphics accompanying the documentation

to make the architecture tangible.

With this visualization, new developers can find their way

into the architecture quicker, architects can use it to verify the

integrity of architectural specifications, and other users can get

a better impression on how the application works.

Some improvements can make the concepts presented in

this paper usable for more users, more use cases, and in new

environments. Differences in distinct versions in time of the

architecture could be shown in the same view to communicate

the changes in the system on a proper level, for example to

communicate refactoring initiatives or other improvements of

the system. An extended use case is to compare a manually set

architecture to the actual architecture of the implementation.

Differences of architecture visualizations could gain many

valuable benefits for the architects to keep implementation in

the architectural track.

As to future work, embedding the visualization into web

views or other textual documentation should help comprehend

that documentation further by exploring it directly. Also, visu-

alizing run-time data will help find problems during the startup

of OSGi applications and with resolving service requirements

during runtime. This could, for example, be built into the

Apache Felix Web Console to allow for additional graphical

support during the inspection of running OSGi applications.

When developers use Eclipse to develop the OSGi ap-

plication and use the tool described here to analyze the

architecture, further interaction from the diagram to the source

files that were used to generate the model would also be

useful. For example, the user could interact with the diagram

representation for a bundle in such a way that they are guided

to the files defining that bundle, the same for other elements.
The OM generation tool could also be extended to allow to

analyze projects using Bndtools6 for their setup or some other

non-Eclipse way of defining OSGi projects.
Finally, an area for future work is to generalize the concepts

presented here in a way to visualize arbitrary static architec-

tural connections with a meta model for such architectures, so

that the tool presented here forms a first instance of such a

generic visualization for big software systems.

REFERENCES

[1] B. P. Lientz, E. B. Swanson, and G. E. Tompkins, “Characteristics
of application software maintenance,” Communications of the ACM,
vol. 21, no. 6, pp. 466–471, Jun. 1978.

[2] T. Ball and S. G. Eick, “Software visualization in the large,” IEEE
Computer, vol. 29, no. 4, pp. 33–43, 1996.

[3] S. M. Charters, N. Thomas, and M. Munro, “The end of the line
for software visualisation?” in Proc. 2nd IEEE International Workshop
on Visualizing Software for Understanding and Analysis (VISSOFT),
Amsterdam, The Netherlands, Sep. 2003, pp. 110–112.

[4] D. Seider, T. Marquardt, M. Brüggemann, and A. Schreiber, “Visualizing
modules and dependencies of OSGi-based applications,” in 2016 IEEE
Working Conf. on Software Visualization (VISSOFT), Raleigh, NC, USA,
2016, pp. 96–100.

[5] M. Misiak, A. Schreiber, A. Fuhrmann, S. Zur, D. Seider, and L. Nafeie,
“IslandViz: A tool for visualizing modular software systems in virtual
reality,” in 2018 IEEE Working Conf. on Software Visualization (VIS-
SOFT), Madrid, Spain, 2018, pp. 112–116.

[6] P. Seipel, A. Stock, S. Santhanam, A. Baranowski, N. Hochgeschwender,
and A. Schreiber, “Speak to your software visualization—exploring
component-based software architectures in augmented reality with a
conversational interface,” in 2019 IEEE Working Conf. on Software
Visualization (VISSOFT), Cleveland, OH, USA, 2019, pp. 78–82.

[7] M. Petre, “Mental imagery, visualisation tools and team work,” in Second
Program Visualization Workshop, M. Ben-Ari, Ed. Aarhus, Denmark:
University of Aarhus, Dec. 2002, pp. 2–13.

[8] K. Gallagher, A. Hatch, and M. Munro, “Software architecture visualiza-
tion: An evaluation framework and its application,” IEEE Transactions
on Software Engineering, vol. 34, no. 2, pp. 260–270, Mar. 2008.

[9] H. Fuhrmann and R. von Hanxleden, “On the pragmatics of model-based
design,” in Proceedings of the 15th Monterey Workshop 2008 on the
Foundations of Computer Software. Future Trends and Techniques for
Development, Revised Selected Papers, ser. LNCS, vol. 6028. Budapest,
HR: Springer, 2010, pp. 116–140.

[10] OSGi Core Release 7 Specification, The OSGi Alliance, Apr. 2018,
Accessed: Jun. 03, 2020. [Online]. Available: https://docs.osgi.org/
download/r7/osgi.core-7.0.0.pdf.

[11] D. Bosschaert, “New OSGi work - features,” Jul. 2019, Ac-
cessed: Jun. 03, 2020. [Online]. Available: https://blog.osgi.org/2019/
07/new-osgi-work-features.html.

[12] Object Management Group, “OMG Unified Modeling Language Speci-
fication, Version 2.5.1,” Dec. 2017, Accessed: Jun. 03, 2020. [Online].
Available: https://www.omg.org/spec/UML/2.5.1/.

[13] C. Schneider, M. Spönemann, and R. von Hanxleden, “Just model!
– Putting automatic synthesis of node-link-diagrams into practice,”
in Proc. IEEE Symposium on Visual Languages and Human-Centric
Computing (VL/HCC ’13), San Jose, CA, USA, Sep. 2013, pp. 75–82.

[14] K. Sugiyama, S. Tagawa, and M. Toda, “Methods for visual understand-
ing of hierarchical system structures,” IEEE Transactions on Systems,
Man and Cybernetics, vol. 11, no. 2, pp. 109–125, Feb. 1981.

[15] N. Rentz, “Moving transient views from Eclipse to web technolo-
gies,” Master’s thesis, Kiel University, Department of Computer Sci-
ence, Nov. 2018, https://rtsys.informatik.uni-kiel.de/∼biblio/downloads/
theses/nir-mt.pdf.

6https://bndtools.org/

88

