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Abstract—Studying software visualization often includes the
evaluation of paths collected from participants of a study (e.g.,
eye tracking or movements in virtual worlds). In this paper, we
explore clustering techniques to automate the process of grouping
similar paths. The heart of the evaluated approach is a distance
metric between paths that is based on dynamic time warping
(DTW). DTW aligns two paths based on any given distance metric
between their data points so as to minimize the distance between
those paths—alignment may stretch or compress time for best fit.
With a data set of 127 paths of professional software developers
exploring code cities in virtual reality, we evaluate the clustering
based on objective quality indices and manual inspection.

Index Terms—dynamic time warping, clustering, path data,
time series

I. INTRODUCTION

We are studying human movements and navigation behavior

in virtual software cities [1], where we track the positions

visited by participants as paths in 3D space. In the set of

paths, we then look for similar behavior. However, if there

are many paths, we would like to cluster them into groups

of similar paths to ease our manual inspection. A similar

need for clustering paths occurs also in eye-tracking studies

where, for instance, humans are tracked to find how they view

at software visualizations or studies on how developers read

code. In this paper, we explore how to leverage clustering in

order to group similar paths automatically. Clustering requires

a distance function between paths, e.g., the Euclidean distance.

Because our paths (movement paths) may vary in length and

also in timing—some humans move faster than others—, we

are exploring whether dynamic time warping (DTW) can be

used as an alignment technique of paths for computing the Eu-

clidean distance. DTW is capable of stretching or compressing

time so that the distance between paths is minimized, thus,

abstracting from different lengths and speeds. We address the

following research questions:

(RQ1) Does automated clustering support us in investigating

similar movement behaviour?

(RQ2) Is DTW a suitable technique to determine the distances

between paths?

(RQ3) Can classic clustering validation indices give us hints

on “good” clusters?

Section II presents related research. Section III delves into

clustering paths based on DTW and clustering validation

indices proposed to assess the goodness of clusters. Section IV

reports on our study in which we applied those concepts to

paths collected from 127 professional developers moving in a

virtual code city. Section V, finally, concludes.

II. RELATED RESEARCH

Clustering as such is a long established field of research.

We will cite the relevant general works later in Section III.

In software engineering, clustering has been used, too, in

particular for architecture recovery where similar modules are

clustered [2]. Clustering of time series based on dynamic time

warping (DTW), however, is a very rare topic in software

engineering. Despite of extensive search, we found only very

few papers: Bouktif et al. proposed an approach based on

DTW to detect change patterns in CVS repositories in order

to answer the question which other files in a software system

should be changed if a particular file was modified [3]. The

authors noted that precision and recall of their approach could

be improved by using clustering techniques in addition to

DTW. Ding et al. have conducted a study on the state-of-the-art

representation methods and similarity measures for time series

data [4], among which was also DTW, based on the UCR Time
Series Data Mining Archive [5]. This archive of time series,

however, has no data specific to software engineering aspects,

in particular no data related to movement paths. Abdelkader

and Mimoun have proposed to model code sequences of

functions as time series and then to find cloned functions via

DTW [6]. Our need for clustering paths arose from our study

of human movements and their navigation behavior in virtual

software cities [1], a topic that occurs and is addressed also in

other domains. For instance, Amornbunchornvej and Berger-

Wolf proposed a framework to infer following strategies of

social groups based on time series of movement data [7]; they

did not, however, use DTW. We are not aware of any work in

software engineering that clusters paths based on DTW.

III. CLUSTERING PATHS

This section describes how to cluster paths based on dy-

namic time warping.

A. Path Distances and Dynamic Time Warping

Let Spacen be an n-dimensional Cartesian coordinate sys-

tem. Every position p ∈ Spacen can be represented as a

vector p = (x1, x2, . . . , xn). In case of eye-tracking or mouse

movements on a two-dimensional display, n=2 and Space2

represents the set of pixels of the display. In our case of

paths in virtual reality spaces, n=3 and Space3 is the set of

positions a player can reach in the virtual world. Without loss

of generality, we follow the convention by Unity—the game

engine we are using to render our virtual worlds—where every

position is a vector (x1, x2, x3) as follows: x1 is the direction
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towards right, x2 is the direction up, and x3 is the direction

forward.

A path is an ordered sequence of positions [p1, p2, . . . , pm]
where m≥0 is its length. A timed path is a path for which

a function t:Spacen→R
+
0 exists that assigns a point in time

(a non-negative real number) to every position in that path

describing when this position was reached. We assume that

t(p1)=0, that is, every path starts at time zero. Every pair

(pi, pi+1) in a path denotes a movement from one posi-

tion pi to the immediate next pi+1 where t(pi)<t(pi+1).
In our recordings, we used a fixed resolution of time, that

is, t(pi+1)−t(pi)=period for all neighboring positions of all

paths where the constant period was 0.5 seconds. Anyhow,

whether the positions were recorded at a fixed interval or even

uniformely across paths does not really matter in the following.

As a matter of fact, the timing is neglected by dynamic time

warping altogether—only the order counts, but it can be used

to further study the differences between similar paths.

Given the above properties of paths, a path forms a time
series, which is defined as a series of data points indexed

in time order and, thus, is amenable to time-series analysis.

In particular, we can measure the similarity between two

paths using a distance metric between positions contained

in those paths. The most simple case for such a similarity

measure would be if both paths had equal lengths and their

corresponding positions where recorded at the same relative

points in time. Then both paths would form a vector of the

same length and a distance metric, such as Euclidean distance,

could be applied to every pair of corresponding positions of

the two paths. Yet, if the paths have different lengths and/or the

speed of movements differs between paths (so that positions

are reached at different points in time) but one wishes to

abstract from the speed—as it is the case for us—, it is not

so simple. Here, dynamic time warping (DTW) can help.

The basic idea behind DTW is to stretch or compress

two given time series locally in order to make one resemble

the other as much as possible. In our case, DTW abstracts

from the timing but not from the order in which positions of

different paths were reached. Based on the resulting alignment,

the distance between two paths is computed by summing

up the distances of the individual (aligned) positions. DTW

algorithms have been popularized in the seventies of the

last century in the context of speech recognition to account

for differences in speaking rates between speakers and/or

utterances [8], [9].

DTW allows us to compare a time series (or timed path)

P = (p1, . . . , pN )—called the test or query—against a ref-
erence time series (timed path) Q = (q1, . . . , qM ) [10]. For

clarity, we are using the symbol i ∈ [1, N ] as an index for

positions in P and j ∈ [1,M ] for those in Q. Every pi as

well as every qj is an element of Spacen and a difference can

be measured between the two, for instance, as the Euclidean

distance. Which distance to use in DTW can be decided freely.

For generality, we assume that we have a non-negative local
distance function f defined between any pair of positions pi
and qj . We will use the shortcut d(i, j) = f(pi, qj) ≥ 0 in the

following. In our application of DTW, we use the Euclidean

distance, which comes quite naturally for three-dimensional

spaces. Yet, other distances could be used, too.

The central concept of DTW is the alignment of two

time series enabling the calculation of the distance between

corresponding positions of the two time series, called the

warping curve φ(k) = (φP (k), φQ(k)) with k ∈ [1, T ] where

T=max(N,M) and φP (k) ∈ [1, N ] is a position in P aligned

with a position φQ(k) ∈ [1,M ] in Q. The purpose of the two

warping functions φP (k) and φQ(k) is to remap the indices

of P and Q, respectively. Given φ, the average accumulated
distortion dφ(P,Q) between the warped time series P and Q
can be calculated as follows:

dφ(P,Q) =
T∑

k=1

d(φP (k), φQ(k)) ·mφ(k)/Mφ (1)

where mφ(k) is a per-step weighting coefficient and Mφ is

the corresponding normalization constant used to ensure that

the accumulated distortions are comparable along different

alignment paths

Because the alignment should not be arbitrary, constraints

may be imposed on φ. For instance, monotonicity is generally

requested to preserve the time ordering and to avoid mean-

ingless loops: φP (k + 1) ≥ φP (k) and φQ(k + 1) ≥ φQ(k).
Another frequent constraint is that the starts of both time series

must be the same, that is, φP (1) = φQ(1) = 1. This constraint

is fulfilled in our case because all our paths start at the same

location. In eye-tracking studies, however, that is generally

impossible to enforce. Frequently, it is also requested that

the ends of the two time series must match: φP (T )=N and

φQ(T )=M . This constraint is not fulfilled in our application

of DTW because our participants were allowed to stop at any

time. If the start and end of both time series are matching, the

two time series are said to be globally aligned.

Even in the presence of the above constraints, there are still

many degrees of freedom. These degrees of freedom allow a

multitude of possible instances of φ to align two time series.

What we search for is the optimal alignment, keeping in mind

that we use it to calculate the distance between the two times

series. An optimal φ is, thus, one that minimizes the distance,

that is, a φ such that D(P,Q) = mindφ(P,Q). Algorithms

to find optimal φs (there may, of course, be mutliple ones)

are based on dynamic programming and run in O(N ·M) time

[11]. For the study presented in this paper, we used the R

package dtw [12] to find an optimal φ and to calculate the

difference between aligned time series (see Section IV-C).

The algorithms allow one to specify further constraints be-

yond monotonicity or global alignment, in particular different

notions of continuity. The symmetric continuity constraint,
for instance, implies that arbitrary time compressions and

expansions are allowed and that all elements must be matched:

|φP (k+1)−φP (k)| ≤ 1 and |φQ(k+1)−φQ(k)| ≤ 1. Similar

forms of constraints are possible, too. While the symmetric

continuity constraint disallows skipping positions entirely, one

could as well want to just limit the number of consecutive

positions being skipped (i.e., those left unmatched) by an
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upper limit greater than 0. Alignments in general are obtained

by duplicating positions, that is, one lets a single position in P
match multiple (consecutive) positions in Q, or vice versa. The

number of repeated positions that can be matched consecu-

tively or skipped, respectively, puts limits on the local slope of

the warping curve. The warping curve can best be imagined as

the line in a two dimensional chart, where one axis represents

P and the other axis represents Q. There is a dot in this chart

if the respective positions of P and Q match. That is, the

warping curve pictures φ(k)=(φP (k),φQ(k)) for all values of

k. If P and Q would be of equal length and all their positions

matched perfectly, the warping curve would be the diagonal.

If some positions were instead to be skipped to obtain an

alignment, the slope of the warping curve would defer from

1. If one wants to put a limit on how many positions can

be skipped, one can simply restrict the slope of the warping

curve. This is achieved by so called step patterns, which can

be passed as an argument to a DTW algorithm. A step pattern

lists sets of allowed transitions between matched pairs and the

corresponding weights. In other words, a step patterns defines

the admissible value of φ(k+1) given φ(k),φ(k−1), etc. The

associated weight (mφ(k) in Equation (1)) is a penalty for

selecting a particular continuation of φ(k). The Levenshtein

distance or Smith-Waterman’s distance to align two sequences

have a similar concept of penalty, but in DTW there is no

additive penalty for duplicating or skipping elements. That is,

DTW is better suited when time may be arbitrarily compressed

or expanded than these other measures for aligning sequences.

We are using the simple step pattern named symmetric2,

defined as follows (given two indices, i and j, for φP and

φQ, respectively):

c[i,j]=min(c[i−1,j−1]+2·d(i,j),c[i,j−1]+d(i,j),c[i−1,j]+d(i,j))

where c is the cost matrix filled by the dynamic program-

ming algorithm to find an optimal φ (each cell contains the

alignment costs for a particular path in the warping curve)

and d(i, j) is the distance as defined above. Continuing the

warping curve to the right in the alignment matrix is as costly

as continuing it upward for symmetric2. Taking a diagonal

path has the same cost as the sum of the costs of going

up and right. This offers maximal flexibility in aligning the

next position based on the immediate previous ones in the

alignment. It means that we can arbitrarily compress or expand

time to find the optimal alignment. Moreover, it is symmetric

so that the resulting distance metric is symmetric, too. This has

computational advantages because only half of the distance

matrix for the subsequent clustering must be computed and

also advantages for cluster evaluation (see Section III-C), but

more importantly there is no reason for us to believe that a

distance from P to Q should be anything else but the distance

from Q to P when comparing paths. For these reasons, this

choice seems justified for our application of DTW and it is also

among the most popular step patterns in other applications of

DTW. Yet we note that there are many alternatives proposed

in the literature [10], [13], [14].

B. Clustering

The average accumulated distortion dφ(P,Q) between the

warped time series P and Q defined by Equation 1 through

DTW gives us a measure of the similarity of two paths viewed

as time series where time can be compressed and expanded.

A distance of zero means that two subjects visited the very

same locations in the same order, although at possibly different

speeds. This distance measure allows us to cluster similar paths

to find similar behavior of subjects.

The process of clustering paths can be automated by classi-

cal clustering algorithms. Cluster analysis is an unsupervised

classification, that is, it does not require any oracle that gives

hints on correct or false clusters. There is a plethora of

different kinds of clustering algorithms. Classical types of

clusterings for time series are hierarchical, partitional, and

fuzzy clustering. Fuzzy clustering yields a likelihood that an

element belongs to a cluster, while hierarchical and partitional

clustering both yield crisp clusters. Although it is straightfor-

ward to change a fuzzy clustering into a crisp clustering by

simply assigning an element to the cluster for which it has

the greatest likelihood, it adds yet another parameter whose

influence needs to be investigated. That is why we will look

into fuzzy clustering only in future research.

All the different types of clustering require a measure of

distance (or dually, similarity) between the elements to be

clustered. In our case, dφ(P,Q) is used for that. Beyond

that they have different additional requirements and distinct

methods we briefly summarize in the following.

Hierarchical clustering is a bottom-up approach that

starts with singleton clusters—one for each element to be

clustered—and then successively merges clusters with minimal

distance (or, dually, highest similarity) until a cluster is reached

containing all elements. When clusters contain more than one

element, the initial distance metric for single elements is no

longer directly applicable because it is defined in terms of

two elements and not two groups of elements. Consequently,

a second measure of distance is required that must be defined

for groups of elements to decide whether two groups that are

not both just singletons should be merged. Here again many

alternatives exist. The classic measures for inter-group distance

are single linkage, where the inter-group distance is that of

the closest (least dissimilar) pair, complete linkage, where the

farthest (most dissimilar) pair is chosen for the inter-group

distance, or unweighted average linkage, where the average

distance between all pairs of elements of the two clusters to

be merged serves as the inter-group distance. Single linkage
frequently exhibits chaining, which is the tendency to incorpo-

rate single elements into existing clusters rather than creating

new clusters and may create clusters with elements that are far

away from each other. Because we want more cohesive clusters

of paths, we do not use it. Complete linkage, on the other

hand, tends to find compact clusters of approximately equal

diameters [15]. Unweighted average linkage is a compromise

between the two. We refer the reader to the literature for other

measures of inter-group distances [15].
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The merging of clusters by hierarchical clustering can be

tracked and forms a tree where every inner node represents

a merge of two clusters associated with the distance between

those. This tree can be visualized as a so-called dendrogram
(cf. Figure 1), where the x axis lists all elements to be clustered

and the y axis depicts the distances at which two clusters were

merged. Thus, hierarchical clustering does not create only a

single partition of the data. Instead, many can be induced from

the dendrogram by selecting a distance threshold at which

to cut the tree. Which threshold is suitable can be derived

manually by inspecting the dendrogram’s possible clusters—

which may be tedious and somewhat subjective—or by the

means we describe in Section III-C.

Partitional clustering is rather a top-down approach that

starts with an existing clustering which is then successively

refined into more cohesive clusters until a given number, k,

of requested clusters is reached. As opposed to hierarchical

clustering, the parameter k must be specified beforehand.

There are different kinds of partitional clustering algorithms,

but all work in the following common way. First, k centroids

are randomly initialized, usually by choosing k elements

randomly forming inital singleton clusters. Then the distance

between all remaining elements and all centroids is calculated,

and each element is assigned to the cluster of its closest

centroid. A prototyping function is applied to each cluster

to update the corresponding centroid of each cluster after

each round of refinement. Then, distances and centroids are

updated iteratively until a certain number of iterations has been

reached, or no element changes clusters anymore. A centroid
is intended to characterize all members of the cluster and may

not necessarily be a member of the data set. For instance, it

could be an average vector over all cluster members.

Very popular partitional algorithms are k-means and k-

medoids [16]. K-means chooses a time series as the centroid

that is calculated as the average of the cluster members along

each dimension of the underlying multi-variate data (Spacen).

More precisely, suppose we have a cluster of s time series

{ts1, . . . , tss}. Each time series tsl (l ∈ [1, s]) in the cluster is a

sequence (pl,1, . . . , pl,M ) of M positions in Spacen, thus, each

position pl,m (m ∈ [1,M ]) is a vector (xl,m
1 , . . . , xl,m

n ). Then

the centroid of k-means is a time series (p1, . . . , pM ) where

each position pi (i ∈ [1,M ]) is the average vector of all vectors

(x∗,i1 , . . . , x∗,in ) among the s series that belong to the same

cluster for all equal time points. Obviously, this calculation

is possible only if all time series have the same length. If

there are unmatched positions due to different lengths of the

time series, there is no one-to-one correspondence between

elements of different time series and, hence, it is not obvious

how to calculate their average. Moreover, the result may be

a time series that is not actually one that was observed but a

result from averaging. If the goal is to find a real observation

as a representative of a cluster, the centroid calculated by k-

means is not helpful. In our application of DTW, the time

series (paths) have very different length. Moreover, we want

to study true observations. That is why k-means is not suitable

for our context.

K-medoids, also known as partition around medoids (PAM),
minimizes the sum of distances between points labeled to be

in a cluster and a point designated as the center of that cluster,

i.e., the centroid. In contrast to k-means, k-medoids chooses

observed time series as centroids (also known as medoids or

exemplars). A medoid of a cluster is an element from this

cluster whose average distance to all other elements of that

cluster is minimal, that is, it is the most centrally located point

in the cluster. K-medoids is said to be more robust to noise

and outliers as compared to k-means because it minimizes a

sum of general pairwise distances instead of mean distances.

In addition, its centroid is an element of the original data set,

that is, a true observation.

C. Clustering Evaluation

Partitional clustering requires a parameter k determined

upfront for the number of requested clusters. Similarly, the

dendrogram produced by hierarchical clustering can be cut

to obtain k clusters. The remaining question then is what is

a suitable value for k to obtain “good” clusters? Hierarchical

clustering at least allows us to inspect the dendrogram—which

presents not just a single partitioning of the data but many in

terms of subtrees that can be cut from the dendrogram: each

inner node represents a merge of clusters and is associated

with the distance for the merged clusters. This way one could

determine a distance threshold at which it becomes doubtful

to further merge clusters. In case of partitional clustering, one

could generate clusters for a range of different values for k
and then inspect the results. In both cases, this manual process

is tedious and may also be subjective.

If one wants to fully automate this process and to make it as

objective as possible, other approaches may be considered. An

idea is to define a quality measure for the resulting clusters—a

cluster validity index (CVI) in clustering terminology—against

which suitable values for k are to be optimized. There are

many such CVIs proposed in the clustering literature that can

rougly be classified as internal, external or relative depending

on how they are computed [17]. Internal validation validates

a partition by examining only the partitioned data whereas

external validation compares the partition with a correct

partition. The latter, obviously, requires a ground truth, which

contradicts the idea of unsupervised classification. Given two

partitions (one of which is the ground truth), X and Y , of

a data set with N elements, the Rand Index (RI) [18] is the

number of pairs that are in the same cluster in X and also in

the same cluster in Y , TP, plus the number of pairs that are

in different clusters in X and also in different clusters in Y ,

TN, divided by the total number of combinatorically possible

pairs: (TP+TN)/(N(N−1)/2). It is a measure of accuracy

with a value range [0, 1] and is sensitive to imbalanced data.

The Adjusted Rand Index (ARI) puts the Rand Index in relation

to a random clustering. The random clustering created through

permutation is a baseline that a good clustering should outper-

form. It can take on negative values if a clustering is worse

than the random baseline. The Jaccard Index (JI) is similar to

the Rand Index but disregards the pairs of elements that are
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Fig. 1: Annotated dendrogram of the hierarchical clustering of paths with complete linkage.

in different clusters for both clusterings (and consequently not

sensitive to imbalanced data): TP/(TP+FN+FP) where FP is

the number of pairs that are in the same cluster in X but not

in Y and FN is the number of pairs that are in the same cluster

in Y but not in X . The value of this index falls into the range

[0, 1] where 1 is the best value. The Fowlkes–Mallows Index
(FM) is defined as

√
TP/(TP+FP)·TP(TP+FN) [19], again

with a value range [0, 1] with 1 being the optimum. Fowlkes

and Mallows observed that the Rand Index approximates 1

for k → N (where k is the number of clusters and N the

number of elements), that is, the Rand Index is suited only for

k considerably lower than N . Another external CVI, named

Variation of Information (VI), was proposed by Meila [20] that

is based on entropy. The precise details of that information-

theoretical measure can be found in the original paper; here we

just summarize the intuition of what it captures. Informally, its

value corresponds to the amount of information that is gained

minus the amount of information lost when going from X to

Y and vice versa. Its value is not bound by a constant value.

The closer the value is to zero, the better.

Relative validation compares two partitions to each other,

where often an external or internal CVI is used for this

comparison. We will follow this approach by generating

clusters for different values of k, gather different internal

CVIs for each resulting partition, and then compare those

CVIs for partitions obtained from different choices of k to

each other. The relation between different values of k and the

CVIs can be plotted as a two-dimensional graph. Often such

graphs resemble an ’elbow’ shape, that is, a CVI decreases

monotonically as k increases and from some k onwards the

decrease of the curve flattens markedly [21], [22]. The location

of the ’elbow’ suggests the appropriate value for k then. We

could retrieve k by simply looking at the chart. To provide

a more objective and automatable selection, the gap statistic
provides a statistical procedure to formalize this heuristic [23].

The idea of the gap statistic is to standardize the graph

plotting the relation between k and a CVI by comparing

it with its expectation under an appropriate null reference

distribution for the CVI. The estimate of the optimal k is

then the value of k for which the standardized CVI falls the

farthest below the reference curve (the one obtained assuming

the null reference distribution). More precisely, let C be the set

of clusters of paths with k = |C| and A ∈ C be a cluster, then

DA =
∑

P,Q∈A dφ(P,Q) is the sum of the pairwise distances

for all paths in cluster A. The pooled within-cluster distances

around the cluster mean, W , (the factor 2 in the equation

makes this work exactly) is defined as follows:

W (C) =
∑

A∈C

DA

2|A| (2)

The gap statistic is then defined to be the following compar-

ison between W and an appropriate null reference distribution

of the data (see also [24]):

gap(C) = E∗n{log(W (C))} − log(W (C)) (3)

where the values are standardized by the log function and E∗n
denotes the expectation under a sample of size n from the

reference distribution. The mean and standard deviation of the

sample can be determined and the recommended value of k
will be the sample mean value maximizing gap(C) after the

sampling distribution was taken into account. As a bonus, the

standard deviation allows one to assess the confidence into the

chosen value: the lower the standard deviation, the higher the

confidence into the selected mean chosen for k. This estimate

of k is generally applicable to any clustering method and

distance measure. More details in particular about suitable null

reference distributions can be found in the original paper [23].

Next we will delve into popular CVIs for internal validation.

There is a plethora of CVIs and we cannot explain and

investigate all of them. The interested reader is referred to the

extensive comparative study of CVIs by Arbelaitz et al. [17]

(the paper does not evaluate those CVIs for comparing time

series, however). For practical reasons, we limit ourselves to

those offered by the R function cvi. This function is part of

the R package dtwclust [25] we use for clustering our time-

series leveraging DTW and offers multiple internal CVIs for

DTW-based clustering we will explain shortly. Each index has

its own range of values. Some of them are to be minimized

and some of them to be maximized to get good clusters.

These CVIs can be used to evaluate the result of a clustering

algorithm regardless of how the partition came to be. There is

no way to know in advance which CVI works best as those

may depend upon the specific application. Because we are not

aware of any prior study to cluster paths, we will gather and

compare all of them in Section IV. If there is no consensus

among the CVIs, at least a majority vote might be used to

decide on the best value for k.

The Silhouette index, Sil, by Rousseeuw [26] is a measure

for how well objects lie within their cluster and which ones

are merely in between clusters. Let P be a path clustered

and A be the cluster P belongs to. Then we can calculate
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the average distance a(P ) between P and every other Q∈A
(where P �=Q). The underlying distance measure pairwisely

applied to P and all Q is dφ as defined by Equation (1) as

both P and Q are paths in our case. Accordingly, a(P ) tells

us how well P fits into its cluster A it was assigned to by the

clustering algorithm. Complementary to that, we can calculate

the average distance d(P,C) between P and all elements in

another cluster C �=A, which gives us a measure of how well

P would fit into C instead. When d(P,C) is computed for

all clusters C �=A, we can select the smallest value of function

d and denote it by b(P ) = minC �=Ad(P,C). The cluster B
for which this minimum is attained is the second-best choice

for clustering P . The final cluster validation index Sil is then

defined as the averaged silhouette over all clustered elements

as follows (C is the set of clusters of paths and N is the

number of paths in the data set to be clustered):

Sil(C) =
1

N

∑

A∈C

∑

P∈A

b(P )− a(P )

max{a(P ), b(P )}
Sil lies in the range [−1, 1], where a higher value indicates

a better clustering. If cluster A contains only P and no other

element, Sil(P ) is defined to be the neutral value zero.

The Dunn index, D, [27] is a ratio-type index (i.e., yields a

value between 0 and 1, where 1 is the best) where the cohesion

of a cluster is estimated by the nearest neighbour distance and

the separation by the maximum cluster diameter. The index is

defined as follows:

D(C) =
minA∈C{minB∈C−A{d(A,B)}}

maxA∈C{Δ(A)}
where d(A,B) = minP∈A{minQ∈B{dφ(P,Q)}} and Δ(A) =
maxP∈A,Q∈A{dφ(P,Q)}.

The COP index is a ratio-type index, too, where the cohe-

sion is estimated by the distance from the elements in a cluster

to the centroid of their cluster and the separation is based on

the furthest neighbour distance [28]. Its definition is as follows

(the lower the value, the better; CA denotes the centroid of a

cluster A; N is the total number of paths to be clustered):

COP(C) =
1

N

∑

A∈C
|A| 1/|A|∑P∈A dφ(P,CA)

minP �∈A{maxQ∈Adφ(P,Q)}

The Davies-Bouldin index, DB, estimates the cohesion based

on the distance from the elements in a cluster to its centroid

and the separation based on the distance between centroids

of different clusters [29]. It is among the most frequently

used indices in CVI comparison studies and defined as follows

(again, CX denotes the centroid of a cluster X; the lower the

value, the better; k = |C| is the number of clusters):

DB(C) =
1

k

∑

A∈C
maxB∈C−A{S(A) + S(B)

dφ(CA, CB)
}

where S(A) = 1/|A|∑P∈A dφ(P,CA)
The modified Davies-Bouldin* index, DB*, is a variation of

DB where the minimal distances between cluster centroids are

used in the denominator rather than maxima and defined as

follows (again, the lower, the better):

DB*(C) =
1

k

∑

A∈C

maxB∈C−A{S(A) + S(B)}
minB∈C−A{dφ(CA, CB)}

While DB maximizes the fraction of inter- and intra-centroid

distances for selected pairs of clusters, DB* puts the maximal

intra-cluster cohesion of pairs of clusters in relation to the

minimal inter-cluster centroid distance (the lowest coupling

between clusters so to speak), where the pairs considered in

the nominator and denominator are completely independent.

A rationale for this variation and a comparison between the

variation and its original as well as other CVIs can be found

in the original paper by Kim and Ramakrishna [30].

The Calinski-Harabasz index, CH, is a ratio-type index

estimating the cohesion of clusters based on the distances from

the elements in a cluster to its centroid [31]. The separation, on

the other hand, is based on the distance from the centroids to

the global centroid. The global centroid is the centroid of the

whole data set, that is, it is independent of any clustering. The

notion of centroid, however, may depend upon the particular

kind of clustering applied. For partitional clustering, we used

partition around medoids (PAM), where medoids are used as

centroids. As explained in Section III-B, the medoid is an

element from the data set whose average distance to all other

elements of that data set is minimal, that is, it is the most

centrally located point in the data set. To be able to make

meaningful comparisons between partitional and hierarchical

clustering, we will use the mediods for the CVIs gathered for

clusters resulting from hierarchical clustering, too. CH can

be defined as follows (the larger, the better; M is the global

medoid):

CH(C) =
(N − k)

∑
A∈C |A|dφ(CA,M)

(k − 1)
∑

A∈C
∑

P∈A dφ(P,CA)

IV. STUDY

In this section, we describe our study in which we applied

the process outlined in the previous section to cluster similar

paths. The goals of the study were to investigate the feasi-

bility, practicality, and usefulness of the proposed method. In

particular, we wanted to investigate (RQ1) whether we get

meaningful groups of similar paths with automated clustering,

(RQ2) whether using a DTW-based distance for this clustering

is suitable and computationally feasible, and (RQ3) whether

classic measures for cluster validation are helpful to further

automate the process. All data and R code for our study are

made available so that other researchers can replicate and

extend our study [32].

A. Visualization Environment

The paths we analyze in this study represent movements

of developers in a virtual world visualizing software based on

the software-as-a-city metaphor as created by our visualization

tool SEE (Software Engineering Experience). The scale of

the city was chosen relative to the height of humans, that

is, the city buildings appeared in realistic height relative to

the player’s height so that a player would be able to move
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through the streets in an ego perspective. A player steered

himself or herself through the virtual world in a continuous

motion wearing a head-mounted display and using hand-held

VR controllers freely in all three axes (with full-room tracking

mode enabled on an area of around 2×2 meters). It was even

possible to move under the city.

The underlying data model visualized by SEE is a hierar-

chical graph, that is, nodes can be nested forming a forest

of inner and leaf nodes. The visual components of nodes

and edges can be freely configured in SEE. The mapping

used in the study is as follows (see Figure 2). Leaf nodes

of the underlying dependency graph represent source-code

files and are mapped to three-dimensional blocks where the

width, height, and depth of the blocks encode a certain metric

(width: lines of code, height: fraction of duplicated code,

depth: number of tokens; color gradient: McCabe complexity).

Inner nodes represent directories containing files or other di-

rectories. The hierarchical structure of the nodes is depicted by

recursively composing blocks into visual segments. How these

segments are determined and where to place visual elements

in sections is left to a layout algorithm (see below). Edges of

the underlying dependency graph can represent any type of

binary relation among software elements. In our study, edges

connect two blocks (source-code files) if they share duplicated

code. They are visualized by means of hierarchically bundles

splines [33], connecting the corresponding blocks. In general,

edges are directed, which is represented in SEE through a

color gradient. For duplicated code, the direction usually does

not matter, however.

The underlying dependency graph visualized in our study is

for a real system. We analyzed duplicated code in the network

subsystem of the Linux kernel. The resulting graph consists of

1,464 nodes (each representing a distinct source code file or

directory) and 1,749 edges (each representing a code fragment

shared between two files). The dependency graph including

all size-related metrics was extracted by a static analysis

offered by tools of the Axivion suite [34]. Based on this

graph, we generated a single scene (a single world) in which

analysis results are visualized using four different layouts

(Circular Balloon, Circle Packing, Treemap, and EvoStreets;

cf. Figure 2). Exactly the same dependency graph and visual

mapping was used for all four layouts. The only difference

was the layout. Each laid out graph was presented on its own

plane clearly separated from the other layouts. Users could

freely move within and between the city variants to compare

the different layouts with each other.

B. Gathering Path Data

The movement data captured as paths and analyzed in

this study is a by-product of a tool presentation held by

our research group in co-operation with Axivion [34] at

the Embedded Software Engineering congress in December

2019 [35]. This congress is one of the largest congresses in the

field of embedded software engineering in Germany, hosted

every year in Sindelfingen. It is mainly visited by professional

C and C++ developers and so we took advantage of the

Fig. 2: Virtual code cities used in the study with an example

path of one of the participants—the direction of movement is

depicted with a color gradient from magenta (start position)

to cyan (end position).

opportunity to present the current state of our visualization tool

SEE to a broader audience of professional software developers

and software architects. For our live demo, we analyzed the

network subsystem of the Linux kernel because it is well

known by most of the congress’s visitors.

The participants got a short introduction in what they would

see and how they could move. The interaction was very simple.

The direction of the movement in the virtual world was simply

the direction in which the controller was pointing. To actually

move, the player had to press the trigger of the controller,

working as a throttle: the deeper it was pressed, the faster the

player would move. All participants understood the interaction

within a minute.

The participants did not get any task. They were invited to

move around as they wish and just explore what they would

find interesting. They could finish whenever they wanted. After

all, this was a demo and we did not want to ruin the game

experience through any kind of strict instructions. Moreover,

we were curious to see what would catch their attention. This

unrestricted moving has also advantages for the purpose of

our study presented in this paper as it is expected to yield the

most heterogeneous paths that are yet not completely arbitrary

because certainly the participants were lead by what they saw

and found interesting. It is expected that other participants

would share their interests and follow similar paths.

After the short introduction, the game was started and all

movements were recorded by SEE by capturing the position

and rotation of the player in Unity’s world space periodically

at every 0.5 seconds. The starting point in the virtual world

was identical for all participants. The recorded data were kept

anonymous and are available [32].

Our data set contains 127 paths. Every path is encoded

as a sequence of three-dimensional positions with a time

stamp (seconds after game start). Based on these sequences,

we calculated the metrics path length—sum of the distances

between successive positions—and duration of usage (i.e.,

how long our tool was used by the participants)—time between

start and end. Our participants, on average, stayed for about

five minutes (avg: 5.1, med: 4.6) in virtual reality and traveled

a distance of about nine kilometers (avg: 9.7, med: 8.3) therein

(one Unity unit corresponds to one meter in real world). For

the correlation coefficients Pearson, Kendall, and Spearman,
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TABLE I: Elapsed CPU time in seconds.

step CPU time
initial distance matrix 19.8
partitional clustering p 3.3
hierarchical clustering with complete linkage hc 1,973.1
hierarchical clustering with average linkage ha 1,999.9
CVIs for p 832.7
CVIs for hc 938.7
CVIs for ha 964.6
gap statistics for p 19.9
gap statistics for hc 20.0
gap statistics for ha 19.6

we found moderate correlations between path lengths and

duration of usage (all statistically significant with p� 0.01).

Thus, the duration cannot only be explained by the length of

a path, in other words, the speed of the players varied, which

further suggests the need for an alignment of paths by DTW.

C. Implementation and Run-Time Costs

The exact R packages we used for our implementation can

be found in our R script that we made publicly available [32].

All run-time data reported for this study were gathered on

a server PC with two Intel(R) Xeon(R) CPUs E5-2690 v4

(14 cores in total) running at 2.60GHz with 255 GB of RAM

operating with Ubuntu 16.04.6 LTS. We took advantage of the

R package doParallel and used all available CPUs. The results

are shown in Table I for each major step. The first entry is the

initial calculation of the distance matrix for all pairs of paths

including the alignment with DTW. This distance matrix is the

same for all clusterings and, hence, was re-used for all of them.

Every other step—partitional and hierarchical clusterings and

gathering of the CVIs and the gap statistic—was run for the

whole range of k ∈ [2, N − 1].
As Table I shows, hc and ha are expensive operations—by

three orders of magnitude more expensive than p. The actual

clustering is not the cause of this discrepancy as the trace

output of the calls to hierarchical clustering suggests. The

clustering is actually finished very quickly. The costs occur

for the subsequent extraction of the centroids by hierarchical

clustering. An implementation detail seems to be the reason

for that, causing the implementation to re-compute the distance

matrix again for the centroids even though it was already

pre-computed. For partitional clustering, there is an option

to let the algorithm for gathering the centroids know that the

distance matrix is pre-computed, while there is no such option

for hierarchical clustering so that it may be re-used only for

the clustering as such but not for the centroids. Likely, this

performance issue could be overcome.

Calculating the CVIs is a costly operation for all types of

clusterings, whereas the gap statistics is rather efficient to

compute. Overall, even though the costs may not allow an

interactive exploration, they are still tractable—in particular,

if we consider the fact that we are exploring the most extreme

value range of k∈[2,N−1].
D. Manual Clustering Validation

The dendrogram produced by hierarchical clustering allows

one to start manual the inspection for similar paths at the

leaves of the dendrogram and then to move up until a point is

reached where clusters are merged that are not similar enough.

In this section, we are applying this manual validation process

to our data set to answer our research questions RQ1 and RQ2.

We chose hierarchical clustering instead of partitional clus-

tering because we did not know the number of expected

clusters in advance, which is a prerequisite for partitional

clustering. We looked at the results of complete linkage rather

than average clusters because this was expected to give us

clusters of paths with mutually shorter distances.

The first author of this paper visualized the paths reported as

similar by the dendrogram shown in Figure 1 in an interactive

3D plot where one could look at the paths from all angles.

Based on his intuition, he grouped the paths of a cluster into

the following categories: (1) similar, (2) somewhat similar

(still worth to be looked at to study their differences), (3) not

similar, and a special category (4) similar, yet just because the

paths are too short. When the paths were recorded, sometimes

a recording was started by mistake or was just a test run. There

was also one case in which a participant felt umcomfortable

and stopped immediately. We could have filtered those paths

based on their duration and distance covered, but we left them

in the data set to be able to investigate noise in the data and

to see whether clustering would be able to detect it, too. The

decisions can be found as annotations in Figure 1 as colored

rectangles. Category (4) is colored black and one can see

that clustering indeed detected those invalid paths. Clusters

in category (1) are colored green, (2) in yellow, and (3) in

red. When an inner node of the dendrogram was reached at

which a cluster was classified in (3), the bottom-up walk of the

dendrogram was terminated and re-started at the next not yet

visited leaves. The second author investigated the decisions of

the first author. When he questioned a decision, both authors

discussed the case until a consensus was reached. The reasons

for the decisions are documented and publicly available for

inspection by other researchers [32].

As one can see in Figure 1, the lower the nodes in the

dendrogram, the higher the chances they are valid clusters

and vice versa, which suggests that the DTW-based distance

between paths matches human intution of proximity for paths

in most cases. However, one must also note that the den-

drogram does not suggest a consistent constant threshold of

acceptable distance alike for all clusters. For instance, the

cluster {77, 94, 104} was consider similar—category (1)—

whereas the cluster {2, 16} was classified as only somewhat

similar—category (2)—even though their distances are almost

the same. The reason for that is that one path of the latter

cluster can be considered a continuation of the other path, but

their distances are substantially different, whereas the lengths

of the former cluster of the three paths are more comparable.

The greater distances for the three paths of that clusters is

due to different heights in large portions of the paths, while

the movement in the x/z plane (in Unity’s co-ordinate system)

is very similar. That is, the human judges gave more weight

to the movements within the plane than in heights, whereas

in Euclidean space all axes are treated alike. In other words,

96



the DTW-based distance covers most of the human intuition

of proximity but not in all aspects, e.g., with respect to the

subsumption of paths (DTW can compress the end of one

path to align it with another path with little penalty) and the

semantic weight of the altitude.

E. Cluster Validation Indices

The human investigation of a dendrogram is subjective and

also tedious. That is why we wanted to see whether the CVIs

and the gap statistic would be suitable to automate the cluster

retrieval more objectively (research question RQ3). Figure 3

shows the relation between varying values of k∈[2,N−1]
(where N is the number of paths in our data set) and the

different CVIs and the gap statistic, respectively. To get a con-

sistent interpretation of the y axis (that is, the larger the value,

the better), we inverted all CVIs that are to be minimized

(namely, COP, DB, and DB∗) by subtracting their true values

from one. In addition, we normalized their values by the z-

score normalization. The z-score, z, of a raw score, x, is the

number of standard deviations S by which x deviates from

the mean value, x̄, of the set of observed values: z = x−x̄
S .

It is a common practice in statistics to enable meaningful

comparisons between two metrics with different value ranges.

If a CVI is just a strictly monontonic function of k, the

best value for k is either the first or last value depending upon

whether the function increases or decreases. If so, the CVI is

not worth the effort to compute it. The curve of CVIs, however,

has frequently been described in the literature to follow an

’elbow’ shape, that is, a CVI decreases monotonically as k
increases and from some k onwards the decrease of the curve

flattens markedly (see Section III-C). If that is the case, one

would pick the k where the curve starts to flatten (the elbow).

There could also be other kinds of curves, for instance, a

flipped U shape as, for instance, for normal distributions, in

which case one would pick the k where the curve reaches

its maximum. Ideally, different CVIs would suggest similar

values for the optimal k so as to re-confirm each other. The

reality of the CVIs we investigated for our paths, however, is

not so simple as Figure 3 shows. Figure 3 omits the plots for

hierarchical clustering with average linkage, denoted by ha in

the following, for reasons of space. The plots are similar to

hierarchical clustering with complete linkage, denoted by hc.

We will note the differences explicitly in the remainder.

If we compare the CVIs for hc and ha to those of partitional

clustering, referred to as p, we can immediately see that most

CVIs show much more fluctuation for p than for ha or hc.

Several CVIs may change drastically from one k to the imme-

diate next one and then again to the next but one. Fluctuation

of CVIs has been reported previously in other domains [36].

Most CVI measure somehow the cohesion within a cluster, on

one hand, and the separation between clusters, on the other

hand. Suppose we had three adjacent clusters A, B and C
in one data set. If they were clustered into {A,B,C} their

separation would be minimized or if clustered into {A}, {B},
{C} instead, their cohesion would be maximized. However,

clustering them into {A∪B,C} or {A,B∪C} may make a

great difference for the CVI and may cause the CVI to

fluctuate even though all the three clusters may be very close

to each other. That is, the influence of data dispersion between

clusters may explain fluctuation. In our case, however, we do

not only observe a fluctuation of a CVI for varying values

of k, but also a drastic change of fluctuation of the same

CVI between hierarchical and partitional clustering. We can

only speculate why that is the case, but maybe that is due

to the nature of partitional clustering which has an element of

randomness included when the first k elements are selected for

the initial clustering that is then being incrementally improved

(see Section III-B). The recommendations that follow from

this observation for future partitional clustering applications

for timed paths is to run the partitional clustering for the same

k several times with different random seeds and also to always

evaluate immediately neighboring values for k so that there is

no gap in the range that may otherwise suggest a wrong k.

Another observation that can be made immediately and

contradicting statements in the existing literature on clustering

is that the presumed ’elbow’ shape suggesting a suitable value

for k can generally not truly be observed in our results. We

gathered the CVIs for the complete value range from two to the

total number of paths minus one. The extreme values, however,

are not really useful. What would be the point of clustering a

data set with N elements into 2+i or N−1−i clusters (with

0≤i�N being a value close to 1) clusters? So if we ignore

the first and last few data points, we cannot really spot any

clear indication of an ’elbow’. D and CH remain more or

less the same and all other CVIs—except maybe Sil— are

mostly montonically increasing (admittedly some of them with

fluctuations even for ha and hc).

It is also interesting to note that DB and DB∗ are almost

alike for ha and hc, which suggests that they are interchange-

able. For p, however, they behave differently: DB∗ is a relative

stable constant value for k<40 whereas DB increases with

some fluctuation in that range. They both become more similar

for 40≤k≤105 also with regard to their fluctuation patterns.

At about k=105, they start to diverge again. The mathematical

difference between DB and DB∗ was already discussed in

Section III-B. In summary, they differ in the way they measure

and weigh cohesion and coupling of clusters to each other.

Whatever property of partitional clustering applied to our data

set lets this mathematical difference become effective, in the

middle range with less extreme values for k, none of them

gives any clear hint on which value of k to select. Worse,

for partitional clustering both CVIs fluctuate strongly in this

middle range. For the hierarchical clustering, they neither

appear to be useful as their curve increases monotonically.

The arguably more interesting curve, in particular for hc,

is the one of Sil because it is not monotonic. The graph in

Figure 3b distinctively suggests k=27 as the best choice. For

p and ha, there is no such clear “winner”; k=27 could be a

good choice for p and also ha. For ha, 49, 54, and 59 could

be equally good alternatives, but there is very little difference

in the range 25≤k≤60 overall for ha.

To calculate the gap statistic, we used function clusGap
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(c) Gap statistics for p
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(d) Gap statistics for hc

Fig. 3: Normalized CVIs and Gap statistics of partitional clustering p and complete-linkage hierarchical clustering hc (the

curves for ha are very similar to those of hc except for Sil, which has this interesting increase and decrease in the range

k∈[23,45], while ha is largely flat there).

of the R package cluster [37]. clusGap calculates the gap

statistics as described by Equation 3 in Section III-C. It

determines the null reference distribution (see Section III-C)

via bootstrapping— also known as Monte Carlo simulation.

We used 60 as the number of Monte Carlo (“bootstrap”)

samples. Figure 3c–3d plots the obtained means (shown as

dots) and standard deviations (shown as whiskers around the

means) of the sampled comparison for varying values of k.

Similarly as for the CVIs, the gap statistics tends to fluctuate

more for partitional clustering, p, than for the hierarchical

clusterings, ha and hc. Furthermore we can see that the gap

and its standard deviation increase with increasing k, for all

types of clusterings, until k get close to the total number of

paths, N , where the gap decreases again, yet accompanied

by a drastic growth of the standard deviation. As discussed

above for CVIs already, values for k closer to 1 and N have

little practical relevance, but here value ranges of k close

to N are even more questionable because they show higher

uncertainties. For all types of clustering, larger gaps can be

obtained for 80≤k≤100.

The gap statistics has its own distinct way of measuring

the quality of a cluster expressed as the pooled within-cluster

distances around the cluster mean, W , described in Equa-

tion (2). The underlying idea of the gap statistic to compare

the truly observed values to a null reference distribution could

be applied to other cluster-quality measures, that is, the other

CVIs described here, too. Unfortunately, clusGap does not

offer that.

If we count the clusters in Figure 1 that fall into category

(1), (2), or (4) and are maximal (that is, do not subsume any

other counted cluster; marked by filled magenta rectangles),

we find 26 non-overlapping clusters with at least two elements.

All other 51 elements not included in those clusters should

form a singleton cluster of their own. Thus, we expect k=
26+51=77 many clusters. The gap statistic shown in Figure 3d

supports this value. The values suggested by Sil, on the other

hand, are far from 77. However, the external CVIs (described

in Section III-C) when we compare the clusters obtained from

the manual inspection of the dendrogram and the automated

hierarchical clustering with complete linkage are as follows:

ARI = 0.58, JI = 0.42, FM = 0.58, and VI = 0.20 indicating

some level of similarity between the two but also a substantial

difference. Only RI = 0.99 shows a high overlap, but as we

discussed in Section III-C RI cannot fully be trusted if the data

are imbalanced and k approaches N . Its high value is also

relativized by the moderate value of ARI. These observations

shed some doubt that the clusters can be retrieved by simply

specifying a cut-off distance threshold implied by a constant

k.

V. CONCLUSIONS

This section provides answers to our research questions.
(RQ1) Does clustering support us in investigating similar

movement behaviour? Yes: it reduces the number of necessary

comparisons drastically. If one has N paths, theoretically

N(N−1)/2 comparisons would be necessary. Hierarchical

clustering offers an automated way to group paths that are

closer to each other. One can investigate closer paths in

the dendrogram in a bottom up approach until one reaches

questionable clusters. This process has worked very well in

our study. Partitional clustering is less well suited because one

must know the expected number of clusters in advance.
(RQ2) Is dynamic type warping (DTW) a suitable technique

to determine the distances between paths? Mostly yes: DTW

is able to align paths successfully by stretching or compressing

time. Paths whose distances were reported low by DTW in our

study were in fact found to be similar by us and worth to be

inspected more closely. Yet it may still need some refinements

to better capture human notion of similar paths, for instance,

with respect to path subsumption and the weight of the

different axes. Regarding computational scalability, we found

that although the alignment, distance, and clustering of paths

and the calculation of the CVIs involve heavy computation,

overall the clustering of 127 paths over the complete range of

possible values for k in our study was still tractable (besides

some presumed implementation deficiency we encountered for

hierarchical clustering).
(RQ3) Can classic clustering validation indices give us hints

on “good” clusters? No: none of those gave us clear and

correct hints on the number of clusters. There are many other

indices proposed in the literature we have not explored and

one of those might be better suited. Yet, our inspection of the

dendrogram showed that it supports a manual validation quite

well, so the need for completely automating this step may be

less urgent.
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