
Identifying Usability Issues of Software Analytics
Applications in Immersive Augmented Reality

David Baum∗, Stefan Bechert†, Ulrich Eisenecker‡, Isabelle Meichsner§, and Richard Müller¶
Information Systems Institute

Leipzig University, Leipzig, Germany
∗Email: david.baum@uni-leipzig.de
†ORCID: 0000-0002-6727-7106

‡Email: eisenecker@wifa.uni-leipzig.de
§ORCID: 0000-0002-9474-382X
¶ORCID: 0000-0001-6730-4082

Abstract—Software analytics in augmented reality (AR) is
said to have great potential. One reason why this potential is
not yet fully exploited may be usability problems of the AR
user interfaces. We present an iterative and qualitative usability
evaluation with 15 subjects of a state-of-the-art application
for software analytics in AR. We could identify and resolve
numerous usability issues. Most of them were caused by applying
conventional user interface elements, such as dialog windows,
buttons, and scrollbars. The used city visualization, however,
did not cause any usability issues. Therefore, we argue that
future work should focus on making conventional user interface
elements in AR obsolete by integrating their functionality into
the immersive visualization.

Index Terms—usability evaluation, software analytics, software
visualization, augmented reality, mixed reality

I. INTRODUCTION

Software analytics aims to obtain insightful and action-

able information about software systems, projects, and users

based on the analysis and visualization of data from software

artifacts [1]. Three-dimensional (3D) software visualizations

have existed for many years, which also applies for their

use in software analytics. However, they often fall short of

expectations. This is attributed in particular to the areas of nav-

igation, selection, occlusion, and text readability [2]. Merino et

al. [3] showed in a controlled experiment that these issues can

be minimized by displaying 3D visualizations in immersive

augmented reality (AR). Navigation and occlusion in particular

pose fewer problems in AR. The authors also found that

software comprehension tasks with 3D software visualizations

could be solved more effective with AR devices than standard

computer screens and identified great potential of AR for

software engineering [4]. Nevertheless, software analytics is

hardly ever done in AR and in our own experience many

software developers approach this topic with reservations.

With this work, we contribute to the understanding of prob-

lems in augmented software analytics. Based on the findings of

Merino et al. [3], we deal with the research question: “Which
parts of the user interface of software analytics applications
in augmented reality cause usability problems?”

To answer this question, we developed an AR applica-

tion for software analytics, which corresponds to the current

state-of-the-art. It reimplements the city metaphor, originally

introduced in [5], which is a one of the most popular 3D

software visualizations. We conducted a qualitative study

with this application to identify usability problems in AR.

We could show that most problems are not caused by the

city visualization itself, but by using inappropriate interactive

user interface elements such as dialog boxes, and scrollbars.

The main contributions of the paper are the identification of

usability issues in AR and the discussion how to solve them.

We can also confirm many of the findings of Merino et al. [3],

for example, that the usability problems are mainly caused by

selection and not by navigation and occlusion.

II. RELATED WORK

There are some approaches using AR to support the analysis

and visualization of data from software repositories. Souza

et al. [6] present SkyscrapAR, one of the first tools using

the city metaphor to investigate the evolution of a software

system in AR. Kapec/Brndiarov [7] introduce a graph-based

visualization of software systems on a see-through display.

Sharma et al. [8] describe an AR tool for managers to display

developer information, such as monthly developer time-line,

code commit statistics, and recently owed technical debts. A

further approach of these authors [9] outlines the concept of

smart immersive software engineering workspaces where data

from different sources are integrated and relevant information

is presented via AR devices to developers. Reipschläger et

al. [10] present DebugAR, a tool to debug software systems

in AR. It has also been studied, how to control the exploration

of software architectures in AR through speech [11]–[13].

Mehra et al. [14] present XRaSE, a tool to create immersive

representations of software systems to support comprehension.

Although they sketch a planned evaluation study design, we

could actually find one approach that systematically inves-

tigates usability issues in AR. Merino et al. [3] conducted

a controlled experiment and a user study. They found that

immersive AR facilitates navigation, reduces occlusion, and

improves user experience without affecting the performance.

But selection and text readability still remain open issues.

Here, we continue with our research.

100

2020 Working Conference on Software Visualization (VISSOFT)

978-1-7281-9914-6/20/$31.00 ©2020 IEEE
DOI 10.1109/VISSOFT51673.2020.00015

Fig. 1. City visualization and app bar superimposed on a table

III. STUDY DESIGN

We use the goal definition framework [15] to summarize

the scope of our experiment:

Analyze augmented reality applications for software
analytics for the purpose of evaluation with respect to

usability from the point of view of software developers
in the context of software developers performing compre-
hension tasks.

We used a Microsoft HoloLens headset with a stereo

1268 x 720 resolution, 60 Hz content refresh rate, and 30°H

and 17.5°V field of view. The application uses the Mixed

Reality Toolkit (MRTK), which is based on Unity 3D. This

is the de facto standard for HoloLens applications. To focus

on the user interface, we have integrated our application into

the Getaviz framework, which can create city visualizations

for Java, C#, and Ruby programs [16]. We import the output

of Getaviz into Unity 3D and thus provide an alternative user

interface for Getaviz.

We have selected the city metaphor as visualization tech-

nique because it has proven to be effective to support software

comprehension tasks on standard computer screens [17] and

in AR [3]. The provided functionality and user interface

correspond to other implementations of the city metaphor for

virtual and AR. The tool is available at the Microsoft Store1.

Additionally, its usage is demonstrated in a screen-cast2. The

user interface consists of the city itself and an app bar with

buttons as shown in Fig. 1. Class names are displayed as

tooltips by hovering over the building. The source code of

a class can be viewed in a separate dialog window. Users

can navigate freely, this means, they can rotate and move the

visualizations or zoom in and out. Similarly, they can navigate

the system by walking and approaching buildings in the city.

To be able to study more complex interactions, we have added

a filter dialog. The user can navigate through the package

containment tree and select individual packages. In the future,

1https://www.microsoft.com/en-Us/p/getaviz/9mx6v3dt7p3s
2https://www.youtube.com/watch?v=Egb1TBfbWDw

districts can thus be hidden. Currently, this window is only a

mock-up and does not affect the city visualization.

A. Tasks

Each subject had to perform a number of tasks. These were

chosen to cover the complete functionality of the applica-

tion. This includes recognizing visual patterns and identifying

outliers. However, we have taken care to ensure that non-

analytical aspects of use are also covered by the tasks. This

includes support tasks such as setting up the visualization,

starting dialog windows, and using voice commands. We

included these tasks because they are essential for practical

use and may also cause usability problems. Table I gives an

overview of all tasks. Each task belongs to one of the following

categories.

• Help & Setup: This category contains all support tasks.

This includes starting and setting up the application and

help menus. Problems with these tasks make further use

considerably more difficult.

• Visualization: For these tasks the subject has to work

with the visualization in its current state. This includes

above all the reading of information and the recognition

of patterns. Only minimal interaction with the application

is necessary, since neither information has to be filtered

nor additional information has to be displayed.

• Dialog: For these tasks, the subject must change the state

of the visualization by hiding information or showing ad-

ditional information. This requires complex interactions

and additional dialog windows.

B. Procedure

We applied an iterative usability evaluation approach [18]

with a total of three iterations. After each iteration, the

feedback of the subjects regarding usability was implemented.

Each subject was given a short introduction about the city

metaphor and software visualization in general. To ensure that

each subject had the same prerequisites, this introduction was

given in written form. After the introduction, the subjects

should familiarize themselves with the HoloLens. The Learn
Gestures app, which is installed on the HoloLens by default,

was used for this purpose. Thus the subjects were familiar with

the gestures and handling of AR applications. The subjects

then worked through the tasks one after the other. Feedback

from the subjects was obtained in the form of a semi-structured

interview. After each task they were asked if they experienced

any usability issues. We recorded the answers of the subjects to

the task set and to the supplementary questions about problems

as well as conspicuous interactions with the application, for

example, where the subjects positioned windows in the room

or whether they used voice or gesture control. Each session

took place at the same location and was conducted by the same

experimenter. In every iteration we used the same visualization

of JUnit 4.1.

Based on user feedback new dialogs were added in each

iteration. For example, in the first two iterations the visualiza-

tion metaphor was described on a piece of paper. For the third

101

TABLE I
OVERVIEW OF ALL TASKS

Category ID Task Evaluation I Evaluation II Evaluation III

Help & Setup
T1 Place the visualization on the table in front of you. � � -
T2 Complete the tutorial. - - �
T3 Change the size, orientation and position of the visualization until you feel you have an optimal view of the city. � � �

Visualization

T4 Find the class with the most methods. � � �
T5 Find the class with the fewest methods. � � �
T6 Find the class with the most attributes. � � �
T7 Find the class with the fewest attributes. � � �
T8 Is there a God class? If so, what is its name? � � �

Dialog

T9 Open the filter menu with the voice command Filter. - � �
T10 Filter for the package org.junit.validator. � � �
T11 Close the filter menu with the voice command Close. - � �
T12 Look at the source code of any class. � - -
T13 Open the source code dialog by focusing on a class and using the voice command Select. - � �
T14 Use the voice commands Up and Down to navigate in the source code display. - � �
T15 Now use the click gesture to navigate in the source code display. - � �
T16 Close the source code dialog by applying the click gesture to the button in the upper right corner. - � �
T17 Open the About dialog using the voice command About and read the dialog. - - �
T18 Open and read the legend dialog. - - �

evaluation, a help dialog was added, which contains the same

information. New tasks were also added cover these additional

dialogs. The help dialog was evaluated in the third evaluation

by the new task T18.

C. Subjects

Five subjects participated in each evaluation. None of them

participated more than once. Three subjects of the second

evaluation are computer science students, the other 13 subjects

are professional software developers. They participated in the

evaluation voluntarily and did not receive any compensation.

Two subjects have already had experience with AR, but not

in the context of software analytics.

In the first evaluation, five male subjects with an average

age of 30.4 ± 5.9 years participated. They have an average

of 9.0 ± 6.4 years experience in software development. In

the second evaluation, two female and three male subjects

with an average age of 26.4 ± 3.00 years participated. The

professional software developers have an average of 5.0 ± 3.0

years experience in software development. The students have

experience with software development only within the context

of their studies. In the third evaluation, five male subjects

with an average age of 30.6 ± 4.88 years participated. They

have an average of 8.8 ± 3.0 years of experience in software

development.

IV. RESULTS

A. Evaluation I

Help & Setup: All subjects could successfully complete

T1 and T2. However, the subjects were not aware that they

could adjust the visualizations position and size at any time.

It was noticeable that all users turned the visualization until

the edges of the city were parallel to the table. Also the size

was usually adjusted so that the city fitted completely on the

table. Some subjects reported that they would have preferred

to adjust the city to a larger size, but would have needed a

larger table for this.

Visualization: All tasks were solved correctly. However, the

subjects made a number of suggestions for improvement. The

app bar was described several times as annoying because it ob-

structed viewing the visualization. All subjects had problems

aiming at thin and small buildings. None of them enlarged the

city afterwards to make targeting easier. The tooltips with class

names were occasionally obscured by other buildings, so that

they could not be read. This is an implementation error, since

this is not the desired behavior. We fixed this by implementing

a custom shader that always displayed the tooltip in front of

any building.
Dialog: The source code dialog was often not found after

opening. The test subjects felt that the text field for the

source code was too small. In addition, they had difficulties in

operating the scrollbar. They often moved beyond the targeted

point. As a consequence, we completely redesigned the dialog.

We increased its size and added an opening animation so that

the window is easier to find for the subjects. Additionally,

we replaced the scrollbar with buttons for scrolling up and

down, similar to the keys page up and page down on a

keyboard. All subjects had problems with operating the filter

function. Especially the use of the virtual on-screen keyboard

caused problems. Therefore, we also turned them into buttons.

Some subjects found the use of the HoloLens through gestures

to be very strenuous. Hence, for the next evaluation, we

implemented an additional voice control to reduce strain on

the arms.

B. Evaluation II
In the second evaluation, some tasks were added because

the application could now be controlled by voice commands.

Furthermore, the tasks for displaying the source code have

been extended to achieve a higher coverage of the control

elements. Overall, the feedback of the subjects after the second

evaluation was noticeably more positive.
Help & Setup: Some problems, which were also apparent

in the first evaluation, reappeared. Some subjects had prob-

lems using the navigation mode intuitively. They could not

recognize the translation by themselves. Other subjects did

not recognize what the handles on the bounding box could

be used for. To solve this problem, an interactive tutorial was

102

implemented for evaluation III. It uses spoken text to ask the

user tasks that will guide him through the functions of the app.

When the user completes the task, the next task is set until

the user has used all functions once.

Visualization: The subjects were still able to solve the

technical tasks correctly. When reading the class and package

names there was no negative feedback this time. The targeting

of thin and small buildings was again difficult. One of the

subjects asked for a tolerance range. This should ensure that

an already targeted building is still highlighted, even if the

user looks slightly to the side of the building. This is only

possible when the cursor does not focus another building or

district. Some of the subjects were disturbed again by the app

bar because it blocked their view.

Dialog: With the revised filter dialog, all subjects were able

to solve the corresponding task T10. Users rated the handling

of the source code dialog as good. They remarked that line

numbers would be practical for orientation in the source code.

The problem that subjects did not find the dialogs occurred

again. When they were made aware of the animation, they said

that they did not notice it the first time. Some said that they

had to concentrate too much on the gestures. Since users had

problems with the correct execution of gestures, an acoustic

signal should also be played as further feedback when a button

is successfully clicked.

C. Evaluation III

For the last evaluation, the tasks were extended once again

to be able to examine the newly added in-app tutorial and the

new help menu.

Help & Setup: The tutorial made it much easier to get

started with the application. The tutorial tasks were success-

fully solved by all subjects without further questions. All users

found the tutorial well structured and easy to understand. It

was clearly visible how the tutorial helped the subjects to solve

the follow-up tasks.

Visualization: The targeting of thin buildings was simpli-

fied by a tolerance range. If a user sees a building and then

looks next to it without hitting another building or district, the

first building is still highlighted. The legend helps to avoid

some questions with regard to the metrics in the professional

tasks. Due to the tolerance range it was easier for subjects

to target buildings that are both thin and tall. However, they

reported that targeting small, thin buildings is still difficult.

Dialog: After subjects in the second evaluation had prob-

lems finding the dialog with the open animation, the logic was

revised again. The dialog is now opened at the height of the

city instead of the height of the HoloLens. This means that the

dialog often overlaps with the city, but there is always a part

of the dialog in the user’s field of view. The tutorial explains

to the user how to move dialogs. In all dialog windows an

indicator has been added in the upper left corner to show that

the dialog can be moved. Users can now use this knowledge

to position the dialog according to their wishes. Some of the

subjects criticized the long delay of more than two seconds

in voice control. This was particularly noticeable with the

TABLE II
CATEGORIZATION OF IDENTIFIED USABILITY ISSUES

Category Evaluation I Evaluation II Evaluation III

Text readability 1 - -
Occlusion 2 1 -
Navigation - - -
Selection 3 1 2
User guidance 1 2 -

voice command down. All subjects stated that the voice control

worked, but that they would rather not use it. This was not

related to the delay but to a general rejection of voice control.

V. DISCUSSION

It is striking that we did not have to make any changes to

the city metaphor itself. Right from the start, all tasks of the

visualization category could be solved completely. None of the

subjects suggested changes to the visualization.

Table II gives an overview of the identified usability issues.

Most issues belong to the category Selection. This includes

problems with the selection of buildings and conventional user

interface elements. Although we were able to mitigate these

issues, they still occurred in the final evaluation. Occlusion

was not a problem within the city. Tooltips and app bar

caused occlusion, but these issues could be solved. In the first

evaluation a too small text size was criticized which could

easily be fixed. Apart from that, the subjects did not have

any problems reading texts. At the beginning, only a few help

functions were implemented in the application. Due to the

feedback of the users, their number was increased with each

iteration. This made the subjects feel much more confident in

using the application. This finding is not surprising. However,

it shows that previous studies have concentrated too much on

the implementation of the metaphor and neglected the user

guidance. In our study, the identified usability issues with

respect to missing user guidance could be completely solved.

The solution consisted of a tutorial and help functions that can

be easily implemented.

Most usability problems were caused by conventional user

interface elements, such as dialog windows, buttons, and

scrollbars. In the first evaluation we used the standard com-

ponents of MRTK without further customization to implement

the app bar and dialog windows. This solution was found to be

unsuitable by the subjects, so we replaced the standard com-

ponents with our own implementations. This was necessary

because, for example, MRTK’s app bar cannot be adapted to

the user’s position as suggested by the subjects. The subjects

liked our adapted implementations much more, so that no

further suggestions for improvement were given.

Our application uses MRTK 2017.4.3.0, which was the

latest release at the time of the evaluations in 2019. The MRTK

has now been fundamentally revised. However, the problems

with the standard components are still there, for example, the

position of the app bar still cannot be adjusted to the position

of the user. With better support for the WebAR interface,

103

Fig. 2. Source code dialog window superimposed on a physical whiteboard

WebGL-based frameworks such as A-Frame could possibly

be more suitable in the future. Existing web-based software

analytics tools such as Getaviz already rely on A-Frame [16].

Our study suggests that voice control is only partially

suitable for facilitating the work with dialog windows. The

voice control was rejected by our subjects, although it worked

well from a technical point of view. The virtual on-screen

keyboard has also proved to be unsuitable.

In previous studies the city was simply placed in space

without interacting with real world objects. In our study,

however, all subjects placed the city on a real table. This

table was used as a reference point when the subjects moved

around the room. They always knew where the city was and

could walk around the table to view the city from all sides.

Some subjects also placed the source code in a way that it was

displayed directly on a real whiteboard as shown in Fig. 2. This

was not intended by us, it was a coincidence that the room in

which the study was conducted had a whiteboard. This made

it more natural for the subjects. We believe that this mixed

reality aspect, that means, the interaction of virtual elements

with real objects, is very promising. Greater inclusion of the

real world could improve usability by requiring fewer dialog

windows and buttons. This can be implemented within the

framework of the city metaphor. But it is also conceivable

to find a new metaphor that fits better into a typical office

environment.

VI. CONCLUSION

By means of three qualitative evaluations we could show

that the usability of software analytics applications for AR

glasses can be improved significantly. There is a lot of

potential for improvement especially in the area of dialog

design. Unfortunately, this causes a high implementation effort

because available standard components are only condition-

ally appropriate. But usability can also be quickly improved

through better user guidance. We also found indications that a

stronger emphasis on mixed reality could further improve the

applications. We will explore these possibilities in our future

work.

ACKNOWLEDGMENT

We would like to thank Stefan Mutke and the Logistics

Living Lab at Leipzig University, who provided us with the

used Microsoft HoloLens.

REFERENCES

[1] D. Zhang, S. Han, Y. Dang, J. G. Lou, H. Zhang, and T. Xie, “Software
analytics in practice,” IEEE Software, vol. 30, no. 5, pp. 30–37, 2013.

[2] R. Brath, “3D InfoVis is here to stay: Deal with it,” in 2014 IEEE VIS
International Workshop on 3DVis, 3DVis 2014. IEEE, 2015, pp. 25–31.
[Online]. Available: http://ieeexplore.ieee.org/document/7160096/

[3] L. Merino, A. Bergel, and O. Nierstrasz, “Overcoming Issues of
3D Software Visualization through Immersive Augmented Reality,”
in 2018 IEEE Working Conference on Software Visualization
(IEEE VISSOFT). IEEE, 2018, pp. 54–64. [Online]. Available:
https://ieeexplore.ieee.org/document/8530131/

[4] L. Merino, M. Lungu, and C. Seidl, “Unleashing the Potentials of
Immersive Augmented Reality for Software Engineering,” in 2020
IEEE 27th International Conference on Software Analysis, Evolution
and Reengineering (SANER). IEEE, 2020, pp. 517–521. [Online].
Available: https://ieeexplore.ieee.org/document/9054812/

[5] R. Wettel and M. Lanza, “Code City,” Proceedings of WASDeTT
2008 (1st International Workshop on Advanced Software Development
Tools and Techniques), pp. 1–13, 2008. [Online]. Available: http:
//www.inf.usi.ch/phd/wettel/publications.html

[6] R. Souza, B. Silva, T. Mendes, and M. Mendonça, “SkyscrapAR: An
Augmented Reality Visualization for Software Evolution,” Proc. of 2nd
Brazilian Workshop on Software Visualization, 2012.

[7] P. Kapec and G. Brndiarov, “Visual Analysis of Software Systems in
Virtual and Augmented Reality,” pp. 307–312, 2015.

[8] V. S. Sharma, R. Mehra, V. Kaulgud, and S. Podder, “An Immersive Fu-
ture for Software Engineering - Avenues and Approaches,” Proceedings
- ICSE, pp. 105–108, 2018.

[9] ——, “An extended reality approach for creating immersive software
project workspaces,” Proceedings - 2019 IEEE/ACM 12th International
Workshop on Cooperative and Human Aspects of Software Engineering,
CHASE 2019, pp. 27–30, 2019.

[10] P. Reipschläger, B. K. Ozkan, A. S. Mathur, S. Gumhold, R. Majumdar,
and R. Dachselt, “DebugAR: Mixed Dimensional Displays for Immer-
sive Debugging of Distributed Systems,” Conference on Human Factors
in Computing Systems - Proceedings, vol. 2018-April, pp. 1–6, 2018.

[11] P. Seipel, A. Stock, S. Santhanam, A. Baranowski, N. Hochgeschwen-
der, and A. Schreiber, “Speak to your software visualization-exploring
component-based software architectures in augmented reality with a
conversational interface,” Proceedings - 7th IEEE Working Conference
on Software Visualization, IEEE VISSOFT 2019, pp. 78–82, 2019.

[12] ——, “Adopting conversational interfaces for exploring OSGi-Based
software architectures in augmented reality,” in Proceedings - 2019
IEEE/ACM 1st International Workshop on Bots in Software Engineering,
BotSE 2019. IEEE, 2019, pp. 20–21.

[13] A. Schreiber, L. Nafeie, A. Baranowski, P. Seipel, and M. Misiak,
“Visualization of Software Architectures in Virtual Reality and
Augmented Reality,” in IEEE Aerospace Conference Proceedings,
vol. 2019-March. IEEE, 2019, pp. 1–12. [Online]. Available:
https://ieeexplore.ieee.org/document/8742198/

[14] R. Mehra, V. S. Sharma, V. Kaulgud, and S. Podder, “XRaSE: Towards
virtually tangible software using augmented reality,” Proceedings -
2019 34th IEEE/ACM International Conference on Automated Software
Engineering, ASE 2019, pp. 1194–1197, 2019.

[15] V. R. Basili and H. Dieter Rombach, “The TAME Project: Towards
Improvement-Oriented Software Environments,” IEEE Transactions on
Software Engineering, vol. 14, no. 6, pp. 758–773, 1988.

[16] D. Baum, J. Schilbach, P. Kovacs, U. Eisenecker, and R. Müller,
“GETAVIZ: Generating Structural, Behavioral, and Evolutionary Views
of Software Systems for Empirical Evaluation,” in Proceedings - 2017
IEEE Working Conference on Software Visualization, IEEE VISSOFT
2017, 2017, pp. 114–118.

[17] R. Wettel, M. Lanza, and R. Robbes, “Software systems as cities: a
controlled experiment,” 2011 33rd International Conference on Software
Engineering (ICSE), pp. 551–560, 2011.

[18] J. Nielsen, “Iterative User-Interface Design,” Computer, vol. 26, no. 11,
pp. 32–41, 1993.

104

