
Interactive Role Stereotype-Based Visualization To
Comprehend Software Architecture

Truong Ho-Quang1, Alexandre Bergel2, Arif Nurwidyantoro3, Rodi Jolak1, Michel R. V. Chaudron1

1 Chalmers & Gothenburg University, Sweden – � {truongh,jolak,chaudron}@chalmers.se
2 ISCLab, Department of Computer Science (DCC), University of Chile – abergel@dcc.uchile.cl

3 Monash University, Australia – � arif.nurwidyantoro@monash.edu

Abstract—Motivation: Software visualization can be helpful
in comprehending the architecture of large software systems.
Traditionally, software visualisation focuses on representing the
structural perspectives of systems. In this paper we enrich this
perspective by adding the notion of role-stereotype. This role-
stereotype carries information about the type of functionality that
a class has in the system as well as the types of collaborations
with other classes that it typically has.
Objective: We propose an interactive visualization called RoleViz,
that visualizes system architectures in which architectural ele-
ments are annotated with their role-stereotypes.
Method: We conducted a user-study in which developers use
RoleViz and Softagram (a commercial tool for software architec-
ture comprehension) to solve two separate comprehension tasks
on a large open source system. We compared RoleViz against
Softagram in terms of participant’s: (i) perceived cognitive load,
(ii) perceived usability, and (iii) understanding of the system.
Result: In total, 16 developers participated in our study. Six of
the participants explicitly indicated that visualizing roles helped
them complete the assigned tasks. Our observations indicate
significant differences in terms of participant’s perceived usability
and understanding scores.
Conclusion: The participants achieved better scores on com-
pleting software understanding tasks with RoleViz without any
cognitive-load penalty.
Demo: https://youtu.be/HqCUAlai4qw?t=258

I. INTRODUCTION

Software architecture visualization is a tool that can be used

to understand complex software system. It can help developers

maintain and further develop the system. In particular, it can

be utilized to improve the search, navigation, and exploration

of software architecture design [1][2].

In UML, stereotypes are a way to add complementary

semantic information to the elements of a software design.

Using such stereotypes in visualisation has been demonstrated

to aid in the comprehension of software architectures. For

instance, Genero et al. use object interaction stereotypes to

improve the comprehension of UML sequence diagram [3].

Another example, Ricca et al. propose the use of web-specific

notations to make UML applicable to model web application [4].

Beside those, a number of work focus on investigating the

usefulness of class stereotype [5] to better understand UML

class diagram [6][7][8][9].

The well-known class stereotypes, namely boundary, control,

and entity, were introduced by Jacobson et al. as an extension

to UML [5]. However, their definition of stereotypes is quite

simple. Alternatively, Wirfs-Brock proposes role-stereotypes as

the responsibilities that a class can have in an object-oriented

system [10]. Some of both stereotypes are similar (e.g. entity
and information holder), but Wirfs-Brock provides additional

stereotypes beyond the class stereotypes. For example, a service
provider is a class that performs work and offers services to

others, which is not fit in any class stereotypes definition. To

the best of our knowledge, no visualization tool has utilized

role-stereotypes to help understand software architecture.

In this paper, we present RoleViz, a role-stereotypes-based

visualization tool, and evaluate its usefulness to understand

the architecture of an object-oriented system. We use the role-

stereotypes [10] of a manually labeled ground-truth provided in

our previous study [11]. The study presented in this paper shows

the effectiveness of RoleViz to help developers in realistic

software comprehension tasks.

Contributions. This paper makes the following contributions:

• We present RoleViz, an innovative visualization tool that

overlay roles on top of a software architecture.

• We conduct a user study to investigate how RoleViz can

help developers in real comprehension task, e.g. bug fixing.

• We compare the effectiveness of RoleViz against Softa-

gram as our baseline. Softagram is a well-known software

architecture visualization tool commonly used by software

developers and architects.

Outline. The paper is structured as follows: Section II provides

background of Wirfs-Brock’s role stereotypes; Section III

describes the RoleViz visualization; Section IV presents the

research questions that leads our evaluation; Section V presents

the user-study we conducted in order to answer the research

questions; Section VI describes sources of data we collected

and the methods for analysing the data; Section VII presents the

result of our analysis; Section VIII discusses possible threats to

the validity of this study; Section IX briefly presents the related

work; Section X concludes and outlines our future work.

II. ROLE STEREOTYPE

Our visualization is centered around the notion of role
of an object-oriented class. Wirfs-Brock [10] identified six

stereotypical role types that a class can play:

(CT) Controller makes decisions and control complex tasks;

122

2020 Working Conference on Software Visualization (VISSOFT)

978-1-7281-9914-6/20/$31.00 ©2020 IEEE
DOI 10.1109/VISSOFT51673.2020.00018

(CO) Coordinator does not make many decisions, but in a

rote or mechanical way, delegates work to other classes;

(IH) Information holder holds certain information and pro-

vides that information to others;

(IT) Interfacer transforms information and requests between

distinct parts of a system. It can be a user interfacer class

that interacts with users. An interfacer can communicate

with external systems or between internal subsystems;

(SP) Service provider performs specific work and offers

services to others on demand;

(ST) Structurer maintains relationships between classes and

information about those relationships. Structurers might

pool, collect, and maintain groups of classes.

It is noted that each class should play at least one role.

There is a possibility where a class may carry more than one

role. In this study we decided to only consider the primary

responsibilities of the class as documented in the replication

package of [11] where the authors attempted to classify role-

stereotypes of a class automatically.

III. ROLEVIZ

In this section, we use the K-9 Mail1 application as the

running example to illustrate RoleViz. K-9 Mail is an open

source alternative mail application in Android. K-9 Mail is

composed of 779 classes distributed in 52 different packages.

K-9 Mail totals over 97 kLOC. Note that although K-9 Mail is

written in Java, RoleViz is not tied to the Java programming

language or Android platform.

A. RoleViz in a Nutshell

Figure 1 shows the use of RoleViz on K-9 Mail. RoleViz

locates K-9 Mail’s 52 packages in a circular fashion. Each

package contains abstract classes, classes, enums, and interfaces.

Each structural unit is colored according to the role it has.

Dependencies between two packages are represented with a

bimetric line (number of dependencies are mapped to the size

of the extremities, as described below). The package k9 has

classes heavily used in the system (indicated with tall inner

colored boxes, marked with A), while activities has classes

with outgoing dependencies variables (indicated with wide

inner colored boxes, marked as C). Although, the application

does not exhibit an architecture with crystal clear modularity

boundaries, some tendencies may be visually inferred: for

example, many packages depend on the package k9, while

k9 has relatively few external dependencies. Similarly, many

packages depend on the package mail.

RoleViz is a polymetric view [12] in which software metrics

are applied to visual dimensions, including height, width, and

colors, as described below.

B. Compilation Unit

The source code in Java is organized as compilation unit,
which is a technical jargon in Java to designate a definition

contained in a .java file. We will, therefore, use this term

1K-9 Mail’s homepage: https://k9mail.app/

along this paper to refer to a class, an enum, an abstract class,

or an interface. Each unit is represented as a colored box,

contained in a package.

Figure 2 details the visual representation of a compilation

unit. The visual representation of a unit U uses two metrics:

1) the height of a unit represents the fan-in, i.e., number of

units that depends on U ;

2) the width of a unit represents the fan-out, i.e., number of

units that U depends on.

To illustrate this visual technique, consider the following

source code:

class Mail {
Service c = new Service();
Theme t = new DefaultTheme();

}
class Service { }
interface Theme {}
class DefaultTheme implements Theme {}

Four compilation units are defined, three classes and one

interface. The class Mail depends on two other classes, Service

and DefaultTheme. Assuming a closed-world assumption, the

fan-out of Mail is therefore 2, and its fan-in is 0. The class

Service has 1 as fan-in and 0 as fan-out. The classes Mail and

Service are represented as two boxes as shown in Figure 2.

The visual representation indicates that the class Mail has a

fan-out greater than Service and has about the same the fan-in.

This example is contrived, however it highlights the ability to

visually describe some important aspects of the represented

units.

The shape of the box is, therefore, an indicator for visually

spotting exceptional entities [13]. For example, in the K-9

Mail example (Figure 1), one can recognize classes with a

high fan-in value (marked as A and B in the figure) and a high

fan-out (C). The visual shape is not meant to give an accurate

value of the associated metrics, but instead, to give an idea

of where significant visual differences lay in the visualization.

As indicated below, in Section III-D, the visualization offers a

number of interactions to obtain details about exact numerical

values and offer numerous options to drill-down complementary

information. A unit color indicates its role.

Edges between units indicates dependencies between these

units. To not overload the visualization, edges are presented

as bidirectional (i.e., one cannot distinguish a caller from a

callee). Hovering the mouse above a unit highlight callers and

callees, as described below, as described in in Section III-D.

C. Package

Figure 3 details the representation of a package. A package

is represented as a labeled gray box. The label, located above

the gray box, is extracted from the name of the represented

Java package.

The gray box contains inner colored boxes, representing

the compilation units contained in the package. Units having

dependencies between them are located on the right hand-

side using a force-based layout (i.e., units are assimilated as

repulsing magnets and edges as springs, D in Figure 3). Note

123

Fig. 1: Example of RoleViz

Information holder

Service provider

Structurer

Controller

Coordinator

Interfacer

fan-in

fan-out

Color legend

Mail

Service

Fig. 2: Compilation unit detail

�

D F
G

Fig. 3: Package detail Fig. 4: Highlighting a package

that edges between units are scoped to the package, i.e., only

dependencies between units that belong to the same package

are represented. Units not connected with other units within

the same package are simply located as a grid and sorted by

their role (E).

Dependencies between packages are deduced from the

dependencies between units. Inter-package dependencies are

represented using a bimetric line, in which the number

of dependencies from the package preferences to k9 is

represented by the extremity size on the package preferences

(F). Similarly, dependencies initiated in k9 toward preferences

are represented in the extremity size close to k9 (G).

Such a bimetric line is adequate in presence of multiple birec-

tional connections. Figure 3 clearly indicates that preferences

heavily depends on k9, while k9 depends little on preferences.

D. Interaction

RoleViz offers a number interactions to ease the exploration

of the software under analysis.

Mouse hovering. Hovering the mouse cursor above a pack-

age highlight in red dependencies between dependent and

depending packages. Figure 4 illustrates the overall K-9 Mail

application with k9 highlighted. In addition, a popup appears

to give the full package name of it. The figure shows that k9

has little dependencies toward other packages however many

are depending on k9.

When hovering the mouse cursor above a compilation unit,

lines between the pointed unit toward all dependent other

units appear (not shown in the figure). Lines are also colored

according to the role of the dependent class.

Drill down. In a graphical environment, drill-down is an

action to obtain detailed data about a particular visual element.

Clicking on a package augments the main visualization with the

package role composition histogram, indicating the proportion

of different roles. In Figure 5, the histogram indicates that

68.75% of the compilation units contained in the k9 package

have the Information Holder role.

Clicking on a unit shows two views. Unit outgoing dependen-
cies is a visualization that indicates the outgoing dependencies

of the selected unit. Unit source code gives the source code,

in which one can search using regular expressions. The view

obtained when drilling down are displayed next to the main

RoleViz visualization. For example, the source code may be

shown all the time while using RoleViz.

124

Unit outgoing dependencies Unit source code Package role composition

Fig. 5: Drill down

Visualization Alteration. RoleViz offers five actions to alter

the visualization. (i) First, packages and classes matching a

provided a regular expression may be highlighted using a stark

color. Such a feature is useful to highlight a particular cross

cutting concern. The highlight remains until the user decides

to explicitly remove it. (ii) Second, selected elements may

be kept while all the others are removed. (iii) Third, selected

elements may be removed. (iv) Fourth, the visualization can be

reset to its original state, thus removing all the alterations. (v)

Fifth, the visualization may be spawned into a new window,

thus leading to a second instance of the visualization. This

interaction allows for parallel unrelated system explorations.

This can also be used in combination with the other alteration

actions to produce a new visualization with smaller number

of elements, e.g. the ones that match the search terms, thus

allows users to focus on a specific parts of the system.

These interactions alter the visualization. As a consequence,

they are likely to be triggered after a shallow exploration using

mouse hovering and drill down.

IV. RESEARCH QUESTIONS

The research objective of our study is to determine whether

RoleViz helps in enhancing the understandability of software

architecture. We form two research questions to guide our

study:

RQ1: How does RoleViz compare to Softagram? In particular,

we compare the two visualisation tools in terms of:

• participant’s perceived cognitive load,

• participant’s perceived usability,

• participant’s understanding of the software system

regarding the tasks.

By “understanding”, we refer to the participant’s ability

to: a) locate components/entities of the system relevant

to the tasks, b) describe the responsibility of the located

components/entities and relationship between them, and

c) formulate a plan to solve the tasks.

RQ2: What are the perceptions of the participants on the
current features of RoleViz?
Determining whether RoleViz meets the expectation

of the participants is crucial to identify where exactly

RoleViz falls short of feature. In addition, this research

questions helps formulating the future direction of

RoleViz.

V. USER STUDY

To answer the research questions stated above, we designed

and conducted a user study. The design of the user study

involves the following five components.

A. Baseline

The performance of RoleViz has to be compared against a

baseline visualization. Softagram, which is a commercial tool

to visualize software system2, was chosen to be the baseline

tool for two main reasons.

Firstly, Softagram has been defined to address concrete

problems of visualizing software architecture and it has been

developed under a strong industrial influence. The visualization

metaphor is UML-inspired: a software entity (e.g. a file, a

package or a class) is represented as a node with attributes

and links to other nodes. The associations between software

entities are used to show various types of relationship (between

the entities), such as inheritance, library usage, method-calls,

etc. Figure 6 shows K-9 Mail with Softagram. At the center

we see different packages, to which the red fading indicates

a metric, number of lines of code in this example. Different

layouts are accessible from the control panel located on the

top of the window. On the right-hand side different properties

to adjust the visualization are available.

Secondly, Softagram allows for a software exploration in an

interactive fashion. In particular, users can drill down/up to

navigate among levels of data ranging from the top package

(up) to variables of a class (down). Mouse scroll can be used

to zoom in/out at specific parts of the visualization canvas, thus

allowing users to read details when the diagram is too large.

Similarly to RoleViz, associations of an entity are highlighted

when clicking on the entity. Moreover, Softagram also provides

two search options which allow users to search globally in all

entities of the studying system or locally within the entities

showed on the main canvas.

Softagram can also be used to highlight architectural changes

(such as new dependencies) introduced by the pull request

author. Softagram does not offer source code view within the

application but can direct users to the Github page of the source

code file (via a web browser and the Internet).

B. Comprehension Tasks

We need to define two comprehension tasks. We started by

defining a number of criteria (C) as the following:

C1: Realistic. The comprehension tasks should be derived

from realistic software development or maintenance is-

sues/tasks.

2https://softagram.com

125

Fig. 6: Softagram main GUI - Structural View

C2: Simple. The tasks should be simple enough so that

participants can complete them within the limited time of

the study.

C3: Independent. The two tasks should not depend on each

other and should not be semantically close. As we use a

within-subject method, this criterion aims to mitigate the

learning effects from solving one to another task.

C4: Comparable. The two tasks should be comparable in

terms of complexity. With this criterion, we expect the

differences between the tasks do not create any additional

cognitive load or lead to any major changes in the

performance of participants.

C5: Verifiable. We assess participant’s understanding based

on their solutions to the tasks. The assessment method

should be built on top of a verified solution to the tasks.

Therefore, it is important to find the tasks but also the

solutions that are confirmed to solve the tasks.

Then, we looked into the issue tracking system of K-9 Mail

to find realistic issues (C1). The issues were labeled by senior

contributors of the project. We relied on these labels in order

to filter relevant tasks for the study. In particular, we filtered

those issues that were labeled as good first issue (for simplicity

and comparability - C2 & C4) and were solved/closed at the

time of searching (so a working solution exists - C5). We

found two issues namely “Export/Import Settings” (#2969) and

“Attachment Size Format” (#3343) that satisfied the criteria.

Then, two comprehension tasks were built on the basis

of the identified issues. Task “Export/Import Settings” (EX-

PORT/IMPORT) concerns with the problem that email settings

(including preferences, contacts, etc.) do not display in the

same order when being exported and imported from an old

to a new Android device. Task “Attachment Size Format”
(ATTACHMENT SIZE) aims at changing the size format of

downloaded attachments from long number of bytes to a more

human-readable form (e.g. in KB, MB, GB). The two tasks

are independent and are not semantically close (C3).

It is noted that the main aim of the comprehension tasks is

to locate and build up understanding around the part(s) of the

software system that is(are) relevant to solving the given issues,

not to implement or evaluate specific code changes. Details

of the tasks can be found in the replication package of this

study [14].

For each selected task, the following information was

collected:

• The description of the issue is collected directly from the

issue tracking system. The instructors do not modify or

add any text to the description.

• The discussion about the issue includes messages regard-

ing the issue and relevant/similar issues. Instructors of

the user study focus on building up knowledge on the

following two aspects when browsing the discussion: i)

context/clarification of the issue; ii) solution(s) to resolve

the task: This is the part of discussion where solutions

are discussed.

• The implementation of the solutions is assessed against

the code approved by the K-9 Mail community.

During the user study, participants are given the description of

the issue only. The instructor of the user-study have access to

all the information and used it to: i) build up understanding

about the issue and the context where it arises. With this,

the instructor is expected to be able to answer participant’s

questions regarding the task during the user study; ii) create a

grading schema for assessing participant’s understanding. We

elaborate on the grading schema in Section VI-D.

C. Participants

The user study targets participants who have some kinds of

experience with software development in Java programming

language. The participants do not need to have prior under-

standing on the role-stereotypes or have any experience of

using software comprehension tools.

We sent a call for voluntary participation to the user study

via personal networks of the authors. In the call, the following

information was clearly mentioned: i) a short description about

the study; ii) requirements to the participants; and iii) expected

time and duration of the study as well as expected amount

of work from the participants. After two weeks, we received

numerous responses and could finalize a list of 16 participants

for the study. 2 weeks prior to the working session of the

study (see Section V-E), an email with training materials (see

Section V-D) and an URL to the online background form

was sent to the participants. The instructor of the study also

communicated with the participants in order to schedule time

and location for the working session.

D. Training Period

The aim of the training period is to equip the participants with

essential information to work effectively during the working

session. By essential information, we refer the following pieces

of knowledge: i) use of visualisation tools, i.e. functions

and interaction mechanism of the visualisation tools; ii) role-

stereotypes, i.e. what is the responsibility of each role.

We provided the participants with several training materials,

including presentation slides about role-stereotypes and two

126

self-designed tutorial videos on RoleViz 3 and Softagram 4.

These training materials were sent to the participants two weeks

prior to the working session. The materials are included in

the replication package of this study [14]. During this training

period, the instructor was open to any questions regarding both

of the tools and role-stereotypes.

E. Work Session

After the training period, we assume all participants have

proper knowledge to start working on the comprehension tasks.

The working sessions were designed to be 80 minutes long

and were conducted on a desktop computer provided by the

instructor in a scheduled time and room. All participants used

the same screens and input devices. The activity (A) of a

participant was structured as follow:

A1: Introduction (5 mins): The instructor gave a brief intro-

duction about the purpose and procedure of the session.

A2: Warm-up (15 mins): During this time, the participant

was allowed to actually use the visualisation tools. The

main aim was for the participant to be more familiar

with the control and interaction mechanism of the tools.

The participant was also allowed to adjust the settings of

the desktop computer and input/output devices (such as

keyboard, mouse, screen) to fit his/her preferences.

A3: Comprehension sessions (50 mins): Each participant per-

formed two comprehension tasks (ATTACHMENT SIZE

and EXPORT/IMPORT), each with help of a visualisation

tool (RoleViz or Softagram). Each comprehension session

was scheduled in 25 minutes with the following activities:

A3.1: Giving task description (3 min);

A3.2: Comprehending with a visualisation tool (15 mins);

A3.3: Answering post-task questionnaire (7 mins).

A4: Post-study Questionnaire (10 mins): Participants were

asked to answer open questions regarding their perceived

benefit of using RoleViz and desired improvements of the

tool.

VI. DATA COLLECTION & ANALYSIS

We collected the following data (i) background information,

(ii) NASA Task Load Index (TLX) Questionnaire, (iii) System

Usability Scale (SUS) Questionnaire, (iv) Understanding Ques-

tionnaire, (v) Video Recording, (vi) Post-study Questionnaire.

Next, we discuss how the data is collected and analyzed.

A. Background Questionnaire

Prior to the working session, participants were asked to fill

in a background questionnaire. The questionnaire contains

10 questions regarding participant’s experiences with Java

programming language, Android and K-9 Mail system. If a

participant answers that he knows/has experience with K-9

Mail, 2 extra questions are asked for clarification about this.

3https://youtu.be/HqCUAlai4qw
4https://youtu.be/YXizTrJ5j7I

B. TLX Questionnaire

Measurement. The NASA-TLX is a widely used technique

for measuring subjective mental workload [15]. It relies on

a multidimensional construct to derive an overall workload

score based on six workload sources: mental demand, physical

demand, temporal demand, performance, effort, and frustration

level. There are two ways to compute the total workload score.

One way, called Weighted TLX, involves a two-step process

where participants first give rating for the six workload sources,

then make a series of 15 pairwise comparisons between each

pair of the sources as a basis for calculating weight of each

source. The second way, called Raw TLX, is a light-weight

approach in which the total mental workload score is simply

calculated as the average of the ‘raw ratings’ of the six workload

sources [16]. In this study, we chose to follow this light-weight

approach to collect TLX data and calculate the total TLX score.

Data collection. After finishing a comprehension task

(A3.2), participants were directly given a TLX rating sheet in

paper form and a pen to mark on it. In total, each participant

gave two rating sheets after the two comprehension sessions.

We collected the sheets and transferred the result into a csv file

for computational purpose. The instructor only gave explanation

or clarification regarding the TLX scale based on NASA’s

TLX manual [17]. The instructor did not interfere or influence

participant’s ratings in any mean.

Data analysis. We compare the mean values of TLX scores

between the two tasks in order to see the workload. Since our

study is within-subject, we will use Wilcoxon signed-rank test

to measure the differences.

C. SUS Questionnaire

Measurement. The System Usability Scale is an easy,

standard way of evaluating the usability of a system [18].

It is a form containing ten statements, and users provide their

feedback on a 5-point scale (1 is “strongly disagree” and 5 is

“strongly agree”). It effectively differentiates between usable

and unusable systems by giving a measure of the perceived

usability of a system. It can be used on small sample sizes and

be fairly confident of getting a good usability assessment [19].

Data collection. The ten SUS questions were integrated into

the post-task questionnaire (A3.3). The participants were given

the questionnaire after finishing with a comprehension task

and the corresponding TLX ratings paper.

Data analysis. We follow the formula proposed by

Brooke [18] to calculate the total SUS scores reported by

the 16 participants. After that, we calculated the average of the

usability values of all participants split by visualization tool to

obtain the overall usability score of RoleViz and Softagram.

We compare these values in order to examine the difference in

usability of the two tools. In order to obtain a more detailed

view of the difference (if any), we compare mean values of

ratings to each of the 10 SUS questions between the two tools.

We test the significance of the differences by using a Wilcoxon

signed-rank test which is non-parametric and is often used in

situations in which there are two sets of scores derived from

same participants [20].

127

D. Understanding Questionnaire
Measurement. In order to measure participant’s understand-

ing of K-9 Mail system regarding to the tasks, firstly, we ask

the participants to answers the following three questions (Q).

Q1. Can you name 5 elements (packages/classes/methods) that

are the most relevant/important to the task?

Q2. What are the responsibilities of the elements chosen for

the question above in performing the functionality related

to the task?

Q3. Which changes of the elements chosen for question

above are needed to complete the task? (Describe your

plan/solution)

These three understanding questions aim to assess the three

aspects of “understanding” (as defined in Section IV).
Next, we build and use a 11-point scale grading schema,

i.e., with the lowest score being 0 and the highest score

being 10 points, to evaluate participant’s answers. For each

comprehension task, a grading schema is created by (same) one

author of this paper based on the three sources of information

regarding the task, including description of the task, discussion
about the task and approved implementation of solutions to
the task (as described in Section V-B). The grading schema

consists of answers to the three understanding questions and

criteria to judge the level of participant’s understanding toward

each questions. It is noted that different questions are given

different maximum points based on our subjective judgment

on their importance to forming participant’s “understanding”.

In particular, answers to Q1, Q2 and Q3 could get maximum 5

points, 2 points and 3 points, respectively. More details about

the grading schema can be found in the replication package of

this paper [14].
Data collection. The 3 understanding questions are placed in

the post-task questionnaire together with the 10 SUS questions

(A3.3). During the comprehension time, participants were

encouraged to take note about the relevant elements of the

system to the tasks, thus they could quickly transfer their

notes to the answer form. Their answers were then graded by

two authors of this paper using the above-mentioned grading

schema. In particular, the two graders graded all participants

separately. After that, a meeting was held to discuss unclear

cases, solve any disagreement, and give final scores. Total

understanding score was calculated as a sum of the three

component scores.
Data analysis. Similar to TLX and SUS score, we compute

the total understanding scores of all participants and compare

the mean values of understanding scores between the two

visualization tools and the two tasks. In order to gain an

insight about which aspect(s) of “understanding” contribute to

the difference (if any), we also compare the scores between

the understanding questions by visualization tools and tasks.

We test the significance of the differences by using a Wilcoxon

signed-rank method.

E. Post-study Questionnaire
Data collection. All participants were given a post-study

questionnaire (A4) after they have finished with two com-

prehension sessions. The post-study questionnaire contains

7 open questions aiming at collecting participant’s perceived

benefit of using RoleViz in program comprehension and desired

improvements of the tool.

Data analysis. We followed the Open Coding method [21]

to analyze answers of the post-study questionnaire. We first

identified concepts and key phrases are identified and moved

into subcategories, and then grouped into categories.

VII. RESULT

In this section, we first present demographics of the partici-

pants of this study. Then, we explore the comparability of the

two comprehension tasks used in the study. Lastly, we answer

the two research questions of the study.

A. Demographics of Participants

In total, 16 people, with ages ranging from 23 to 36,

participated in this study. These include 7 Master students,

4 Ph.D. candidates, 1 post-doc researcher and 4 software

development engineers from 3 software companies. All of the

participants have some experiences with the Java programming

language, ranging from less than 1 year (2 participants) to more

than 8 years (1 participant). The majority of the participants

(10 out of 16) have 3-8 years experience with Java.

10 out of 16 participants reported to be familiar with the

Android development framework. Among them, 5 participants

have less than 1 year of experience, 2 participants have 1-2

years experience and 3 participants have 3-5 years of experience

with the Android framework.

Only 5 out of 16 participants answered to know the K-

9 Mail application and/or the K-9 Mail development project.

3 of them have been using the K-9 Mail application in a daily

basis for managing emails on their Android devices. None of

the participants reported to have comprehended the K-9 Mail

system prior to the study.

14 participants watched the introduction videos of RoleViz

and Softagram prior to the work session. For the two partici-

pants who did not watch the introduction videos, the instructor

spent extra time (15 - 20 minutes) at the starting of the work

session to guide them through important parts of the videos.

B. Are the Comprehension Tasks Comparable?

The two comprehension tasks used in our study were

carefully selected (as described in Section V-B) with the

expectation that the tasks are comparable. In this section, we

examine this comparability in terms of participant’s TLX, SUS

and Understanding Questionnaire scores.

Figure 7 shows the mean values of participant’s perceived

TLX, SUS and Understanding scores for the two comprehension

tasks. A Wilcoxon signed-rank test confirmed that the small

differences are statistically insignificant, with p-values being

0.80, 0.85 and 0.17 (all are well-above 0.05) for TLX, SUS

and Understanding scores, respectively. We therefore conclude:

• The two comprehension tasks require similar cognitive

load to solve (TLX score).

128

• Solving different tasks does not result in different per-

ceived usability score (SUS score).

• Participants achieved comparable understanding scores

after solving the two tasks (Understanding score).

The meaning of this result is two-fold. Firstly, it confirms that

our task selection method is effective. Secondly, it suggests that

we can ignore the factor of “task-difference” when analysing

the difference between visualisation tools.

(a) TLX Score (b) SUS Score (c) Understanding Score

Fig. 7: Differences in mean values of (a) TLX, (b) SUS and
(c) Understanding Scores (+/-1 SD) between two comprehen-
sion tasks: ATTACHMENT SIZE () and EXPORT/IMPORT ()

The two comprehension tasks are comparable in terms
of complexity, required cognitive-load, usability score
and understanding score. With this, we can eliminate the
“task-difference” factor when analysing the difference
between visualisation tools.

C. RQ1: Comparison between RoleViz and Softagram
1) TLX Task Load Score: Table I shows mean values of the

overall- and component TLX scores across the two visualisation

tools. The average task load index associated using RoleViz

and Softagram in the comprehension tasks are 39.43±13.24

and 43.91±13.68, respectively. These scores indicate a low to

moderate effort according [22].
Table I shows that the mean values of overall- and component

task load associated with using RoleViz are always smaller,

with the differences ranging from 0.63 to 12.19, compared to

that of Softagram. The Wilcoxon signed rank test, however,

shows that none of the differences are statistically significant

(all p-values are above 0.05).

TABLE I: Comparison of average TLX scores by the two

visualisation tools (N=16)

RoleViz Softagram Wilcoxon S.R.
Mean
(M1) SD Mean

(M2) SD M1-M2 p-value

Overall TLX 39.43 13.24 43.91 13.68 -4.48 0.155

Ta
sk

L
oa

d
So

ur
ce

s

Mental 52.19 21.68 56.88 21.36 -4.69 0.347
Physical 24.69 18.02 25.31 18.66 -0.63 0.857
Temporal 50.63 28.63 54.69 26.86 -4.06 0.262
Performance 33.75 15.33 36.25 24.87 -2.50 0.975
Effort 42.19 17.89 54.38 20.65 -12.19 0.088
Frustration 33.13 24.07 35.94 24.71 -2.81 0.371

The average task load associated with using RoleViz and
Softagram for the comprehension tasks is comparable.

2) Usability Score: Table II shows the mean values of total

SUS scores and component SUS scores associated with the two

visualisation tools. RoleViz achieves an average of 72.43±14.93

in overall SUS score. This is significantly higher compared

to that value of Softagram, which is 64.32±17.62 (p-value =

0.035). According [23], RoleViz is graded “C+” which indicates

a good usability score, while Softagram is graded “C” which

is considered as a moderate usability score.
In order to get an idea on which aspects of usability constitute

the difference, we take a deeper look at the ten component SUS

scores. We find that RoleViz tends to achieve higher (mean

values of) rating to questions regarding the positive aspects of

usability (i.e. Q1, Q3, Q5, Q7 and Q9). Meanwhile, Softagram

seems to score “higher” for questions regarding the negative

aspects of usability (i.e. Q2, Q4, Q6, Q8 and Q10). This plain

comparison (of mean values) suggests that RoleViz achieved

a “better” usability score for most of all component usability

aspects (except for the required learning-effort where the mean

values was equal).
A Wilcoxon signed rank test confirms that this difference

is statistically significant. In the post-study questionnaire, one

participant reported a comment that may explain this difference:

“source code is not easily accessible using Softagram”, whereas

in RoleViz it is easy to navigate between design and source

code perspectives.

TABLE II: Comparison of average SUS scores between

RoleViz and Softagram (N=16)

RoleViz Softagram Wilcoxon S.R.
Mean
(M1) SD Mean

(M2) SD M1-M2 p-value

Total SUS Score 72.34 14.93 64.38 17.62 7.97 0.035*

U
sa

bi
lit

y
M

ea
su

re
m

en
t Q1: Willing to use the system 3.50 1.10 3.25 1.13 0.25 0.210

Q2: Complexity of the system 2.00 1.03 2.56 0.63 -0.56 0.090
Q3: Ease of use 3.75 0.93 3.38 1.15 0.38 0.110
Q4: Need of support to use 1.88 0.81 2.25 1.13 -0.38 0.190
Q5: Integrity of functions 3.69 0.87 3.13 0.96 0.56 0.020*
Q6: Inconsistency 1.56 0.89 1.81 0.98 -0.25 0.250
Q7: Intuitiveness 3.88 0.96 3.88 0.96 0.00 1.000
Q8: Cumbersomeness to use 1.94 0.85 2.31 1.14 -0.38 0.080
Q9: Feeling confident to use 3.44 0.81 3.00 1.21 0.44 0.080
Q10: Required learning-effort 1.94 0.93 1.94 1.12 0.00 0.940

RoleViz is reported to have a significantly higher
usability score compared to Softagram. Participants also
valued the high level of integrity of available functions
of RoleViz over Softagram.

3) Understanding Score: Table III shows the mean values

of total Understanding scores and component Understanding

scores associated with the two visualisation tools. Participants

scored on average 6.56±1.82 points with RoleViz. This is

significantly higher (by 10%) compared to an average of

5.50±2.28 points when using Softagram (p-value = 0.025).
To gain an insight into the participant’s performance on

different aspects of understanding, we calculate and analyse

the component understanding scores. Table III shows that

participants achieved higher scores for all three understanding

questions. In particular, we observe a difference of 0.31, 0.25

and 0.50 points for the questions regarding Identification (of

129

relevant components), Responsibility (between the identified

components) and Solution formation, respectively.

The Wilcoxon signed rank test confirms that participants

could indeed produce a better solution to the comprehension

tasks with RoleViz compared to Softagram (p-value = 0.033).

TABLE III: Comparison of average Understanding scores

between RoleViz and Softagram (N=16)

RoleViz Softagram Wilcoxon S.R.
Mean
(M1) SD Mean

(M2) SD M1-M2 p-value

Understanding Score 6.56 1.82 5.50 2.28 1.06 0.025*

C
om

p. Identification 2.69 1.20 2.38 1.26 0.31 0.353
Responsibility 1.44 0.51 1.19 0.54 0.25 0.102
Solution 2.44 0.63 1.94 1.00 0.50 0.033*

Participants achieved significantly higher understanding
scores (by 10%) and produced better solutions when
using RoleViz (for comprehension tasks) compared to
using Softagram.

D. RQ2: Participant’s perception on the features of RoleViz

The post-study questionnaire focused on collecting the

perceptions and suggestions for improvement of RoleViz. The

questions are open and need to be answered in plain English.

We applied the Grounded Theory [21] to process the post-

experiment feedback (Section VI-E)5. The analysis identified

10 general themes. Below, each general theme is annotated

with the number of times it appears in the transcripts and the

number of participants who explicitly expressed it. The general

themes that we consider as positive are:

• Usability and Efficiency (50 occurrences / 14 participants):

This theme covers the positive aspects of RoleViz re-

garding the efficiency (e.g., accuracy of the provided

information, helpful, searching, no need to read class

names, support comprehension, identifying starting point)

and usability (e.g., clarity of the visualizations, narrowing

down).

• Role (12 / 6): Overall, participants have positively per-

ceived the way roles are presented by RoleViz (e.g.,
“coordinator helpful to identify starting point”, “used only

the roles to complete the tasks”).

• Relevant view (9 / 8): Participants have explicitly indicated

that the main RoleViz visualization is helpful to complete

the tasks. The possibility to have the source code always

present is also reported as important.

• Visual aspect (5 / 5): Few participants have indicated some

positive aspects of the visual cue. In particular, it was

reported that the circle layout gives a good overview of

the system. The highlighting and coloring are perceived

as useful.

The general themes that we consider as negative toward

RoleViz are:

• Possibility for improvement (34 / 15): We asked the partici-

pants to answer the question “Do you have any suggestions

5The analysis can be found in the replication package of this paper

for improvements in RoleViz?”. All participants but one

made suggestions about various aspects of RoleViz. In

particular, being able to navigate within the source code

by only scrolling and textual searching is a limitation. One

participant reported that the use of color is problematic

(red usually refers to a problem and we use it to represent

the information holder role, cf Figure 2).

• Missing information (7 / 7): Participants criticized missing

information about methods and variable accesses. Cur-

rently, methods are listed within the source code, obtained

by clicking on a compilation unit. Participants found this

not convenient.

• Issue when showing source code (7 / 6): Source code is

poorly supported by RoleViz.

• Bugs (5 / 5): A few bugs were reported, in particular that

the legend is not always visible.

• Issue with the experiment (1 / 1): One participant found

that not all the information provided by the visualization

are necessary to solve the tasks.

• Visual element not useful (3 / 2): Two participants reported

that the information about roles and dependencies between

elements are not useful.

Overall, participants appreciate the usability and ef-
ficiency of RoleViz to complete the tasks. In total, 6
participants reported the importance of annotating the
software architecture with roles information. Partici-
pants missed information about methods, in particular
the need to inspect a method call graph was reported
by 7 participants. Also, source code should be better
supported with syntax highlighting and searching.

VIII. THREATS TO VALIDITY

We identified a number of threats to our researchs validity

and categorized them by using the validity terminology

introduced by Wohlin et.al [24]. In this section, we discuss

three types of threats to validity, i.e. threats to construction

validity, internal validity and conclusion validity.

Threats to Construct Validity. Participants, who are in the

network of the authors of this paper, might be biased towards

the visualisation that the authors created. We mitigate this issue

by not revealing the authorization of the two visualisation tools

until the end of the study.

Threats to Internal Validity. All of the participants are

not familiar with both Softagram and RoleViz prior to the

study. The unfamiliarity might hinder participant’s effective

use of the tools for comprehension tasks, thus results in a

low SUS/Understanding score and a high task load index. The

training period and the warm-up sessions are involved as part

of the study to mitigate this threat. In fact, participant’s answers

to the question 4 of the SUS form (Table I) indicates a small

need of assistance when using the two tools.

Threats to Conclusion Validity. Our answers to RQ1 base

mostly on statistical tests on a small sample size. Therefore,

there is a threat that the conclusion might not be representative

of our analysis. A mitigation strategy could be to involve more

people to the next round of tool evaluation.

130

IX. RELATED WORK

Several studies investigated the effect of using stereotypes

on software comprehension tasks. Staron et al. [9] conducted

a set of controlled experiments both in academia and in the

industry to evaluate the effect of role-stereotypes on UML

models comprehension. They found that stereotypes play a

significant role in the comprehension of models. In particular,

the participants who used stereotyped models scored more

correct answers in tests checking the level of understanding.

Moreover, these participants required less time to answer

comprehension questions and identify the correct answers.
Genero et al. [3] conducted a controlled experiment to

investigate the impact of using stereotypes on UML sequence

diagrams comprehension. They analyzed the use of sequence

diagrams with and without stereotypes. They found that there is

a slight tendency in favor of the use of stereotypes in facilitating

the comprehension of UML sequence diagrams.
Ricca et al. [4] run a series of experiments to test whether

the use of the stereotyped UML diagrams supports the

comprehension and maintenance activities of web applications

with significant benefits. They compared the performances of

subjects in comprehension tasks where they have the source

code complemented either by standard UML diagrams or by

stereotyped diagrams. They suggested that organizations can

achieve a significant performance improvement by letting their

less experienced developers (i.e., juniors) adopt stereotyped

UML diagrams for comprehension tasks.
Sharif and Maletic [8] studied the effect of two different

stereotyped layouts on the comprehension of UML class

diagrams: orthogonal and clustered. The orthogonal layout min-

imizes edge crossing and bends and does not use information

about the class stereotype in layout positioning. The clustered

layout uses information about the class stereotype to position

classes into multiple clusters in the diagram. They found that the

use of stereotyped- clustered layouts demonstrates a significant

improvement in subject accuracy and efficiency in solving

problems in comprehension tasks.
In the same direction, Andriyevska et al. [6] designed and

conducted a user study to evaluate the effect of using a stereo-

typed UML class diagram layout on diagram comprehension.

Andriyevska and her colleagues suggested that stereotyped

UML class diagrams support software comprehension tasks by

letting developers build better mental models, hence gain more

information about the considered software system.
Yusuf et al. [7] conducted a study to assess the effect of

using layout, color, and stereotypes on UML class diagram

comprehension. As a mean to achieve their goal, the authors

used eye-tracking equipment to collect data on subjects’ eye

gaze which are then used to analyze the cognitive process

involved in the visual data processing. They suggested that the

use of class stereotypes plays a substantial role in the compre-

hension of UML class diagrams. Moreover, they suggested that

the use of layouts with additional semantic information about

the design is the most effective for diagrams comprehension.
Blouin et al. [2] proposed an interactive visualisation tool

for comprehending large meta-models. Their tool, Explen, used

a model slicing technique to allow users focus on subset of

model elements of interest. A comparative evaluation of Explen
with EcoreTools6 showed that Explen outperforms in improving

large meta-models understanding.

Unlike the previous work which focused on adding role as

an extension of static UML models, we built an interactive

polymetric view visualisation without referring to UML models.

We also utilise the 6 role-stereotypes identified by Wirfs-

Brock [10], which are at a different level of abstraction

compared to the class-stereotypes used by other previous

work [6][7][8][9]. Our visualisation tool also proven to be

scalable, i.e. can visualise 700+ classes, compared to the

previous work which focuses on assisting the comprehension

task of a subset of the model of interest.

X. CONCLUSION AND FUTURE WORK

In this paper we studied the visualisation of large software

systems in order to aid comprehension of the design of the

system. In particular, we contribute the use of role-stereotypes

and a visualisation-tool called RoleViz. We compare our tool

to an industrial tool Softagram via a user study with 16 people.

Results from the study indicate that RoleViz achieves a

higher score on usability than Softagram. In particular, users

like the integration features that enable exploring a software

system at both the design and the source code levels of

abstraction. According to Sauro’s benchmark data, Roleviz

achieves ’good’ usability, and Softagram achieves ’ok’ usability.

Performing comprehension tasks using RoleViz or Softagram

is experienced as comparable with respect to the required

cognitive effort. According to the benchmark data, the cognitive

load of both tool is rated as ’low to moderate’ effort.

Participants achieved about 10% better score on comprehen-

sion tasks when using RoleViz compared to using Softagram.

Specifically, when using RoleViz, participants perform better

in the ability to propose a solution to bug-fixing. The factor

that may explain this is: RoleViz has as scoping mechanism

that allows users to effectively focus on certain parts of the

system that are relevant for the task at hand.

We found that some participants use classes with particular

stereo-types as starting-points for particular understanding tasks:

for example, for tasks that deal with ’user interface’ issues,

participants start their exploration of the system by looking at

classes labelled as ’interface’-type.

For the future directions of the research, the participants

in our study prominently pointed out at the need for also

visualizing behavioral information (e.g., call-graphs) at a level

between source code and architecture level of abstraction.

ACKNOWLEDGMENTS

Bergel is deeply grateful to Lam Research and FONDECYT

Regular project 1200067 for partially sponsoring the work

presented in this article.

6https://www.eclipse.org/ecoretools

131

REFERENCES

[1] M. Shahin, P. Liang, M. A. Babar, A systematic review of software
architecture visualization techniques, Journal of Systems and Software
94 (2014) 161 – 185. doi:10.1016/j.jss.2014.03.071.

[2] A. Blouin, N. Moha, B. Baudry, H. Sahraoui, J.-M. Jézéquel, Assessing
the use of slicing-based visualizing techniques on the understanding of
large metamodels, Inf. Softw. Technol. 62 (C) (2015) 124–142.

[3] M. Genero, J. A. Cruz-Lemus, D. Caivano, S. Abrahão, E. Insfran,
J. A. Carsı́, Does the use of stereotypes improve the comprehension of
UML sequence diagrams?, in: 2nd Symposium on Empirical Software
Engineering and Measurement, ESEM ’08, ACM, USA, 2008, pp. 300–
302.

[4] F. Ricca, M. Di Penta, M. Torchiano, P. Tonella, M. Ceccato, How devel-
opers’ experience and ability influence web application comprehension
tasks supported by UML stereotypes: A series of four experiments, IEEE
Trans. Softw. Eng. 36 (1) (2010) 96–118. doi:10.1109/TSE.2009.69.

[5] I. Jacobson, G. Booch, J. Rumbaugh, The Unified Software Development
Process, Addison-Wesley, Boston, MA, USA, 1999.

[6] O. Andriyevska, N. Dragan, B. Simoes, J. I. Maletic, Evaluating UML
class diagram layout based on architectural importance, in: 3rd IEEE
International Workshop on Visualizing Software for Understanding and
Analysis, 2005, pp. 1–6. doi:10.1109/VISSOF.2005.1684296.

[7] S. Yusuf, H. Kagdi, J. I. Maletic, Assessing the comprehension of
UML class diagrams via eye tracking, in: 15th Int. Conf.on Program
Comprehension. ICPC’07., IEEE, 2007, pp. 113–122.

[8] B. Sharif, J. I. Maletic, The effect of layout on the comprehension of
UML class diagrams: A controlled experiment, in: 5th IEEE Int. WS. on
Visualizing Software for Understanding and Analysis (VISSOFT 2009),
IEEE, 2009, pp. 11–18.

[9] M. Staron, L. Kuzniarz, C. Wohlin, Empirical assessment of using stereo-
types to improve comprehension of uml models: A set of experiments,
Journal of Systems and Software 79 (5) (2006) 727–742.

[10] R. Wirfs-Brock, Characterizing classes, IEEE Software 23 (2) (2006)
9–11.

[11] A. Nurwidyantoro, T. Ho-Quang, M. R. V. Chaudron, Automated classi-
fication of class role-stereotypes via machine learning, in: Proceedings
of the Evaluation and Assessment on Software Engineering, EASE ’19,
ACM, New York, NY, USA, 2019, pp. 79–88.

[12] M. Lanza, S. Ducasse, Polymetric views—a lightweight visual approach
to reverse engineering, Transactions on Software Engineering (TSE)
29 (9) (2003) 782–795. doi:10.1109/TSE.2003.1232284.

[13] S. Demeyer, S. Ducasse, O. Nierstrasz, Object-Oriented Reengineering
Patterns, Morgan Kaufmann, 2002.

[14] Replication package.
URL https://bit.ly/380PQb7

[15] S. G. Hart, L. E. Staveland, Development of nasa-tlx (task load index):
Results of empirical and theoretical research, in: Advances in psychology,
Vol. 52, Elsevier, 1988, pp. 139–183.

[16] E. A. Bustamante, R. D. Spain, Measurement invariance of the nasa tlx,
in: Proceedings of the Human Factors and Ergonomics Society Annual
Meeting, Vol. 52, SAGE Publications Sage CA: Los Angeles, CA, 2008,
pp. 1522–1526.

[17] NASA, Nasa task load index (tlx) v.1.0 manual.
URL https://humansystems.arc.nasa.gov/groups/TLX/downloads/TLX.pdf

[18] J. Brooke, et al., Sus-a quick and dirty usability scale, Usability evaluation
in industry 189 (194) (1996) 4–7.

[19] T. S. Tullis, J. N. Stetson, A comparison of questionnaires for assessing
website usability, in: Usability professional association conference, Vol. 1,
Minneapolis, USA, 2004.

[20] F. Wilcoxon, Individual comparisons by ranking methods, Biometrics
bulletin 1 (6) (1945) 80–83.

[21] S. Anselm, J. Corbin, Basics of qualitative research: techniques and pro-
cedures for developing grounded theory, SAGE Publications, Thousand
Oaks, USA, 1998.

[22] R. A. Grier, How high is high? a meta-analysis of nasa-tlx global
workload scores, in: Proceedings of the Human Factors and Ergonomics
Society Annual Meeting, Vol. 59, SAGE Publications Sage CA: Los
Angeles, CA, 2015, pp. 1727–1731.

[23] J. Sauro, A practical guide to the system usability scale: Background,
benchmarks & best practices, Measuring Usability LLC Denver, CO,
2011.

[24] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, A. Wesslén,
Experimentation in software engineering, Springer Science & Business
Media, 2012.

132

