
Towards a Universal Python: Translating the Natural
Modality of Python into Other Human Languages

Joshua Otten
Department of Computer Science

George Mason University
Fairfax, United States

jotten4@gmu.edu

Antonios Anastasopoulos
Department of Computer Science

George Mason University
Fairfax, United States

antonis@gmu.edu

Kevin Moran
Department of Computer Science

University of Central Florida
Orlando, United States

kpmoran@ucf.edu

Abstract—The Python programming language plays a large
role in computer science today, both in industry and education.
While the pseudo-code nature of its keywords and built-in
functions/modules makes programming easy to learn for English
speakers, non-English speakers do not have this advantage. Our
goal is to further the democratization of computer science,
allowing anyone to code in their native language, anywhere. This
paper describes our vision for realizing this goal by automati-
cally translating Python (keywords, error messages, identifiers)
into other human languages, leveraging recent developments in
machine translation and language technologies in general. As
a first step, we introduce a preliminary multi-lingual Python
tool that enables a user to code, translate, and execute Python
in 5 additional languages, as well as a roadmap for the future
development of our automated framework.

Index Terms—programming languages, Python, democratiza-
tion, machine translation, programming education

I. INTRODUCTION

Python is arguably one of the most popular programming

languages on the planet today [1]. Aside from its strength as

an industry and development tool, it is also used extensively

in education–specifically for introducing students to computer

science and programming. One reason for this is its pseudo-

code nature, using English words and phrases that make sense

to non-programmers. In principle, rather than memorizing

superfluous lists of terminology, acronyms, and abbreviations,

a student may focus on understanding the core programming

concepts without worrying about language specific details [2].

However, while this works well for English-speakers, stu-

dents of other backgrounds and nationalities may not re-

ceive these benefits. Python’s primary strengths of resembling

English pseudo-code become nullified when attempted by

students whose background is not in English, as they must not

only master core programming principles, but learn significant

aspects of the English language as well.

This concept is confirmed by several studies which show

that students learn programming skills faster when introduced

with a coding language based on their native one, and like-

wise have a more difficult time understanding concepts when

the coding is not based on their native language [3], [4].

Furthermore, Github users often write comments and commit

messages in non-English languages, demonstrating that there

is a demand for multilingual programming [4]. English may

print("Hello World")
x = 3
for i in range(x):
 print(i)
 if i % 2 == 0:
 print("even")

("Hello World")
x = 3

 i (x)
 (i)
 i % 2 == 0:
 ('even')

imprimer("Hello World")
x = 3
pour i dans Portée(x):
 imprimer (i)
 si i & 2 == 0:
 imprimer ('even')

English Python (Traditional)

Mandarin Python French Python

Multilingual
Compilation

Neural Machine
Translation

Universal Python Framework

Consistent Execution Output

rk

Consistent Execution Outputp

����������	

����

�
����

Fig. 1. Concept Illustration for the Universal Python Framework. This
framework aims to automatically translate natural language elements of the
Python programming language (e.g., keywords, identifiers, error messages,
etc.) into various different natural languages other than English.

be “the lingua franca of the global economy and the de facto
standard in cyberspace" [5] but this “does not mean that
the appeal of operating globally removes the obligation to
localize" [6].

Ideally, one would produce a Python-like language based

on each different human language, and maintain and update it

as the "core" English Python evolves. Of course, this would

be infeasible due to sheer scale and cost if done inefficiently.

Therefore, we hope to meet this need by automatically

translating the Python language into other human languages,

allowing any number of Python versions to be interpreted and

run in the same manner as the standard English Python is used

today. This could revolutionize computer science education

around the globe, as well as increase programming flexibility

in industry and code development.

To put this idea in perspective, if there were an actual

universal language translator for the world’s languages, then

all of humanity’s linguistic problems would be solved. There

would be no need of a standard, because people could speak

352

2023 IEEE International Conference on Software Maintenance and Evolution (ICSME)

2576-3148/23/$31.00 ©2023 IEEE
DOI 10.1109/ICSME58846.2023.00044

in any language they wish, and everyone would understand

them. Similarly, our solution offers such a universal translation

system in the context of Python programming. If everyone

spoke English, then this would not be necessary. Despite

the relatively large number of English speakers in the world

(13%) [7], that percentage is still dwarfed by the total of non-

English speaking population. Therefore, automated translation

offers a much better alternative to computer science education

and software development for those who are not fortunate

enough to understand English proficiently.

Additionally, we cannot know that English (or at least,

modern English) will always be as popular and widespread as

it is today. It may be that some other language or dialect will

replace English as a lingua franca, and it will be much more

beneficial to translate code than for everyone to use a dead

or near-dead language just to program computers. Regardless,

while our solution has major implications for the evolution of

software, its flexibility as a translation system also minimizes

any potential downsides of multi-lingual coding.

What we hope to stress is that even though English exists

as a programming standard in practice, it is not spoken widely

enough to be a truly universal language, and forcing all the

people of the world to program with it is not only Anglo-

centric, but inconvenient and difficult for those who do not

already use it to communicate. The non-English speaking

world has to bear an additional burden of learning a foreign

language to understand code. In this paper, we discuss the

basic principles of our vision with a specific focus on aspects

related to implications on software maintenance and evolution.

II. RELATED WORK

A. Language Translators

The idea of translating computer languages is not a new

one, and prior work in the compilers domain has successfully

accomplished translation between higher level programming

languages and lower level machine-interpretable code [8].

What is far more unusual is translating from a computer lan-

guage defined in terms of one human language, to a computer

language defined in terms of a second human language.

Such efforts have been attempted before [4], [9]. For in-

stance, there are a few educational languages that are available

in many different human language versions, such as Scratch

and Blockly. Additionally, certain widely-used programming

languages have versions in one or two other human languages,

including a Chinese version of Python [9]. Several other exam-

ples existing in the educational space further elucidate the need

for non-English languages, such as Glossa1 and ‘KuMir‘2,

Greek and Russian Pascal-based programming languages used

in secondary education.

Recently, Chris Piech and Sami Abu-El-Haija created a tool

called "CodeInternational" that automatically translates parts

of Java and Python code into many other human languages. It

1https://alkisg.mysch.gr/
2https://web.archive.org/web/20160112180533/http://lpm.org.ru/kumir2/

parses through code, using Google Translate to convert com-

ments, identifiers defined within the codebase, and optionally,

string literals, to a secondary language [4]. However, it is

important to note that the Python/Java inherent keywords and

built-in functions/modules are not translated.

While the advancements made are certainly helpful, to

a large degree these have been either incomplete in their

translation attempts, or in our opinion not universal enough

in scope to truly emancipate programming from its English-

dominated standard.

B. Multilingual Language Modeling in Software Engineering

Over the past several years there has been a fast growing

interest in and application of various language modeling

technologies to software engineering [10]. Initially, these mod-

els were largely uni-lingual, trained on single programming

languages [11], before models expanded to encompass larger

multi-lingual training datasets and tasks [12], [13].

Recent work by Ahmed and Devanbu [14] introduced the

notion of multilingual training in software engineering. The

authors found evidence that training models on multilingual

code, that is, code that is written in different programming

languages to perform the same function, tends to improve

model performance, particularly for languages that are un-

derrepresented (e.g., Ruby). Recent work by Ahmad et al.
introduced an approach for unsupervised translation between

programming languages using back-translation [15].

Additionally, there has been a wealth of work in software

engineering research that exploits the bimodality of code

(i.e., the fact that software consists of both code and natural

language modalities such as comments) to automate various

software engineering tasks ranging from comment genera-

tion [16] to bug reporting [17].

In the context of software engineering research, the notion

of language translation and multilingual language modeling

has typically been in the pursuit of the automation of SE tasks

and has rarely, if ever, examined the possibility of translating

the natural modality of code into various human languages.

III. UNIVERSAL PYTHON

Our overarching goal is the democratization of program-

ming, by providing a universal Python interpreter that achieves

for any language the same benefits Python currently enjoys

for English. Students would be able to learn programming

and computer science skills using tools modeling their own

language. Moreover, if Python can be run efficiently using any

language as a base, then industry practitioners could use these

tools as well for their own convenience. Programmers from

around the world, speaking completely different languages,

could collaborate on projects by simply translating code back

and forth. In other words, we are looking forward to a new

era for Python–no longer dominated by the English-speaking

world, anyone can program in any language, anywhere.

To do this, we propose a universal multi-lingual Python

interpreter, that allows one to run Python code written in any

human language, rather than only English or Chinese.

353

IV. SOFTWARE DEVELOPMENT & MAINTENANCE

PROCESS

Educational advantages aside, from a software maintenance

perspective there are reasonable objections as to whether

people should actually be empowered to program in multiple

human languages. One concern is that flooding collaborative

spaces, such as GitHub, with multi-lingual code would lead to

a large number of programs that are unreadable to a majority

of developers. One could then argue that English should be a

primary standard to avoid such confusion in developer spaces.

However, to a certain extent people are already writing

code to conform to their native language. For instance, in

Java, "among the detected Spanish speakers, 87.2% percent

of users write identifiers in Spanish." [4] Statistics like these

demonstrate a desire for people to program in a way that is

meaningful to them in their own language. The good news

is that if our tool works as intended, it would allow seamless

translation of code between any two human languages, without

much varying efficiency. This means that if UNIPY were to

become widespread, it should not matter which language the

original version of a piece of code is written in, because it

could just as easily be translated back to the preferred language

of the developer; this minimizes potential maintenance con-

cerns. When working in a team of people who speak different

languages, as long as there is a chosen standard used for

the overall project, a member could fetch the given files and

convert them all to a different language, then simply translate

it back to the original before committing changes.

That said, before UNIPY is widely adopted, we recommend

that code written using our tool should be posted in the English

version (although not necessarily limited to one language),

so that those who do not use UNIPY can easily understand

the code. This would also help to avoid potential issues with

search engines not recognizing Python code when it is in a

non-English language. However, we are careful to not enforce

any particular human language version of UNIPY , since doing

so would prevent Python from ever becoming truly universal.

Later on, in a world where all developers have access to

UNIPY , it would not be necessary to post code in English,

or any standard, because everyone would have the means to

conveniently translate all code to their desired language.

V. PRELIMINARY WORK

As proof of concept, we have created a prototype Universal

Python, named "UNIPY ", that can be written, translated, and

executed in multiple human languages. To do this, we built an

interpreter that translates foreign Python code into the original

English form, execute it, and return the result. At least at this

point, this appears to be a more straightforward approach, than

say, attempting to modify the base code and link keywords,

etc. to an arbitrary number of possible values. We have

also integrated this tool into a web-based application for

convenience, which can be found in our online appendix [18].

A. Translating Terms

Since the majority of Python’s programming elements

consist of English words or abbreviations, we focused our

attention on translating these terms into several languages.

To do so, we first compiled a list of the 222 standard

library built-in functions and modules, and then expanded and

unabbreviated each term. With these data at hand, we used a

publicly available, state-of-the-art machine translation API to

automatically translate the list into several typologically and

geographically diverse languages, including Spanish, Sorani

Kurdish, and Mandarin. In order to evaluate the robustness of

this translation, we had native speakers annotate the results,

correcting any mis-translations, as well as abbreviating any

items, when needed, to match the generic "pythonic" style.

We first attempted translation with ChatGPT, but while

it readily translated Python keywords and function/variable

names, it often refused to translate any other built-in functions

or modules. In light of this, we opted to use Google Translate

for our API. We tested results with five varying contexts

embedded within our data. The first used the pure Python

terms without any expansion, and the second consisted of

these terms, split into separate words (so that isalpha, for

example, became "is alpha"). For the third test, we translated

the unabbreviated phrases that the original Python terms are

intended to represent (as in, "is alphanumeric"). The fourth

and fifth tests took these expanded terms as part of a larger

phrase, to provide the translator more context. The fourth acted

as a list of dictionary terms (as in, "is alphanumeric: Returns

True if all characters in the string are alphanumeric"), while

the fifth used them in an instructive sentence ("In Python, to

use the expression that returns True if all characters in the

string are alphanumeric, write: is alphanumeric."). Note that,

in an effort to present the most accurate context possible, we

drew these phrases from W3Schools’ descriptions of Python

key terms [19]. All in all, our translation results improved

significantly after the first two tests, but varied little as a result

of the additional built-in context of tests four and five. This

demonstrates that abbreviation is a critical factor in automated

translation accuracy, and will therefore remain a significant

focus of our future work.

We include here a number of results taken from the context

used in our third test. Table I displays some examples of

terms translated to other languages, and Table II shows the

accuracy results of the API for the 222 Python terms of

the core library. The quality is quite high for high-resource

languages like French and Mandarin with more than 80% of

the terms translated correctly out-of-the-box. Of course, lower-

resourced languages like Kurdish obtain less than ideal results

with accuracy around 30%, but it is important to note that this

is only a baseline, with significant room for improvement. We

plan to test GPT-like LMS for the translation tasks, but our

initial exploration with Google Translate illustrates that we

may likely need custom solutions, or at least more elaborate

prompting strategies. For example, in the future we plan

to use established techniques from domain adaptation [20],

354

TABLE I
EXAMPLES OF TERM TRANSLATIONS. NOTE THAT THE TRANSLATIONS ARE ABBREVIATED WHEN POSSIBLE.

Python Term Spanish Greek Kurdish Mandarin

integer entero ακέραιη ��� ��� ���� 	
��

 整数

print imprimir τύπωσε ���������� 打印

capitalize capitalizar κεφαλαιοποίησε �
� �
������
 �� 大写

is disjoint es disjunto είναι ασύμβατο ����� ���� �� 是不相交的

Syntax Error Error de sintaxis Συντακτικό λάθος � �
�� ����
� � �
�
� �� 语法错误

TABLE II
CORRECTNESS OF PYTHON TERMS AUTOMATICALLY TRANSLATED TO

SEVERAL LANGUAGES.

Language Accuracy (%)

Spanish 57.7

French 85.1

Greek 60.8

Hindi 51.8

Mandarin 86.0

Kurdish 32.0

[21], to fine-tune a well-performing general-domain translation

model using data from the CS/SWE domain so as to better

handle programming-related terms. Furthermore, we could

fine-tune the machine translation systems on the hand-created

translations we produced for the standard library, so that they

can perform better when translating terms from other Python

packages. This way, we would not need annotators to support

additional languages, and we could ideally create support for

common imported modules, such as PyTorch and NumPy.

Further in the future, we could incorporate a mechanism

for crowd-sourcing using human-in-the-loop approaches, by

engaging knowledgeable native speakers to post-edit the au-

tomatically translated Python functions and modules on the

fly as needed. These corrections could then be used to further

improve the model, rendering better-performance for the next

iteration of automatic translations, and so on.

B. Interpreting Foreign Code

The lists of human-corrected translated terms allowed us

to create and test a prototype interpreter for non-English

languages. Currently, our interpreter uses two lists at any given

time: a list of the English built-in functions and modules, and

a list of the same terms, translated to the second language.

Described briefly, our interpreter scans the input code file,

searching for matches in the non-English list, and then creates

a new .py file with the corresponding English functions and

modules. Then it executes this new file and returns the output.

In addition, this method supports direct translation for terms

of right-to-left languages, such as Arabic and Sorani Kurdish,

by inverting the order of terms in these cases. Since all right-

to-left code is translated before execution, we do not expect

any complications with Python’s ASTs. We also note that our

translation process is deterministic, so that no code information

is lost or changed in translation, and it consistently returns

the same result. While we were not able to hand-translate the

countless error messages in the Python Language, we can use

the same API to automatically translate any error messages

that arise. Like the built-in functions and modules, these are

stored in look-up tables, so that any issues in translation

can eventually be manually corrected. We were careful to

avoid translating any quotations or strings, so that the output

will remain consistent no matter which language the code is

programmed in.

C. Proof-of-Concept Web App

We created a proof-of-concept web app [18], that makes

use of a minimal design shown in Figure 2. First, the user

can select one of the supported languages. There are two

editors, one for English and one for the non-English version.

The user may type code into either of the two editor boxes,

and translate between them in either direction. Below the

editors, two corresponding output boxes display the result of

any attempted computation. We also added a "swap" feature

that interchanges the code in the editor boxes, along with

the selected languages, operating in a manner similar to

the functionality of Google Translate. This allows one to

conveniently flip between languages, essentially changing the

translation direction.

When code is run from either box, our web app links to

the prototype compiler, which executes the code in the given

language and displays the result in the appropriate output field

below. We note that output should remain consistent regardless

of selected language, except in the event that execution results

in an error message; this is because error messages will be

translated and are therefore language-specific.

In sum, code from either box can be executed in various

languages to compare the results. We hope this demonstrates

that with our new interpreter, someone could code in their

native language and run it, just like they might run English

Python code.

VI. CHALLENGES

Our primary challenges so far have arisen with regard to

Python term translation, and language-specific details. First,

English concepts cannot always be conveyed with a single

word in other languages. For example, the French phrase for

negation (English: "not") is ne...pas, where ne and pas act

as delimiters around the phrase that is negated. In Python

355

UniPy

Fig. 2. Example of translating English code to Spanish (editors are the two top panels), along with the output of running both programs (bottom panels).
Note that the output is the same.

syntax, one follows the English rule of placing a "not" prior

to the to-be-negated expression, but translating to French is

not a trivial task, since this requires more than an English-

French term replacement. We solved this issue by consulting

a native speaker who pointed out that colloquially, the French

will often omit ne and merely use pas prior to the phrase. This

allowed us to simply replace the term "not" with "pas" in the

French Python syntax. However, similar difficulties may arise

with other language versions in the future that will not be as

convenient to solve.

Another challenge is handling the abbreviations that already

exist as part of library terms. For our preliminary work we ex-

perimented with techniques to expand abbreviations (e.g. chr
to character) based on string similarity and co-occurrence

statistics in the documentation of the Python core library.

But expanding to automatically translating other packages and

libraries would require modules that identify abbreviations,

as well as multi-word expressions, and appropriately expand

them before any translation begins. Put simply, one would

first need to realize that pytorch.linalg is an abbreviated

phrase and expand it to "linear algebra" before feeding it

into the translation system. Conversely, a fully-automated

solution would perhaps abbreviate, when needed, the longer

terms/phrases in the target language. Note, however, that

abbreviations are not common in many languages – Indic lan-

guages like Hindi and Bengali, for instance, rarely use them.

In that case other solutions might be needed (e.g. rephrasing

with phrase length in mind) to not make programming in the

non-English version too cumbersome.

Other language-specific decisions have to be made before

proceeding with translation. This is particularly challenging

for languages with rich morphology like Greek, Spanish, or

Kurdish. To illustrate this with an example, consider the term

print. Many English-Python terms do not indicate part of

speech or grammatical aspect. As a result, Python function

calls such as "print" can be interpreted as nouns or verbs (as

in, "the print" or "to print"), but these details are not only

absent in Python grammar, they are irrelevant. However, when

translating to a language like Spanish, distinguishing between

nouns and verbs becomes crucial, as the corresponding words

are distinct word forms. Moreover, if "print" is to be a verb,

then what should its conjugated form be? One option is the

accepted lemma form–the translation one would find in a

bilingual dictionary. Should it perhaps be the first person

indicative "I print", since the programmer is attempting to

print something? Should it rather be "it prints" in the third

person, since it is the computer that is doing the printing? On

the other hand, it could be a command that the programmer

gives to the computer: "print!", in the imperative.

In the end, we opted to utilize the imperative form for

examples like this. However, these are all questions that the

English version of Python can conveniently ignore. If we are

to broaden the reaches of computer science, it is necessary

to address these decisions, with the largest challenge being

consistency. Any multi-lingual version of Python will work as

long as all built-in modules and functions remain internally

consistent. However, as we attempt to scale up our Universal

Python to a wider range of modules and languages, this will

result in growing complexity, and will certainly be a challenge.

VII. FUTURE WORK

In the immediate future, we plan to scale our preliminary

UNIPY version to include other common libraries, such as

PyTorch and NumPy. To do this efficiently with multiple

languages will require a degree of specialized automated trans-

lation, which we have already started building. The hope is

that we can train a model to accurately translate these specific

Python terms without the need to hand-annotate each attempt.

356

This would tremendously improve our ability to expand UNIPY

to any language and any module, thus truly entering a world

of democratized programming.

With our prototype at hand, the next step will be to evaluate

its effectiveness in the educational sector with user studies.

The goal will be to measure the degree to which coding in

one’s native language can improve learning and programming

ability. Currently, our general idea includes offering this tool

for introductory programming classes in a university setting.

Students whose native language is not English could opt to

use UNIPY for their assignments, and submit their feedback

through a brief survey at the end of the course as to what they

thought about the tool, and to what extent having code and

error messages in their native language aided them.

Therefore, we propose research questions that concern

both technical and human-factored domains. Our human-factor

questions include the following:

• To what extent does learning to program in one’s native

language facilitate the code-learning process?

• Is coding in one’s native language more time efficient

than coding in a non-native language (assuming one is

not already used to coding in English)?

• How much does programming in a foreign language

increase overall fluency in that language?

• Is coding in one’s native language less stressful than a

foreign one, especially while learning to program?

As for technical considerations, we would like to see how

multi-lingual code impacts LLMs and other technologies:

• To what extent does multi-lingual program data affect

code generation by LLMs?

• Given the link between using code in pre-training and

some emergent LLM capabilities (such as multi-hop

reasoning), does the language of the natural modality of

the code have any downstream effect?

Ultimately, our objective is to allow people from any

background and nationality to have the same opportunities for

computer science education as English-speakers. Hopefully,

with a tool like UNIPY , we can realize this goal.

VIII. CONCLUSION

To summarize, we introduce a prototype framework for

Universal Python, that allows for programming and translation

between multiple human languages. Our goal is to expand

Python’s advantages such that non-native English speakers

might benefit from them as well. While our preliminary

version is functional and an exciting prospect for future

programmers, there is still work to be done on its scope and

scalability, as well as user studies to determine the extent

of its educational advantages. We plan to continue work

in these areas, hoping that one day computer science and

programming will not be confined to the set of English-

speakers, but available to all, regardless of ethnic, cultural,

linguistic, or socioeconomic background.

REFERENCES

[1] A. Johnson, “Python popularity: The rise of a
language.” [Online]. Available: https://flatironschool.com/blog/
python-popularity-the-rise-of-a-global-programming-language/

[2] “How is python used in education?” 2021. [Online]. Available:
https://www.pythoncentral.io/how-is-python-used-in-education/

[3] B. Hill, “Learning to code in one’s own language,” 2017. [Online]. Avail-
able: https://mako.cc/copyrighteous/scratch-localization-and-learning

[4] C. Piech and S. Abu-El-Haija, “Human languages in source code: Auto-
translation for localized instruction,” in Proceedings of the Seventh ACM
Conference on Learning@ Scale, 2020, pp. 167–174.

[5] K. Ohmae, The next global stage. Pearson Education Incorporated,
2005.

[6] ——, “Planting for a global harvest.” Harvard Business Review, vol. 67,
no. 4, pp. 136–145, 1989.

[7] Gurmentor, “What is the most spoken language in the
world in 2023,” 2023. [Online]. Available: https://gurmentor.com/
what-is-the-most-spoken-language-in-the-world/

[8] S. Ferguson and R. Hebels, Computers for Librarians,
2003. [Online]. Available: https://www.sciencedirect.com/topics/
computer-science/language-translator

[9] G. Mcculloch, “Coding is for everyone—as long as you speak
english,” 2019. [Online]. Available: https://www.wired.com/story/
coding-is-for-everyoneas-long-as-you-speak-english/

[10] A. Hindle, E. T. Barr, Z. Su, M. Gabel, and P. Devanbu, “On the
naturalness of software,” in Proceedings of the 34th International
Conference on Software Engineering, ser. ICSE ’12. IEEE Press, 2012,
p. 837–847.

[11] M. White, C. Vendome, M. Linares-Vásquez, and D. Poshyvanyk,
“Toward deep learning software repositories,” in Proceedings of the 12th
Working Conference on Mining Software Repositories, ser. MSR ’15.
IEEE Press, 2015, p. 334–345.

[12] D. Guo, S. Lu, N. Duan, Y. Wang, M. Zhou, and J. Yin, “UniXcoder:
Unified cross-modal pre-training for code representation,” in Proceed-
ings of the 60th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers). Dublin, Ireland: Association for
Computational Linguistics, May 2022, pp. 7212–7225.

[13] Y. Wang, W. Wang, S. Joty, and S. C. Hoi, “CodeT5: Identifier-aware
unified pre-trained encoder-decoder models for code understanding and
generation,” in Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing. Online and Punta Cana,
Dominican Republic: Association for Computational Linguistics, Nov.
2021, pp. 8696–8708.

[14] T. Ahmed and P. Devanbu, “Multilingual training for software engineer-
ing,” in Proceedings of the 44th International Conference on Software
Engineering, ser. ICSE ’22. New York, NY, USA: Association for
Computing Machinery, 2022, p. 1443–1455.

[15] W. U. Ahmad, S. Chakraborty, B. Ray, and K.-W. Chang, “Summarize
and generate to back-translate: Unsupervised translation of programming
languages,” in Proceedings of the 17th Conference of the European
Chapter of the Association for Computational Linguistics, Dubrovnik,
Croatia, May 2023, pp. 1528–1542.

[16] A. Bansal, Z. Eberhart, Z. Karas, Y. Huang, and C. McMillan, “Function
call graph context encoding for neural source code summarization,”
IEEE Transactions on Software Engineering, pp. 1–14, 2023.

[17] O. Chaparro, C. Bernal-Cárdenas, J. Lu, K. Moran, A. Marcus,
M. Di Penta, D. Poshyvanyk, and V. Ng, “Assessing the quality of the
steps to reproduce in bug reports,” in Proceedings of the 2019 27th
ACM Joint Meeting on the Symposium on the Foundations of Software
Engineering, ser. ESEC/FSE 2019. New York, NY, USA: Association
for Computing Machinery, 2019, p. 86–96.

[18] J. Otten, A. Anastasopoulo, and K. Moran, “Unipy web tool.” [Online].
Available: https://universal-pl.github.io/UniPy/

[19] W3Schools, “Python tutorial.” [Online]. Available: https://www.
w3schools.com/python/

[20] P. Koehn and J. Schroeder, “Experiments in domain adaptation for
statistical machine translation,” in Proceedings of the second workshop
on statistical machine translation, 2007, pp. 224–227.

[21] C. Chu, R. Dabre, and S. Kurohashi, “An empirical comparison of
domain adaptation methods for neural machine translation,” in Proceed-
ings of the 55th Annual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), 2017, pp. 385–391.

357

