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Abstract—Using meaningful identifiers in source code reduces
the risk of errors, the cognitive load of developers, and speeds up
the development process. Therefore, recent research has looked
into an AI-based analysis of identifiers, for which large-scale
language models appear to offer great potential. Based on tokens’
probabilities, such models can suggest identifiers that are likely
to appear in a given context. While current research has used
language models to predict the most likely identifier names,
studies on assessing the quality of given identifiers are scarce. To
this end, we explore adherence to identifier naming guidelines
as a proxy for identifier quality and propose and evaluate
two unsupervised approaches for spotting violations: First, a
generative approach, which uses the probability distribution
of the language model directly without fine-tuning. Second, a
discriminative method, which fine-tunes the model’s encoder
to discriminate between original identifiers and similar drop-in
replacements suggested by a weak AI.

We demonstrate that the proposed approaches can successfully
detect violations of common guidelines for identifier naming. To
do so, we have developed a dataset built on widely accepted identi-
fier naming guidelines. The manually annotated dataset contains
more than 6000 dense annotations of identifiers for 28 common
guidelines. Using the data, we show that the generative approach
achieves the best results, but that the particular masking strategy
and scoring method matter substantially. Also, we demonstrate
our approach to outperform other recent code transformers. In a
per-guideline analysis, we highlight the potential and limitations
of language models, and provide a blue-print for training and
evaluating their ability to identify bad identifier names in source
code. We make our dataset and models’ implementation publicly
available to encourage future research on AI-based identifier
quality assessment.

Index Terms—Masked Language Models, Source Code Iden-
tifiers, Naming Guidelines, Code Quality, Identifier Quality As-
sessment, Generative Approaches, Language Model Fine-tuning,
Code Transformers, AI-based Code Analysis.

I. INTRODUCTION

The comprehension of source code is essential for con-

ducting software development activities where developers are
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required to understand, change, or maintain existing code.

This fundamental activity can be compromised when work-

ing with source code that has low readability [1]. In the

literature, several factors have been shown to affect this

quality attribute, notably those associated with the lexicon

used to name identifiers [1]–[6]. In this vein, studies have

demonstrated that good (i.e., clear, meaningful and concise)

identifiers provide semantic cues that foster the comprehension

of source code [6], while bad (i.e., non-intention reveling,

ambiguous, vague) identifiers affect developers’ cognitive load

(i.e., mental effort) negatively and impede the understanding

of source code [1]. Accordingly, a number of approaches

and tools have been proposed to assess and improve the

quality of identifiers [7], [8], most recently using transformer-

based language models (LMs) [9]–[11]. These AI approaches

are trained on large datasets of open source projects, have

been successfully applied for smart autocompletion and have

recently matured into widely used products [12], [13]. Given

a piece of source code, an LM yields a probability distribution

that expresses the likelihood of words (or tokens) in the code.

Recent work in the area has focused on identifier renaming,

i.e., suggesting new, better versions for identifiers [14]. This

is conceptually rather straightforward: One samples identifiers

from the language model’s token distribution and picks the

most likely one, which supposedly fits the given context best.

In practice, however, developers will unlikely use LM-based

tools for automatic blanket renaming of all identifiers in their

software projects. Rather, one could envision interactive tools

to support software reviews, where the AI points developers to

code passages with suboptimal identifiers that require refac-

toring. These can then be either auto-corrected or manually

corrected, leading to interactive improvements of source code.

To really focus on refactoring hotspots and to limit developers’

distractions, the more interesting question is not to rename but

to reliably assess identifiers, i.e., to decide if a given identifier

should be refactored. Therefore, the scope of this paper is not

on renaming but on estimating given identifiers’ quality: We

explore different strategies of using language models to predict

if an identifier is “good”, given its context.
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The evaluation of identifier quality in source code presents

a significant challenge due to its subjective and difficult-to-

quantify nature. To address this issue we rely on coding
guidelines as well-defined indicators of identifier quality.

These naming guidelines encompass widely accepted criteria

for well-chosen identifiers, such that deviations from these

guidelines can serve as a clear indication of poor identi-

fier quality [5], [15], [16]. Adhering to these guidelines is

considered a basic prerequisite for producing high-quality

code. Therefore, the question of whether language models can

identify “bad” identifiers can be reframed as how effectively

they can detect violations of established, empirically validated

coding guidelines. Accordingly, we define identifier quality

in our context based on compliance with these guidelines: An

identifier is considered “good” if it follows established naming

guidelines, and “bad” if it violates them. It is important to note

that the difficulty of verifying guideline violations may vary.

While a language model holds promise for guidelines covering

semantics, other violations (e.g. addressing identifier syntax)

can be verified using simple rule-based methods. Nevertheless,

it remains intriguing to explore the extent to which language

models for evaluating identifier quality align with guidelines

from either of these categories. From the practical software

engineer’s perspective, a good LM for quality assessment

should be in line with any recognized best practices in software

development.

To this end, our first contribution is a novel approach

towards identifier assessment, which we call CODEDOCTOR.

Since we are not aware of any annotated large-scale datasets

that would facilitate a supervised training, CODEDOCTOR’s

training is self-supervised in a sense that no manual annota-

tions of identifier quality are required. Specifically, we inves-

tigate two different variations of the CODEDOCTOR model:

1) Generative rating: We first train a transformer-based

language model on a large dataset of open-source code.

The model learns to predict held-out identifier names

(e.g. variable and method names) and code passages. To

assess an identifier’s quality in a new piece of code, we

let the LM estimate the identifier’s probability and then

analyze either its likelihood directly, or its likelihood

ratio compared with the model’s most favored identifier

(see Section III-B).

2) Discriminative rating: Our second approach fine-tunes

the above language model with a discriminative training,

in which we randomly replace identifiers with alternative

versions suggested by a weak AI. This way, the model

learns to discriminate real identifiers from fake ones.

(see Section III-D).

Finally, to evaluate identifier quality, we address the fact

that identifier quality is subjective. We turn towards coding
guidelines, and violations thereof, as a well-defined criterion

for spotting “bad” identifiers.

To the best of our knowledge, we present the first analysis

focusing on the accuracy of language models in detecting

guideline violations.We present a dataset that contains 6203

dense annotations of identifiers for 28 common guidelines, and

evaluate our models on this newly developed dataset. Thereby,

we also take a detailed look at our LMs’ performance across

different guidelines (e.g., guidelines addressing identifier syn-

tax vs. guidelines covering semantics) and discuss what makes

a guideline challenging to predict. We make both the dataset

and our models’ implementation public [17] to invite future

research on AI-based identifier quality assessment.

Our work has implications on current research, practice, and

education. From a research perspective, we demonstrate the

potential and limitations of language models in identifying bad

identifiers in source code. Additionally, we investigate differ-

ent masking and scoring variations. Since these are shown to

have a significant impact on scoring quality, our training and

evaluation methods can serve as a blue-print for developing

such models for similar use cases. In practice, our approach

can be integrated into existing IDEs as a plugin, assisting

developers in detecting potential areas of poor identifier quality

during code review and thus improving the quality of source

code. Finally, our approach can be deployed in educational

settings to help students write clean and readable code during

practical exercise sessions.

II. RELATED WORK

First, we discuss the quality of code identifiers and their

impact on code comprehension. We then provide a brief

overview of work aimed at assessing and improving the quality

of identifiers, with a focus on current data-driven approaches.

For a comprehensive survey, please refer to [10].

A. Identifier Naming and Source Code Comprehension

The quality of source code identifiers has been investigated

in particular with respect to their relationship to code compre-

hension [1]–[7], [18]. In [19], the authors suggested that the

meaning conveyed by words used in identifiers significantly

influences the comprehension of source code [19]. Hence,

effective identifiers naming can help finding key points of

interest (i.e., semantic cues), and infer their role within the

entire code [7]. This proposition is further supported in [6],

demonstrating that the presence of semantic cues enhances

code comprehension [6].

To explain the relationship between identifiers’ names and

code comprehension from a cognitive perspective, it is nec-

essary to differentiate the essential and accidental complexity

layers of source code [20], [21]. While the former originates

from the complexity of the implemented software functionali-

ties, the latter emerges from developers’ poor implementation

and bad writing style. Accidental complexity, which includes

identifier quality, can impose additional cognitive load on

developers [22] when bad identifiers are used, creating more

strain on human memory during mentally demanding tasks and

increasing the likelihood for committing errors [1], [23]–[26].

In the literature, several empirical studies have investigated

the impact of identifier quality on code comprehension [1]–

[6]. These studies have indicated that good naming of methods

and variables aids comprehension [2], [3], [6], and that full

132



identifier names are more comprehensible than abbreviated

ones [3]. Additionally, poor identifier names that violate

existing naming guidelines have been associated with certain

defect types in source code [5], and high cognitive load [1].

These studies provide ample evidence for the importance of

good identifiers’ naming, which raises the need for adhering

to the existing guidelines on that matter.

The literature comprises several collections of identifier

naming guidelines (e.g., [5], [15], [16]) targeting the code

syntax and vocabulary as well as the alignment of identifiers

with the data types and the methods which they refer to [5],

[15], [16]. Syntax guidelines focus on the construction and

formulation of identifiers from words [15]. Vocabulary guide-

lines emphasize the importance of choosing appropriate words,

assuming that the choice of words has a direct impact on

the understandability of the code [15]. Data types guidelines,

in turn, emphasize the importance of choosing identifiers

revealing the type of the data they refer to [15]. Lastly,

method name guidelines address the relevance of aligning the

name of methods with the underlying implementation [16].

Many of these guidelines were shown to impact developers’

comprehension of the source code when tested separately (e.g.

in [3], [4]) or in a combined manner (e.g., in [1], [5]).

Given the significance of the existing guidelines [5], [15],

[16] and their empirically verified effect on developers’ com-

prehension of the source code, they can serve as a benchmark

for evaluating the quality of existing code and identifying

suboptimal identifiers.

B. Automatic Evaluation and Improvement of Code Identifiers

The insight that meaningful variable names are crucial to

code understanding has led to the development of various

rule-based techniques to suggest meaningful and consistent

identifier names. These approaches include learning coding

style rules from existing source code [27], [28] or examining

relations between variables to infer whether a variable name

should be changed along with others [29], [30]. In [7] and [31]

poorly named variables are identified using a dictionary-based

approach or static code analysis.

a) Learning-based approaches: In recent years, numer-

ous learning-based works have emerged, taking advantage of

the fact that software exhibits characteristics similar to natural

language, such as being highly repetitive and predictable [32],

and as such can be effectively represented by statistical lan-

guage models. This hypothesis of the naturalness of software
motivated the development of large language models pre-

trained on source code [12], [33]–[36] that have demonstrated

remarkable performance on program synthesis and other code

related tasks [13]. Furthermore, Ray et al. [37] show for a

corpus of bug-fix commits that buggy code has, on average, a

lower probability than correct code, suggesting that language

modeling can be leveraged to detect code quality related

issues.

With NATURALIZE, a framework for refactoring tasks,

Allamanis et al. [38] presented the first work using statistical

natural language modeling to learn identifier naming along

with other coding conventions within a code-base. The authors

further develop the approach by training the model only

on tokens containing lexical information and by additionally

considering the type information of a variable [8]. Chen et

al. analyze and evaluate variable names by learning semantic

similarity [9]. The study is the first to investigate a transformer-

based language model in its model comparisons. None of the

above work on variable naming, however, considers our task

of estimating identifier quality with transformers.

A similar line of work [39]–[43] studies the evaluation

and suggestion of method names using probabilistic language

modeling [39], convolutional neural networks [40], abstract

summarization [40] or contextualized representations [42],

[43]. In contrast to the aforementioned work, we investigate

identifiers in general, considering both variable and method

naming.

Most similar to our approach are studies investigating

the use of transformer-based LMs to assess or improve the

quality of code. Sengamedu et al. [11] utilize transformer

models to identify code quality related issues and provide

recommendations for refactorings. However, they evaluated

code quality either at sub-word or function level, whereas

our focus is specifically on the quality of identifiers in code.

Also, like in other studies on using language models for

code-related activities (e.g. [44], [45]), benchmarking happens

against existing code, which is implicitly assumed to be good.

We challenge this assumption and present results on a dataset

with manually annotated identifiers. Finally, a recent work

[14] studied the potential of three data-driven approaches

for automatic variable renaming, two of which are based

on transformer models. The authors evaluate the approaches

by mining refactored identifiers in projects and assume the

refactored version to be good. While this approach is very

likely to yield solid ground truth, it offers little insight into

why identifiers were refactored and which properties make bad

identifiers easy or difficult to spot. Therefore, we specifically

address LM-based identifier assessment in combination with

coding guidelines, including a detailed analysis of which

guidelines are challenging to assess for language models.

III. APPROACH

Following common practice in neural text processing, we

start with tokenizing input code snippets into a sequence of

input tokens x1, ..., xn. Our goal is to analyze identifiers in this

token sequence. These include names for variables, methods,

modules and types. Note that tokenization may segment long

identifiers into multiple – so-called “subword” – tokens (e.g.,

data-Base-Connection) [46]. Therefore, in general an

identifier is not a single token but a subsequence of tokens.

Note also that an identifier may occur multiple times in the

token sequence, and that we keep track of these occurrences

utilizing the code’s syntax tree. We use the tree-sitter
library1 to build the trees and track its identifiers.

1https://tree-sitter.github.io/tree-sitter/
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Fig. 1. Our approach uses an encoder-decoder transformer, which we pre-train using span prediction and identifier deobfuscation (not illustrated) . Given the
pre-trained model, we investigate two ranking strategies: A generative rating (left), and a discriminative rating which fine-tunes the encoder using identifiers
replaced by a weak AI (right).

The token sequence is then fed to a transformer model [47]

with two components2: First, an encoder, which processes the

input sequence x1, .., xn and produces a sequence of token

embeddings. Second, a decoder, which generates an output

token sequence conditioned on the input tokens’ embeddings.
We pre-train our transformer with a common masked lan-

guage modeling task: The model is fed randomly selected code

passages in 16 popular programming languages from a large-

scale set of open-source projects3. In each input passage, we

mask out random subsequences (referred to as spans), and

train the model to estimate these subsequences. By solving

this task, the model learns to estimate the likelihood of tokens

to appear in a given context of code. Particularly, this includes

the ability to estimate the likelihood of identifiers. Given the

pre-trained model, we investigate two strategies for identifier

quality assessment (both are sketched in Figure 1):

• Generative rating, which directly uses the likelihood

produced by the pre-trained model.

• Discriminative rating, which uses only the model’s en-

coder and fine-tunes it to discriminate real identifiers from

fake ones inserted using a FASTTEXT [49] model.

Both strategies are self-supervised in a sense that no labeled

training data is required. We will discuss the details behind

each approach in Sections III-B and III-D, and discuss their

implications from a probabilistic perspective in Section III-C.

A. Pre-Training
Pre-training operates on unlabeled code passages, each a

series of tokens X = x1, . . . , xn. In each training step, we ran-

domly replace multiple subsequences of X , Y1, . . . , Ym, with

mask tokens xMASK1
, . . . , xMASKm

, obtaining an obfuscated

version X̂ of the code passage. We create a target sequence

by concatenating (denoted by ⊕) the held-out subsequences,

preceding each one with its mask symbol:

Y = [xMASK1
]⊕ Y1 ⊕ · · · ⊕ [xMASKm

]⊕ Ym ⊕ [xEOS ]

The goal of pre-training is to reconstruct the subsequence

Y , given X̂ . To do so, our model’s decoder predicts the

2Specifically, we opt for the T5-base architecture with 12 layers in en-
coder/decoder and a total of 245M parameters [48].

3The complete list of programming languages can be found in [17].

probabilities of the target sequence Y ’s tokens y1 . . . yo given

X̂ in an autoregressive fashion, i.e., for each yi we obtain

p(yi|y<i, X̂). We learn the model’s parameters Θ by maxi-

mizing the (averaged) log likelihood

logLΘ(Y |X̂) =
1

o

o∑

i=1

log p(yi|y<i, X̂) (1)

We train the model on two tasks simultaneously by

randomly sampling two different kinds of subsequences

Y1, . . . , Ym,:

a) 1. Identifier deobfuscation: If Y1, . . . , Ym refer to

identifiers, the model is asked to recover hidden identifiers.

This task is known as identifier deobfuscation [50], and is

obviously closely related to assessing identifier quality. We

sample identifiers to obfuscate using the following procedure:

Let I be the set of identifiers that occur in X . We draw a

percentage p ∼ N (60, 252) and select a random subset I ′

of p percent of identifiers from I. For the ith identifier in

I ′, we replace each of its occurrences with 95% chance with

an identifier-specific mask token xMASKi
. Note that xMASKi

can occur multiple times in X̂ and each identifier can consist

of multiple tokens.

b) 2. Span Prediction: Y1, . . . , Ym can also refer to

longer subspans of code, in which case our task is known

as span prediction [34]. We add this training task to force our

model to gain a broader understanding of the structure of code.

For span prediction we either (1) mask a single large span

with |Y1| ∼ N (150, 902) or (2) mask multiple short spans

|Yi| ∼ Poisson(8) covering around 15% of the original code.

When masking short spans, in 90% of the samples we select

syntactically complete spans aligned with the code’s syntax

tree [51] (e.g. the parameters of a function call). This hardens

the task, since syntax alignment produces challenging spans

more often than random span masking.

B. Generative Rating

During pre-training our model has already learned to deob-

fuscate identifier names. We denote with logL(Y i, X̂) the log-

likelihood from Equation (1), averaged only over those tokens

belonging to the subsequence Yi representing identifier no. i.
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We will refer to this quantity as an identifier’s log-likelihood

in the following, and suggest two ways of using it to estimate

the identifier’s quality:

1. Perplexity: Perplexity measures how well our model

predicts the identifier and is commonly used to evaluate

language models. Essentially, it reflects the degree of uncer-

tainty the model has in its predictions, with higher perplexity

indicating lower probabilities for the identifier’s tokens. We

use perplexity directly to assess an identifier Ii’s quality:

Score(Ii) = e−logL(Y i,X̂) (2)

The higher this score, the more “suspicious” the identifier.

2. Log-likelihood Ratio: A high perplexity, as introduced

in the last section, may indicate a poorly chosen identifier,

but could also occur due to the inherent complexity of the

context. To distinguish both situations, we study a second

scoring method that estimates whether the language model

finds another identifier much more plausible: Let Yi be an

identifier we assess, and let Ŷi be the supposedly best identifier

that our language model predicts in place of Yi (using beam

search of width 5). Then we define our second score as the

ratio of both identifiers’ log-likelihoods:

Score(Ii) =
logL(Ŷ i, X̂)

logL(Y i, X̂)
(3)

We refer to this score as the likelihood ratio in the following.

The higher it is, the more “suspicious” the identifier.

Note that the log-likelihood – and with it both our scoring

methods – is strongly influenced by two factors: First, the

overall amount of masking: The more identifiers are obfus-

cated, the less information the model can draw from identifiers

and the less confident its predictions. Second, the order in

which identifiers occur in the target sequence: Since during

generation the model’s decoder attends to token to the left of

the current token, the model can exploit identifiers 1, . . . , i as

context when predicting identifier i+1, which impacts its log-

likelihood. To address these problems, we explore two options.

a) Mask-Single: The first option is to mask only a single

identifier (i.e., |I ′| = 1). Other identifiers present in the

context can now be used to draw conclusions about the masked

identifier. It is noteworthy that this approach requires multiple

forward passes - one for each identifier - when scoring all

identifiers in X .

b) Mask-All: The other option we explore is to mask all

identifiers simultaneously (i.e., I ′ = I). When masking all

identifiers at once the model has limited information about

other identifiers in the context. However, this option requires

only a single forward pass through the model, thus is |I| times

faster than Mask-Single when rating all identifiers.

C. Probabilistic Interpretation

From a probabilistic perspective, identifier assessment

comes as a binary classification problem. Given an Identifier

I in a code context X , we should estimate

P (C=1|I,X) =
P (I, C=1, X)

P (I, C=1, X) + P (I, C=0, X)

=
P (C=1, X) · P (I|C=1, X)

P (C=1, X) · P (I|C=1, X) + P (C=0, X) · P (I|C=0, X)

where class C=1 denotes the class of “bad” identifiers and

C=0 “good” ones. Last section’s generative rating approach,

however, does not rank by (descending) P (C=1|I,X) but

only by the (ascending) likelihood P (I|X). From a probabilis-

tic perspective, this corresponds to approximating the above

score P (C=1|I,X) with

P (C=1|I,X) ≈ const

const+ P (C=0, X) · P (I|C=0, X)

≈ const

const+ P (X) · P (I|X)

This comes with three potentially problematic assumptions:

First, the language model implicitly assumes all code in

pre-training to be “good”, i.e., it approximates the class-

specific model for Class 0 with a class-independent one:

P (C=0, X) ≈ P (X) and P (I|C=0, X) ≈ P (I|X). To

address this problem to some extent, we apply quality filters

on the training data by focusing on high-quality open-source

projects, hoping that these will come with mostly good iden-

tifiers. Also, we assess the impact of this risk by evaluating

on a manually annotated dataset.

Second, since we approximate P (C=0, X) ≈ P (X), we

have no notion of context quality: Unfortunately, the likelihood

of a bad identifier may be much higher when all other

identifiers in the context are bad in a similar fashion. Consider

a piece of source code in which all identifiers are single-

letter abbreviations (bad quality). The likelihood that a masked

identifier in this snippet is also a single letter will be high:

After all, the language model predicts the most likely identifier

given this context. To address this problem, we study two

prediction “modes” Mask-Single and Mask-All (see Section

III-B). In the latter case, when masking all identifiers at

once, we decouple the likelihood estimation from the context’s

identifiers’ quality (at the cost of not being able to exploit other

“good” identifiers in the context).

Third, the language model is trained to reproduce any code

it is given, but not to discriminate “bad” samples. From a

probabilistic perspective, it lacks a proper model for Class 1.

In these cases, it is common to assume a uniform distribution

for the unknown class, i.e., all identifiers are equally likely

to appear in bad code (P (C=1, I,X) = const). In practice,

however, bad identifiers can be expected to follow certain anti-

patterns (e.g., developers using specific vague terms).

We address this problem by studying a discriminative ap-

proach in the next section, which explicitly draws positive

training samples from a weak AI.

D. Discriminative Rating

As outlined in the last section, a potential challenge with

the above generative rating is the lack of a counterclass model.
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TABLE I
GUIDELINES USED TO ASSESS THE QUALITY OF IDENTIFIERS.

ID Type Description Confirming Example Violating Example

1 Syntax Apply standard case with rigorous consistency [5], [15] databaseName databaseNAME
2 Syntax Use dictionary words and no (uncommon) abbreviations [5], [15] databaseName dbNm
3 Syntax Expand single-letter names (except for control variables) [5], [15] databaseName d
4 Syntax Only use one underscore at a time [15] database_name database__name
5 Syntax Only use underscores between words [5], [15] database_name _databaseName
6 Syntax Name constant values [15] BOILINGPOINT ONEHUNDRED
7 Syntax Limit name character length to 20 [15] databaseName databaseIdentificationName
8 Syntax Limit name word count to four [5], [15] databaseName newDatabaseNameOfStudent
9 Syntax Qualify values with suffixes [15] studentCount countStudent

10 Vocabulary Describe meaning [15] databaseName foo
11 Vocabulary Be precise [15] databaseName name
12 Vocabulary Use standard language [5], [15] terminate whack
13 Vocabulary Use a large vocabulary [15] learningPerson student
14 Vocabulary Omit type information [15] databaseNameString databaseName

15 Data type Use singular names for values [15] User user; User users;
16 Data type Use plural names for collections [15] User[] users; User[] user;
17 Data type Use Boolean variable names that imply true or false [15] isFinished finish
18 Data type Use positive Boolean names [15] isFinished notRunningAnymore
19 Data type Attribute name and type should be consistent [15], [16] int studentCount; String studentCount;

20 Method name Use a verb-phrase name [15] createUser(): User userCreation():User
21 Method name Don’t use get, is or has prefixes for methods with side-effects [15], [16] getUser(): User getUser(): User (creates User)
22 Method name Only use get prefix for field accessors that return a value [15], [16] getUser(): User getUser(): void (fetches API)
23 Method name Only use is and has prefixes for Boolean field accessors [15], [16] isActive(): Boolean isActive(): void
24 Method name Only use set prefix for field accessors that don’t return a value [15], [16] setName(name): void setName(name):String
25 Method name Only use transformation verbs for methods that return a transformed value [15], [16] toString(): String toString(): void
26 Method name Expecting and getting single instance [15], [16] getUser(): User getUser(): User[]
27 Method name Expecting and getting a collection [15], [16] getUsers(): User[] getUsers(): User
28 Method name Method name and return type should not contradict [15], [16] getUser(): User getUser(): Database

LMs simply consider all written code presented during training

to be good and have never been tasked with bad samples.

To address this problem, we investigate a discriminative

rating. We use a weaker language model to sample worse but

plausible drop-in replacements for true identifiers. We then

replace the true identifiers (instead of masking them as in pre-

training), and fine-tune the encoder of the pre-trained encoder-

decoder model to tell the true identifiers from the fake ones

(note that this approach has successfully been explored with

transformers in NLP before [52]). For further details on the

generation of the training data please refer to Section IV-B.

Model-wise, we aggregate the encoded representations of

all sub-tokens and of all occurrences of an identifier into

a single embedding. Formally, let h ∈ R
n×d denote the

token embeddings produced by the transformer encoder, I the

identifier for which we want to obtain an embedding s ∈ R
d,

and g(k, I) �→ {0, 1} a function that returns 1 iff. the token

at index k belongs to identifier I and 0 otherwise. We then

perform a max-pooling operation:

si(I) = max{k|g(k,I)=1} hki for i=1, . . . , d. (4)

This identifier embedding is fed into a classification head.

We project the embedding using a linear layer W1 ∈ R
d×d

with ReLU activation, followed by a linear output layer W2 ∈
R

d×1 with a sigmoid layer σ.

t = ReLU(s ·W1) (5)

P (C=1|I, X̂) = σ(t ·W2) (6)

We train by optimizing the binary cross entropy loss aver-

aged over all identifiers in batch.

TABLE II
NUMBER OF CODE SAMPLES IN OUR DATASETS.

Dataset Train Validation Test

pre-training dataset 32M 50.000 -
fine-tuning dataset 64.474 13.911 13.854
manually annotated dataset - - 1.770

Key to the discriminative approach is the quality of the

weak AI’s identifier replacements. We would like them to be

worse than the real identifiers, but at the same time plausible

examples of real-world “bad” identifiers. To assess this, we

conducted a blind annotation of 100 real/fake identifier pairs,

in which a human annotator was asked to compare the fake and

real identifier by quality. In 86% of cases, the annotator found

the FASTTEXT suggestions to be worse than the original. In

12% of cases, quality was found comparable, and in 2% of

cases even better.

IV. DATASETS

To train and evaluate the models under investigation, we

built an evaluation and two training datasets: the manually
annotated dataset, which we use to evaluate our models’

performance against coding guidelines; the large-scale pre-
training dataset; and the fine-tuning dataset, which is used

to fine-tune the discriminative model. Table II provides an

overview of the size of the datasets.

A. Manually Annotated Dataset

We constructed our evaluation data by initially selecting

20 top active GitHub projects spanning various domains,
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measured by the number of watchers, forks and collaborators.

From these repositories, we randomly selected 59 Java files for

annotation, each containing at least one function consisting

of a minimum of 10 lines to exclude trivial data classes.

Additionally, each file had no more than 5 imports from the

Java Class Library and 5 imports from external sources. These

constraints were applied to guarantee that the files could be

comprehended independently of their parent projects.

To assess the quality of the identifiers, we selected a set

of 28 accepted coding guidelines from [15], [5] and [16] by

first collecting all proposed guidelines, removing duplicates

and near-duplicates, and discarding highly specific guidelines,

for which our code samples did not contain enough suitable

identifiers (e.g. for class names). As shown in Table I, eight

of these guidelines are aimed at syntax, four at vocabulary,

six targeting data type, and nine guidelines targeting method

naming. We then annotated all original identifiers over all files

for their conformance with respect to all guidelines. We found

677 of 2143 identifiers (32%) to violate any of the guide-

lines. In a second annotation step, for 865 randomly selected

identifiers, either a conforming variant was proposed if the

identifier already violated a guideline or otherwise, violating

substitutions were proposed for specific guidelines. In total,

we annotated 4503 guideline violations and 1700 confirming

identifiers in our code samples. The annotation process was

conducted by six developers. Each single annotation in Phase

1 was made by one person, whereas annotations in Phase 2

were cross-checked by a second person.

Given these annotations, we generated our evaluation

dataset. For each of our 59 files, we first replaced all oc-

currences of “bad” identifiers with “good” ones (if available).

For each code file, we generated 30 random variations of the

file, each one by sampling up to 5 identifiers for which “bad”

versions existed and replacing them. This resulted in 1770

densely labeled code passages.

B. Training Datasets

Our training data is unlabeled, and is based on the assump-

tion that identifiers used in open-source code are generally

well chosen by the original developers. We pre-trained our

model on a dataset of 33M code files scraped from GitHub

in 16 different programming languages. The code files were

sourced from repositories that had more than 10 stars. The

dataset was preprocessed by performing per file deduplication

and 570 repositories were kept for validation. On this pre-
training dataset we generated training samples (Section III-A).

For the discriminative training, we replaced identifiers with

semantically similar but less meaningful substitutes, obtaining

a large-scale training set where the model learns to distinguish

between original and substituted identifier names. We gener-

ated this fine-tuning dataset, as outlined in Section III-D, by

replacing up to 20% of the identifiers in a dataset of 100k
java files with similar, less meaningful identifiers generated by

FASTTEXT. To do so, we trained an unsupervised FASTTEXT

word embedding on 1M identifiers in our pre-training data.

For each real identifier I , we sampled from the top 5 most

TABLE III
COMPARISON OF GENERATIVE SCORING METHODS.

Perplexity Likelihood-Ratio

Model Mask-Single Mask-All Mask-Single Mask-All

INCODER 22.69 25.27 23.43 23.78
CODEDOCTOR 55.14 52.79 62.00 28.15

similar identifiers to I , where the probability of drawing an

identifier is proportional to the cosine similarity between the

FASTTEXT embeddings. For example, we could replace test
with test2, ALLOWABLE_ERROR with ERROR_CODE, or

setModel with setRepeatMode.

V. EXPERIMENTAL SETUP

The aim of our study is to evaluate transformer-based

techniques for assessing the quality of code identifiers. To this

end, we evaluated the two approaches described in Section III

using our manually annotated evaluation data. We describe

evaluation metrics and training protocol in the following.

Furthermore, since we compare the results of our models

against those of two current language models pre-trained on

code, we describe our usage of these reference models in

Section V-B.

A. Evaluation Procedure

To evaluate how well our models detect identifiers violating

the guidelines, we set up a retrieval task, much like pinpointing

and ranking potential hotspots for code review: We rank all

identifiers in a file by their likelihood to violate any of the

coding guidelines, as indicated by our model’s score. For each

guideline G and code file d, we measure how well our ranking

reflects violations of guideline G. To do so, we use the average

precision AP (G, d), which is a common metric for retrieval

tasks4. Thereby, we take into account that

1) code files may contain identifiers that violate other
guidelines than G. We filter these from the result list

when evaluating Guideline G.

2) of each source code file d ∈ D, multiple random

variations have been sampled (see Section IV-A), in

which the same identifier may occur. We average each

identifier’s precision over these occurrences.

Finally, we average precision over all input documents, ob-

taining the so-called mean average precision (MAP):

MAP (G,D) =

∑
d∈D AP (G, d)

|D| (7)

where D denotes the collection of code files in which viola-

tions of Guideline G occur. For further details, please refer to

the evaluation script in our replication package [17].

4Measuring AP fits practical settings in which the software revisor identifies
ranked hotspots and stops reviewing once resources are depleted or the
potential identifiers seem less promising. Unlike precision and recall, we
evaluate the order of results and no threshold on the scores is required.
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B. Implementation of Other Language Models

To benchmark the performance of our models against cur-

rent language models pre-trained on source code, we compare

our approaches with two other transformer models from cur-

rent research, namely INCODER [35] as a pre-trained decoder

model for the generative rating, and GRAPHCODEBERT [53]

as a pre-trained encoder for the discriminative rating.

a) Discriminative rating using GRAPHCODEBERT: The

GRAPHCODEBERT model proposed in [53] is a transformer

encoder language model trained on code. GRAPHCODEBERT

was pre-trained on masked language modeling, but without

a special focus on identifier deobfuscation. Additionally, two

structure-aware pre-training tasks were introduced, where the

model learned to predict data flow between variables and to

align representations between source code and code struc-

ture. We replace our encoder with the pre-trained GRAPH-

CODEBERT , but otherwise follow the same approach as

described in Section III-D, in which we pool the identifiers’

embeddings and use a classification layer for prediction, and

conduct a discriminative learning during which we fine-tune

into the encoder. Since GRAPHCODEBERT only supports

input lengths of up to 512 tokens, we split longer code files

into multiple chunks. Thereby, we use overlapping chunks to

provide sufficient context for the model whenever possible,

and average scores from identifiers appearing in multiple

chunks before evaluation. For fine-tuning, we use an effective

batch size of 84 and sweep over the learning rate.

b) Generative rating using INCODER: [35] introduced

INCODER as a unified generative model that is trained to

generate code via left-to-right generation as well as via in-

filling. The authors evaluate on variable renaming in a zero-

shot setting, rendering the model a suitable candidate for our

comparison. To produce input sequences, we use the released

code in the infilling setting. Contrary to our approach in

Section III-B, the INCODER model uses mask tokens only

once (e.g. MASK1, MASK2, . . . ), one for each occurrence

of an identifier. Similarly, we experimented with aggregating

the individual scores of each identifier occurrence using the

minimal, maximal and average score. We found mean pooling

to give the best result.

C. Hardware and Training

For pre-training, we used 8 A100 GPUs and trained for

a total of 1M stochastic gradient descent steps. We optimize

the log-likelihood from Equation 1, averaged over all tokens

in the batch, using the AdamW [54] optimizer with a linear

warmup for 30k steps, followed by polynomial decay a learn-

ing rate peak of 0.0002. The batch size was dynamically set

to 6000 tokens per batch. This model was used directly in the

generative approach without further modification.

We fine-tuned the discriminative approaches on a single

A6000 GPU. We swept over the optimal learning rate and

used early stopping on validation F1-score of our fine-tuning

dataset. Finally, we ran the tests on guideline violation only

once at the very end.

TABLE IV
COMPARISON BETWEEN APPROACHES AND STATE-OF-THE-ART.

Model Method #Parameters MAP

Baseline Random - 18.18
INCODER Generative 1.3B 25.27
GRAPHCODEBERT Discriminative 125M 46.32
CODEDOCTOR Discriminative 110M 52.57
CODEDOCTOR Generative 247M 62.00

VI. RESULTS

We compare the different versions and scoring techniques

of our CODEDOCTOR model in Section VI-A, compare them

with other recent code transformers in VI-B, and conduct a

detailed guideline-specific analysis of our results in Section

VI-C.

A. Scoring Methods for Generative Rating

We first focus on the generative rating and compare its

different scoring methods and the impact of the amount of

masking in Table III. As outlined in Section III-B, we score

the given identifier either by perplexity or by likelihood ratio

(compare Equations (2) and (3)) and mask in the input either

only the identifier or all identifiers together.

As Table III shows, we find our model to outperform IN-

CODER significantly (these findings will be discussed in-depth

in the next section). Also, we find that the performance is most

often higher when only a single identifier is masked in context.

Especially the Likelihood-ratio benefits from mask-single and

outperforms perplexity by around 6 percentage points.Instead,

when using mask-all, the performance of Likelihood-ratio

degenerates by more than 30%. We found that generation

simply becomes too unreliable when masking all identifiers

at once, such that likelihood scores – and with them their

ratio – become unstable.

From an efficiency perspective, it should be noted that

– to compute the likelihood ratio – we need to explicitly

generate the best version for each identifier (multiple forward

passes) before scoring the target identifier (one forward pass).

Also, note that using mask-single instead of mask-all requires

multiple forward passes (one per identifier to assess), while

for mask-all a single forward pass suffices. Therefore, for

practical settings in which efficiency matters, perplexity +

mask-all offers an alternative at ≈10 percentage points less

MAP. Throughout the next experiments, we will report results

for the best-performing approach, likelihood ratio + mask-

single. Figure 2 shows an example code snippet from our

dataset, where the identifiers are scored with this approach

and color-coded accordingly.

B. Comparison with Other Language Models

Our results in Table IV show that our CODEDOCTOR

models outperform GRAPHCODEBERT and INCODER both

in the discriminative and in the generative approach. Our best

approach yields 62% MAP on our evaluation data compared

to 25.3% for INCODER and 46.3% for GRAPHCODEBERT.

138



public abstract class Filter {

public abstract boolean shouldRun ( Description description );

public abstract String describe ();

public void apply ( Object filterRunner ) {

if (!( filterRunner instanceof Filterable )) {
return;

}

Filterable filterable = ( Filterable ) filterRunner ;

filterable . filter (this);
}

public Filter intersect (final Filter otherAcceptedTests ) {

if ( otherAcceptedTests == this otherAcceptedTests == ALL ) {

return this;
}

final Filter theseAcceptedTests = this;

return new Filter () {

public boolean shouldRun ( Description description ) {

return theseAcceptedTests . shouldRun ( description )

&& otherAcceptedTests . shouldRun ( description );

}

public String describe () {

return theseAcceptedTests . describe () + " and "

+ otherAcceptedTests . describe ();

}
};

}
}

public abstract class Filter {

public abstract boolean should_run ( Description description );

public abstract String isDescribed ();

public void apply ( Object filterRunner ) {

if (!( filterRunner instanceof Filterable )) {
return;

}

Filterable filterables = ( Filterable ) filterRunner ;

filterables . filter (this);
}

public Filter getIntersection (final Filter otherAcceptedTests ) {

if ( otherAcceptedTests == this otherAcceptedTests == ALL ) {

return this;
}

final Filter theseAcceptedTests = this;

return new Filter () {

public boolean should_run ( Description description ) {

return theseAcceptedTests . should_run ( description )

&& otherAcceptedTests . should_run ( description );

}

public String isDescribed () {

return theseAcceptedTests . isDescribed () + " and "

+ otherAcceptedTests . isDescribed ();

}
};

}
}

Fig. 2. Example from our dataset. On the left the (shortened) file without guideline violations, on the right the violated version. We highlighted identifiers by
scaling the likelihood-ratio score of the CODEDOCTOR model linearly between 1-50. Note that even in the original the model finds some identifiers suspicious
(left). However it spots most guideline violations (right) but fails to detect the identifier filterables (which violates Guideline 13).

For the generative approach, we find our model to out-

perform INCODER significantly, regardless of the scoring

or masking method used. We assume that this is due to

several reasons: First, while INCODER needs to introduce a

new mask token for each occurrence of an identifier, our

model considers all instances of a masked identifier for a

prediction. This enables CODEDOCTOR to exploit information

shared across multiple occurrences of the same identifier to

its advantage. Additionally, INCODER’s tokenization spans

tokens across whitespace and punctuation symbols to represent

common code idioms as single tokens. The authors report a

slight decrease in performance when breaking tokenization at

word boundaries [35], which is needed for predicting single

identifier names. We hypothesize, however, that our model’s

key advantage is its pre-training objective, which explicitly

includes identifier deobfuscation as one of the tasks, enabling

the model to generate reasonable identifier names without

further fine-tuning. In comparison, we have observed that

INCODER tends to generate lengthy passages of source code

rather than single identifiers.

In the discriminative approach, our CODEDOCTOR encoder

outperforms GRAPHCODEBERT with a mean average pre-

cision of 52.6% compared to 46.3%, though the difference

in performance is not as pronounced as for the generative

approach. Again, we attribute the advantage to the fact that

our pre-training is more closely aligned with the target task.

C. Guideline-Specific Analysis

Figure 3 illustrates the MAP scores by guideline, including

a random baseline, the generative approach (by perplexity

and by likelihood-ratio, both using the mask-single setting),

and the discriminative approach. Overall, the MAP scores

of our models vary strongly (from 29% to 91%), indicating

that the language models cope differently well with different

guidelines. Our models perform about 3 times better than the

random baseline on average.

We investigate the performance across the four different

types of guidelines (syntax, vocabulary, data type, method

name), and find the models to perform similarly well over the

four categories, with a slight advantage for method naming

guidelines (mean MAP is 0.66 using the likelihood ratio)

and a slight disadvantage for data type guidelines (mean

MAP is 0.56 using the likelihood ratio). Particularly, note

that supposedly “simple” syntax-based guidelines – e.g. rules

regarding abbreviations (Guidelines 2,3) or overly long iden-

tifiers (Guidelines 7,8) – are not covered better than the

others. In contrast, some guidelines that require rather complex

semantic reasoning across the code are amongst the highest-

scored guidelines, e.g. Guideline 13 (use a large vocabulary,

MAP 0.75) and Guideline 28 (method name vs. return type,

MAP 0.72). This indicates a potential for combining LM-

based scoring systems with rule-based ones. Our evaluation

also reveals that rather than the guideline type, another factor

appears to have more impact, namely how often we expect the

guideline to be violated in practical open-source development.

For example, Guideline 3 (single-letter abbreviation) could be

expected to be violated often in practice. Other guidelines with

a tendency to be violated include 14 (omit type information),

or 21 (don’t use get/is/has for methods with side effects).

Therefore, we inspected for each guideline how well we

expect open-source code (and hence the language model) to

adhere to it. Our expectations match well with our results, e.g.

Guidelines 3, 14, 21 are found amongst the more challenging
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Fig. 3. Results per guideline. The guideline IDs correspond to those in Table I.

ones for our models.

When comparing the different scoring methods across the

guidelines, we see that the likelihood ratio not only yields the

best performance overall (mean MAP 0.62), but outperforms

the other methods quite consistently. The FASTTEXT sampling

process seems to produce negative samples which work well

on certain guidelines. We find guidelines (15, 16, 27) notably,

which deal with single values vs collections, and where the

discriminative outperforms the generative approach. This is in

line with an in-depth inspection of the FASTTEXT training

data: Often, given an identifier such as customer, FAST-

TEXT-based drop-in replacements include the corresponding

singular/plural (here: customers). A simple regexp-based

check revealed that amongst 306.000 replacements in the

training set, about 5.400 corresponded to such singular/plural

replacements (≈ 1.8 percent), which allows the model to pick

up this guideline well. This also indicates the potential for

exploring other methods for sampling fake identifiers, which

are more closely aligned to dedicated guidelines.

D. Threats to Validity

We utilized a limited set of guidelines for annotation,

meaning our results may not extend to all naming guidelines.

However, our guidelines do address syntax, semantics, vo-

cabulary, and method naming, all key factors impacting code

comprehension as evidenced in previous studies [1], [3]–[5].

The annotation process may have limitations due to individual

perceptions of quality. We countered this by providing clear

instructions to annotators and cross-checking their work.

Our evaluation data was sourced from public data on

GitHub. The model’s pre-training was also conducted us-

ing data mined from GitHub, which is known to contain

a high percentage of forks and (near-)duplicates. Therefore,

we cannot rule out that parts of the evaluation data were

already encountered by the model during training, which is a

common challenge with large language models pre-trained on

code. Note, however, that our evaluation is entirely based on

guidelines and does not aim at reproducing original identifiers.

VII. CONCLUSION

In conclusion, we show that language models on code can

be used for identifier quality estimation. Our self-supervised

methods, a generative one and a discriminative one, can

successfully spot violations of common identifier naming

guidelines. Our evaluation on a manually annotated dataset

demonstrates the potential and limitations of language models

in this task, and our approach outperforms other recently

published code transformers.

In future work, we aim to further improve the performance

of CODEDOCTOR. Firstly, we will investigate the extent to

which CODEDOCTOR aligns with developers’ cognitive load

and perception of identifier quality. To improve our model,

we will consider fine-tuning with silver standard training

data as recently bootstrapped from code reviews in [14].

Additionally, one could try ensemble methods including a

rule based detector, as well as the discriminative approach

(which performed better on specific guidelines). Furthermore,

to address project-specific coding conventions, one could

consider training a local model to reduce false positives. Even

though our current evaluation focuses on Java, our pre-training

features 16 different programming languages from a large-

scale set of open-source projects. Our generative model can

be directly applied to these other programming languages

without further fine-tuning. Conducting this evaluation – which

would involve more manual annotation – is another interesting

direction for future work.

DATA AVAILABILITY

The replication package [17] for our study includes all nec-

essary code and data for reproducing our results. In particular,

we provide the code for training and evaluating the models,

the trained models, the dataset used for evaluation, and the

predicted scores generated by our different approaches.
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