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Abstract—Anomaly detection is a classical problem where the
aim is to detect anomalous data that do not belong to the normal
data distribution. Current state-of-the-art methods for anomaly
detection on complex high-dimensional data are based on the
generative adversarial network (GAN). However, the traditional
GAN loss is not directly aligned with the anomaly detection
objective: it encourages the distribution of the generated samples
to overlap with the real data and so the resulting discriminator
is ineffective as an anomaly detector. In this paper, we propose
modifications to the GAN loss such that the generated samples lie
at the boundaries of the real data distribution. With our modified
GAN loss, our anomaly detection method, called Fence GAN
(FGAN), directly uses the discriminator score as an anomaly
threshold. Our experimental results on the MNIST, CIFAR10
and KDD99 datasets show that FGAN yields the best anomaly
classification accuracy compared to state-of-the-art methods.

Index Terms—Generative Adversarial Network, Anomaly De-
tection

I. INTRODUCTION

Anomaly detection is a well-known problem in artificial

intelligence where one aims to identify anomalous instances

that do not belong to the normal data distribution [5, 14].

It is used in a wide range of applications such as network

intrusion [10], credit card fraud [29], crowd surveillance

[20, 23], healthcare [25] and many more. Traditional classifiers

trained in a supervised setting do not work well in anomaly

detection since the anomalous data is usually unavailable or

very few. Hence, anomaly detectors are usually trained in an

unsupervised setting where the distribution of the normal data

*Equal contribution

is learned and instances that are unlikely to be under this

distribution are identified as anomalous.

For complex high-dimensional datasets such as images,

recent methods based on generative adversarial networks

(GANs) have shown state-of-the-art anomaly detection perfor-

mance by exploiting GANs ability to model high-dimensional

data distributions. However, we identify a shortcoming of cur-

rent GAN-based anomaly detection methods: the usual GAN

objective encourages the distribution of generated samples to

overlap with the real data, and this is not directly aligned with

the anomaly detection objective. The resulting discriminator

is not effective at differentiating between real and anomalous

data. In this paper, we propose modifications to the GAN

objective such that the generated samples lie at the boundaries

of the real data distribution instead of overlapping it. Our

method, which we call Fence GAN (FGAN), trains in the usual

adversarial manner with the modified objective and we show

that the resulting discriminator can be used as an anomaly

detector. We conducted experiments on MNIST, CIFAR10 and

KDD99 datasets and show that FGAN outperforms state-of-

the-art anomaly detection methods [1, 25, 31, 32].

II. RELATED WORK

Traditional methods for anomaly detection include one-class

SVM [26], nearest neighbor [9], clustering [28], kernel density

estimation [21] and hidden markov models [13]. However,

such methods are not suitable for high-dimensional image

data. Recent developments in deep learning have led to signif-

icant progress in supervised learning tasks on complex image
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datasets [15, 24]. For anomaly detection, deep learning based

methods include deep belief networks [8], variational autoen-

coders [2, 30] and adversarial autoencoders [4, 18, 19, 34].

Among the deep learning methods, generative adversarial

networks (GANs) [11, 22] have been the subject of extensive

research as they show state-of-the-art performance in model-

ing complex high-dimensional image distributions. Similarly,

GANs have been used for anomaly detection. In AnoGAN by

Schlegl et al. [25], the authors propose an anomaly detector

where the GAN is first trained on the normal images, and

for a test image, the latent space is iteratively searched to

find the latent vector that best reconstructs the test image.

The anomaly score is a combination of the reconstruction loss

and the loss between the intermediate discriminator feature

of the test image and the reconstructed image. A similar

framework is used in ADGAN [7] where the anomaly score

is based only on reconstruction loss, the search in latent space

is repeated with multiple seeds and both the latent vector

and generator are optimized. More recent methods, named

Efficient GAN-based Anomaly Detection (EGBAD) and its

improved version Adversarially Learned Anomaly Detection

(ALAD) by Zenati et al. [31, 32], make use of the Bidirectional

GAN model that is able to map from the image to latent

space without iterative search, resulting in superior anomaly

detection performance and faster test times. Finally, in the

GANomaly framework [1], the generator consists of encoder-

decoder-encoder subnetworks and the anomaly score is based

on a combination of encoding, reconstruction and feature

matching losses. GANomaly has shown superior performance

compared to AnoGAN and ALAD on several image datasets

such as MNIST and CIFAR10.

Except for GANomaly, the GAN-based anomaly detection

methods above train GAN with the usual minimax loss func-

tion where the generator aims to generate samples that overlap

with the data distribution. The discriminator probability score

trained under the usual GAN loss function has found to be

ineffective [7], and we hypothesize that this is because the

discriminator is not explicitly trained to fence the boundaries

of the data distribution. Contrary to these methods, our pro-

posed FGAN aims to learn the boundaries of the normal data

distribution. We achieve this by modifying the generator’s

objective to generate data lying on the boundaries of the

normal data distribution instead of overlapping with the data

distribution. At test time, the anomaly score is simply the

discriminator score given to the input data. Our alternative

generator objective is similar to the one in Dai et al. [6], where

they show that for the discriminator to be a good classifier,

the generator has to produce complement samples instead of

matching with the true data distribution. With the modified

GAN loss, FGAN does not need to rely on reconstruction

loss from the generator and does not require modifications to

the basic GAN architecture unlike ALAD and GANomaly.

III. METHOD

A. Original GAN loss function

In the original generative adversarial network by Goodfel-

low et al. [12], for a set X of N number of data points

X = {x1,x2, ...,xN} with xi in a Euclidean data space

R
d, d ∈ Z

+, i = 1, 2, .., N , which is sampled from a data

distribution pdata : Rd → R
+, we seek to map points from a

prior noise distribution pnoise : Rk → R
+, k ∈ Z

+ to pdata.

For example, if each data point represents an image, then d
would be the number of pixels in the image. The dimension

k is set arbitrarily.

The mapping from pnoise to pdata is done by first using

a differentiable function, represented by a generator network

Gθ with θ being its weights and biases, to map pnoise to

the generated distribution pg : R
d → R

+ from the output

Gθ(z), Gθ(z) ∈ R
d of Gθ and z is drawn from pnoise.

In addition, we also have a discriminator network Dφ with

φ being its weights and biases, which outputs a real value

Dφ(x) ∈ [0, 1] that represents the probability of x being

drawn from pdata rather than from pg . Dφ and Gθ engage

in a two-player minimax game, with Dφ and Gθ being

alternatingly trained to minimize their respective loss functions

as follows:

LGAN
Gθ

(Gθ, Dφ,Z) = 1

N

N∑
i=1

[
log(1−Dφ(Gθ(zi)))

]
(1)

LDφ

GAN (Gθ, Dφ,X ,Z) =
1

N

N∑
i=1

[
− log(Dφ(xi))− log(1−Dφ(Gθ(zi)))

]
(2)

where Z = {z1, z2, ..., zN} is sampled from pnoise. LGAN
Gθ

is the loss function of Gθ and LGAN
Dφ

is the loss function of

Dφ.

In this way, Dφ is trained to differentiate whether x is drawn

from pdata or from pg . Meanwhile, Gθ is trained to map pnoise
to pg so as to maximise the score of its generated points as

given by the discriminator, that is, Dφ(Gθ(z)).

The training of GAN is completed if the distribution pg
is indistinguishable from pdata. When this occurs, pdata is

estimated by pg . Therefore, the mapping of points from pnoise
to pg , which is represented by Gθ, is also the mapping of

points from pnoise to pdata.

B. Modified loss functions

For the anomaly detection task, we propose FGAN which

has a different objective from the original GAN. Whereas

the original GAN aims to generate pg = pdata, that is, to

generate points at regions of high data density, our objective

is to generate points at regions of low data density and around

the boundaries of X , which we denote as δX . This will enable

our discriminator, at the end of training, to draw boundaries

“tightly” around X . Such a discriminator can then be used as

a one-class classifier or an anomaly detector.
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Learning δX directly is known to be an extremely difficult

problem in high dimensions [27]. Thus, we use the discrimi-

nator score to define the domain of δX and then estimate δX
using the generator in FGAN. The generated points Gθ(z)
then must enclose the real data points tightly as shown in

Figure 1(A). In order to achieve our objective, we propose a

series of modifications to the loss functions for the genera-

tor and discriminator: encirclement and dispersion losses for

generator, and weighted discriminator loss for discriminator.
1) Generator encirclement loss: In our proposed FGAN,

we want the generator to generate points Gθ(z) that lie in

δX , at the boundaries of X . To achieve this, we modify the

generator loss such that the generator aims for the generated

samples to have discriminator scores between (0, 1) instead of

the maximum score of 1 as in the usual GAN loss. To reflect

this, the loss function of the generator in FGAN is:

EL
(
Gθ, Dφ,Z

)
=

1

N

N∑
i=1

[
log(|α−Dφ(Gθ(zi))|)

]
(3)

where α ∈ (0, 1) is used for the generator to generate points

on δX . The rationale for Eq. (3) is that points generated inside

of X and points generated far from X will be penalized. When

the points are generated at the α-level set of the discriminator

score, the generator will achieve minimal loss. This level set

should ideally tightly enclose the real data points. In our

experiments, we tune the value of α as a hyperparameter.
2) Generator dispersion loss: Based on the encirclement

loss alone, however, there is no guarantee that the generated

points will cover the entirety of δX , it may only cover a small

part of it. We note that this is similar to the mode collapse

problem in GAN. The dispersion loss, which maximizes

distance of the generated data points from their centre of mass

μ, μ ∈ R
d, is thus introduced to encourage the generated

points to cover all boundaries.

μ = (μ1, μ2, ..., μd)

μ =
1

N

N∑
i=1

Gθ(zi)

The dispersion loss is thus:

DL(Gθ,Z) = 1
1
N

∑N
i=1(‖Gθ(zi)− μ‖2)

(4)

We use L2 distance because in our experiments we found that

it works better compared to L1 and L∞ distances. The loss

function of the generator in FGAN to be minimized is the

weighted sum of the encirclement loss and the dispersion loss:

LFGAN
generator

(
Gθ, Dφ,Z

)
= EL + β × DL

=
1

N

N∑
i=1

[
log

[
|α−Dφ(Gθ(zi))|

]]

+ β × 1
1
N

∑N
i=1(‖Gθ(zi)− μ‖2)

(5)

where β is the dispersion hyperparameter with β ∈ R
+.

Algorithm 1 Stochastic gradient descent training of FGAN.

for number of training iterations do
• Sample noise samples Z = {z1, z2, ..., zN} from

prior pnoise
• Update the generator’s parameters:

θ ← θ − ηg∇θLFGAN
generator

(
Gθ, Dφ,Z

)
• Resample noise samples Z = {z1, z2, ..., zN} from

prior pnoise
• Sample data samples X = {x1,x2, ...,xN} from real

data distribution pdata
• Update the discriminator’s parameters:

φ← φ− ηd∇φLFGAN
discriminator

(
Gθ, Dφ,Z,X

)
end for
The generator and discriminator learning rates ηg and ηd
are hyperparameters.

3) Discriminator weighted discriminator loss: As the gen-

erator becomes better in approximating δX , the discriminator

faces a trade-off: to classify real data correctly or classify

generated data correctly. If the discriminator focuses more on

classifying generated data correctly, then the discriminator will

start to classify real data as generated data. Thus, the loss

function of the discriminator should be modified to prioritise

classifying real data correctly:

LFGAN
discriminator

(
Gθ, Dφ,X ,Z)

=

1

N

N∑
i=1

[
− log

(
Dφ(xi)

)− γ log

(
1−Dφ(Gθ(zi)

))]
(6)

where γ is the anomaly hyperparameter with γ ∈ (0, 1].
When γ is less than 1, the discriminator will focus more

on classifying the real data points correctly, thus its decision

boundary is less likely to bend into the domain of X , allowing

the generator to better estimate δX . We empirically tune γ for

each dataset.

C. FGAN

FGAN is composed of a generator and a discriminator

being trained one after another like a typical GAN. The

number of steps to train Gθ and Dφ for each iteration is a

hyperparameter to be tuned. However for simplicity, we train

both networks once in each iteration. The algorithm to train

FGAN is described in Algorithm 1.

IV. EXPERIMENTS

In our experiments, we tested FGAN on a synthetic 2D

dataset to study the training process in FGAN. Next, we

tested FGAN for anomaly detection on three datasets: MNIST,

CIFAR10 and KDD99, comparing the performance to state-

of-the-art anomaly detection methods. Our code is available

online at https://github.com/phuccuongngo99/Fence GAN.
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Tightly enclosed

Indistinguishable Coalescence Loosely enclosed Indistinguishable

Fig. 1. FGAN on 2D normal distribution with red data points and blue generated points. The color of the shaded background represents the discriminator score.
We trained 5 models with different hyperparameters for 30000 epochs. (A) shows snapshots of training process for a FGAN with optimal hyperparameters,
giving a good discriminator in the end of the training. (B)-(E) are examples of hyperparameters that lead to suboptimal performance of FGAN.

A. 2D synthetic dataset

We illustrate the effect of FGAN using a 2D synthetic

dataset where the data is sampled from a unimodal normal

distribution, as shown in Figure 1. The red points are the real

data while the blue points are the generated points. The color

of the shaded background represents the discriminator score,

where the score increases from blue to red. We trained 5 differ-

ent FGAN models with different hyperparameters over 30,000

epochs. In (A), we show snapshots of training process at 4

epochs for an FGAN trained with optimal hyperparameters,

yielding a good discriminator at the end of the training. In

contrast, (B) shows the result of original GAN by Goodfellow

et al. [12], where the real data points and generated data points

are indistinguishable and the discriminator decision boundary

does not surround the real data. Because of the modified

loss functions in FGAN, over the training process in (A),

the generated samples approach the boundaries of the real

data without entering the data distribution. As a result of

this fencing behavior, the discriminator gives low scores to

all data points outside of the real data distribution and hence

is effective at anomaly detection. However, in the original

GAN in (B), the loss function encourages overlap of the

generated samples with the real data and the discriminator

gives similar scores to data points within and out of the real

data distribution.

The other examples show hyperparameters that lead to sub-

optimal performance. (C) illustrates an example of generated

points coalescing in one small region and the discriminator

classifies most of the data space as positive instances. (D)

shows an example of loosely enclosed generated points where

the discriminator decision boundary is away from the real data

points. (E) shows another example of indistinguishable real

data and generated data distributions with bad discriminator

decision boundaries. This experiment on the 2D dataset shows

that under the optimal hyperparameters, the encirclement loss,

dispersion loss and weighted discriminator loss in FGAN give

rise to the desired result of the generated samples forming

tight boundaries around the dataset.

B. MNIST

To show the effectiveness of our proposed idea, we run

FGAN for anomaly detection on the MNIST dataset [17]. In

each case, we consider data points from a class as ‘anomalous’

(positive class) and data points from the other 9 classes as

‘normal’ (negative class). We then split the entire MNIST

dataset which consists of 70000 images from 10 classes into 2

sets as follows: Training set consists of 80% of all data points

in the ‘normal’ class. Testing set consists of the rest 20% of

data in the ‘normal’ class and all data in the ‘anomalous’ class.

We then evaluate our model as a binary classifier for normal

and anomalous data. Our performance is measured by the Area
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Fig. 2. Detection accuracies on the MNIST dataset.

Under Precision and Recall Curve (AUPRC). The architecture

as well as hyperparameters to train FGAN are presented in

Table II.

We train FGAN for 100 epochs with a training batch size

of 100 and obtain the average AUPRC across 3 independent,

identical experiments with different random initializations for

each anomalous class. Mean AUPRC in comparison to other

benchmark methods are shown in Figure 2. The other bench-

mark methods are trained using the same setup for splitting

of the train and test sets. We reimplement ALAD [32] and

GANomaly [1] using the hyperparameters used by the authors

to obtain the AUPRC while the results for EGBAD, AnoGAN

and VAE were taken from Zenati et al. [31]. ALAD FM

and EGBAD FM use feature matching to score anomalies,

while ALAD CH and EGBAD σ use the cross-entropy loss

of the discriminator to score anomalies [31, 32]. As seen from

the AUPRC figures, FGAN has the highest accuracy for all

but one digit class. Interestingly, for digit classes where the

other methods perform badly (eg. digits 1, 7, 9), FGAN’s

detection accuracy remains high. This shows FGAN’s superior

performance in anomaly detection for the MNIST dataset.

C. CIFAR10

Next, we run the on the CIFAR10 dataset [16]. Similar to

the MNIST experiment, we consider images from a particular

class as ‘anomalous’ and images from the other 9 classes as

‘normal’. We split the entire CIFAR10 dataset of 60000 images

into a train set consisting of 80% of ‘normal’ class images and

a test set consisting of the remaining 20% of ‘normal’ class

images and all of the images in the ‘anomalous’ class. We

train FGAN for 150 epochs with batch size of 128. The per-

formance is measured by the Area Under Receiver Operating

Characteristics (AUROC) curve, averaged over 3 independent,

identical experiments with different random initializations. The

network architecture and hyperparameters to train FGAN are

in Table III.

Fig. 3. Detection accuracies on the CIFAR10 dataset.

The anomaly detection results are shown in Figure 3.

The results for GANomaly, EGBAD FM and AnoGAN were

taken from Akcay et al. [1]. We reimplement ALAD CH and

ALAD FM by Zenati et al. [32] using the hyperparameters

used by the authors due to slight differences in the dataset

splitting and then average the results across three consecutive

seeds. Across all classes, FGAN achieves an AUROC of at

least 60%. Furthermore, FGAN performs similarly well across

all classes whereas ALAD FM and GANomaly show larger

range of AUROC across all classes, showing FGAN’s strength

at anomaly detection.

Figure 4 shows the average discriminator score for the

anomalous ‘ship’ class, the other 9 classes and the generated

images. All scores are taken from the test set. Interestingly

the ‘airplane’ class has a lower score than the anomalous

‘ship’ class, and this may indicate that these two classes are

semantically similar and challenging to differentiate compared

to other classes.

In Figure 5, we analyze the distribution of discriminator

scores for the normal test images, anomalous images and

generated images where the anomalous class is ‘ship’. Each

histogram is normalized such that the sum of area of the bins

equals one. The normal test images scores are skewed towards

the high score of 1.0 which is expected from the FGAN

loss function. The anomalous images scores show a bimodal

distribution with modes at 0.3 and 1.0, which means some

anomalous images are challenging to detect. This explains

the relatively good anomaly detection results in Figure 3.

The distribution of scores for generated images is spread

across the entire range which means the generated samples

do not converge at a score of α = 0.5, although this has not

significantly impacted anomaly detection performance.

D. KDD99

In order to further validate the merits of our approach, we

test FGAN on the KDDCUP99 10 percent dataset [3]. We
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Frog
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Fig. 4. Average discriminator scores for the anomalous ‘ship’ class, the other 9 classes and the generated images. All scores were taken from the test set.

a) Normal Test Images b) Generated Images c) Anomalous Images

Fig. 5. CIFAR10 anomalous class: ship. Histogram of discriminator scores for (a) normal test images, (b) generated images and (c) anomalous images. The
normal test images have a distribution that is skewed towards higher scores, which is expected from the FGAN loss function.

follow the experimental setup of Zong et al. [35] and Zenati

et al. [32] in our experiments. In the KDD99 dataset, the data

is stratified into the ‘non-attack’ class and other classes with

various attacks. We lump all the other classes with various

attacks as one class and call it the ‘attack’ class. We then

train FGAN on the ‘attack’ class only because the proportion

of data belonging to the ‘attack’ class is much larger than

the proportion of data belonging to the ‘non-attack’ class. The

objective is to detect the ‘non-attack’ instances.

We split the KDD99 dataset as follows: Training set consists

of 50% of all data points in the ‘attack’ class. Testing set

consists of the remaining 50% of data in the ‘attack’ class

and 50% of data in the ‘non-attack’ class. The architecture

and hyperparameters to train FGAN for KDD99 dataset is

shown in Table IV. We train with a batch size of 256 for

both discriminator and generator for 50 epochs. The precision,

recall and F1 scores are calculated with ‘non-attack’ class

being the positive class and ‘attack’ class being the negative

class, as in Zenati et al. [31, 32], and are averaged over 10

consecutive seeds, as shown in Table I. Values for OC-SVM,

DSEBM, DAGMM were obtained from Zhai et al. [33], Zong

et al. [35]. Values for AnoGAN and ALAD were obtained

from Zenati et al. [32]. FGAN has the best anomaly detection

accuracies compared to the other benchmark methods.

V. DISCUSSION

State-of-the-art anomaly detection methods for complex

high-dimensional data are based on generative adversarial

networks. However, in this paper, we identify that the usual

GAN loss objective is not directly aligned with the anomaly

detection objective: the loss encourages the distribution of

generated samples to overlap with real data. Hence, the

resulting discriminator has been found to be ineffective for

TABLE I
PERFORMANCE OF FGAN AND BENCHMARK METHODS THE KDD99

DATASET.

Model Precision Recall F1
OC-SVM 0.7457 0.8523 0.7954
DSEBM-r 0.8521 0.6472 0.7328
DSEBM-e 0.8619 0.6446 0.7399
DAGMM 0.9297 0.9442 0.9369
AnoGAN 0.8786 0.8297 0.8865
ALAD 0.9427 0.9577 0.9501
FGAN 0.9546 0.9697 0.9553

anomaly detection. We propose simple modifications to the

GAN loss such that the generated samples lie at the boundaries

of the real data distribution. Our method, called FGAN, uses

the discriminator score as anomaly score. With the modified

GAN loss, FGAN does not need to rely on reconstruction loss

from the generator and does not require modifications to the

basic GAN architecture unlike ALAD and GANomaly. On the

MNIST, CIFAR10 and KDD99 datasets, FGAN outperforms

existing methods in anomaly detection. We have shown that

with simple modifications to the GAN loss, the basic GAN

architecture and training scheme can produce an effective

anomaly detector for complex high-dimensional data.

REFERENCES

[1] Samet Akcay, Amir Atapour-Abarghouei, and Toby P

Breckon. Ganomaly: Semi-supervised anomaly de-

tection via adversarial training. arXiv preprint
arXiv:1805.06725, 2018.

[2] Jinwon An and Sungzoon Cho. Variational autoencoder

146



based anomaly detection using reconstruction probability.

Special Lecture on IE, 2:1–18, 2015.

[3] Stephen D Bay, Dennis F Kibler, Michael J Pazzani, and

Padhraic Smyth. The uci kdd archive of large data sets

for data mining research and experimentation. SIGKDD
Explorations, 2:81, 2000.

[4] Laura Beggel, Michael Pfeiffer, and Bernd Bischl. Ro-

bust anomaly detection in images using adversarial au-

toencoders. arXiv preprint arXiv:1901.06355, 2019.

[5] Varun Chandola, Arindam Banerjee, and Vipin Kumar.

Anomaly detection: A survey. ACM computing surveys
(CSUR), 41(3):15, 2009.

[6] Zihang Dai, Zhilin Yang, Fan Yang, William W Cohen,

and Ruslan R Salakhutdinov. Good semi-supervised

learning that requires a bad gan. In Advances in Neural
Information Processing Systems, pages 6510–6520, 2017.

[7] Lucas Deecke, Robert Vandermeulen, Lukas Ruff,

Stephan Mandt, and Marius Kloft. Anomaly detection

with generative adversarial networks. 2018.

[8] Sarah M Erfani, Sutharshan Rajasegarar, Shanika

Karunasekera, and Christopher Leckie. High-

dimensional and large-scale anomaly detection using

a linear one-class svm with deep learning. Pattern
Recognition, 58:121–134, 2016.

[9] Eleazar Eskin, Andrew Arnold, Michael Prerau, Leonid

Portnoy, and Sal Stolfo. A geometric framework for

unsupervised anomaly detection. In Applications of data
mining in computer security, pages 77–101. Springer,

2002.

[10] Pedro Garcia-Teodoro, Jesus Diaz-Verdejo, Gabriel
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stein, Ursula Schmidt-Erfurth, and Georg Langs. Unsu-

pervised anomaly detection with generative adversarial

networks to guide marker discovery. In International
Conference on Information Processing in Medical Imag-
ing, pages 146–157. Springer, 2017.

[26] Bernhard Schölkopf, John C Platt, John Shawe-Taylor,

Alex J Smola, and Robert C Williamson. Estimating

the support of a high-dimensional distribution. Neural
computation, 13(7):1443–1471, 2001.

[27] Raimund Seidel. Constructing higher-dimensional con-

vex hulls at logarithmic cost per face. pages 404–413,

01 1986. doi: 10.1145/12130.12172.

[28] Rasheda Smith, Alan Bivens, Mark Embrechts, Chan-

drika Palagiri, and Boleslaw Szymanski. Clustering ap-

proaches for anomaly based intrusion detection. Proceed-
ings of intelligent engineering systems through artificial
neural networks, pages 579–584, 2002.

[29] Abhinav Srivastava, Amlan Kundu, Shamik Sural, and

Arun Majumdar. Credit card fraud detection using hidden

markov model. IEEE Transactions on dependable and
secure computing, 5(1):37–48, 2008.

[30] Haowen Xu, Wenxiao Chen, Nengwen Zhao, Zeyan Li,

Jiahao Bu, Zhihan Li, Ying Liu, Youjian Zhao, Dan

Pei, Yang Feng, et al. Unsupervised anomaly detection

147



via variational auto-encoder for seasonal kpis in web

applications. In Proceedings of the 2018 World Wide
Web Conference on World Wide Web, pages 187–196.

International World Wide Web Conferences Steering

Committee, 2018.

[31] Houssam Zenati, Chuan Sheng Foo, Bruno Lecouat,

Gaurav Manek, and Vijay Ramaseshan Chandrasekhar.

Efficient GAN-Based Anomaly Detection. arXiv e-prints,

art. arXiv:1802.06222, Feb 2018.

[32] Houssam Zenati, Manon Romain, Chuan Sheng Foo,

Bruno Lecouat, and Vijay Ramaseshan Chandrasekhar.

Adversarially Learned Anomaly Detection. arXiv e-
prints, art. arXiv:1812.02288, Dec 2018.

[33] Shuangfei Zhai, Yu Cheng, Weining Lu, and Zhongfei

Zhang. Deep structured energy based models for

anomaly detection. CoRR, abs/1605.07717, 2016. URL

http://arxiv.org/abs/1605.07717.

[34] Shuangfei Zhai, Yu Cheng, Weining Lu, and Zhongfei

Zhang. Deep structured energy based models for

anomaly detection. arXiv preprint arXiv:1605.07717,

2016.

[35] Bo Zong, Qi Song, Martin Renqiang Min, Wei

Cheng, Cristian Lumezanu, Daeki Cho, and Haifeng

Chen. Deep autoencoding gaussian mixture model

for unsupervised anomaly detection. In International
Conference on Learning Representations, 2018. URL
https://openreview.net/forum?id=BJJLHbb0-

.

APPENDIX

TABLE II
ARCHITECTURE AND HYPERPARAMETERS OF FGAN ON MNIST. (BN:

BATCH NORM, FM: FEATURE MAPS, LR: LEARNING RATE)

Operation Kernel FMs/Units BN? Activation
Generator
Dense 1024 � ReLU
Dense 7×7×128 � ReLU
Transposed Convolution 4×4 64 � ReLU
Transposed Convolution 4×4 1 × Tanh
Latent Dimension 200
Encirclement α 0.1
Dispersion β 30
Optimizer Adam(lr=2e-5, decay=1e-4)
Discriminator
Convolution 4×4 64 × Leaky ReLU
Convolution 4×4 64 × Leaky ReLU
Dense 1024 × Leaky ReLU
Dense 1 × Sigmoid
Leaky ReLU slope 0.1
Optimizer Adam(lr=1e-5, decay=1e-4)
Anomaly γ 0.1
Epochs 100
Batchsize 200

TABLE III
ARCHITECTURE AND HYPERPARAMETERS OF FGAN ON CIFAR-10. (BN:

BATCH NORM, FM: FEATURE MAPS, LR: LEARNING RATE)

Operation Kernel FMs/Units BN? Activation

Generator
Dense 2×2×256 � Leaky ReLU
Transposed Convolution 5×5 128 � Leaky ReLU
Transposed Convolution 5×5 64 � Leaky ReLU
Transposed Convolution 5×5 32 � Leaky ReLU
Transposed Convolution 5×5 3 × Tanh

Latent Dimension 256
Leaky ReLU Slope 0.2
Encirclement α 0.5
Dispersion β 10
Optimizer Adam(lr=1e-3, beta 1 = 0.5, beta 2 = 0.999)
Decay decay=1e-5

Discriminator
Convolution 5×5 32 � Leaky ReLU
Convolution 5×5 64 � Leaky ReLU
Convolution 5×5 128 � Leaky ReLU
Convolution 5×5 256 × Leaky ReLU
Dropout 0.2 ×
Dense 1 × Sigmoid

Leaky ReLU Slope 0.2
Weight Decay 0.5
Optimizer Adam(lr=1e-4, beta 1 = 0.5, beta 2 = 0.999)
Decay decay=1e-5
Anomaly γ 0.5

Epochs 150
Batch Size 128

TABLE IV
ARCHITECTURE AND HYPERPARAMETERS FOR FGAN ON KDD99. (BN:

BATCH NORM, FM: FEATURE MAPS, LR: LEARNING RATE)

Operation Units Activation Dropout L2 Reg

Generator 0 0
Dense 64 ReLU 0.2 0
Dense 128 ReLU 0.2 0
Dense (output) 121 Linear 0 0

Latent Dimension 32
Encirclement α 0.5
Dispersion β 30
Optimizer Adam(lr = 1e-4, decay = 1e-3)

Discriminator 0
Dense 256 Leaky ReLU 0 0
Dense 128 Leaky ReLU 0 0
Dense 128 Leaky ReLU 0 0
Dense (output) 1 Sigmoid 0

Leaky ReLU Slope 0.1
Optimizer SGD(lr = 8e-6, decay = 1e-3)
Anomaly γ 0.5

Epochs 50
Batch Size 256
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