
An Xception Based Convolutional Neural Network
for Scene Image Classification with Transfer Learning

Xizhi Wu1st

Department of Intelligence and Computing
Tianjin University

Tianjin, China
*cswxz@tju.edu.cn

Hanqing Yang1st

Department of Computer Science and Engineering
Washington University in St. Louis

St. Louis, United States
alberty@wustl.edu

Rongzhe Liu1st

Department of Cyber Engineering
Dalian University of Technology

Dalian, China
lllrz@mail.dlut.edu.cn

Zizhao Chen1st

Department of Mathematics
University of Chinese Academy of Sciences

Beijing, China
chenzizhao15@mails.ucas.ac.cn

1stThese authors contributed equally.
Abstract—Over the past decade, image classification, which

can provide assistance to address complex tasks such as planetary
exploration and unmanned driving, has become a hot topic. As a
subproblem of image classification, scene image classification has
received increasing attention. Based on previous studies, the
Xception model achieved superior performance on image
classification tasks in comparison with the original Inception
model. The Xception model is advantageous at processing image
classification, yet it has not been used for scene image classification.
To tackle this issue, this paper proposed an Xception based
transfer learning, and analyzed the model performance by
comparing it with the Inception-V3 model. We found that the
Xception based transfer learning significantly outperforms other
methods such as Inception-V3, which is nicely demonstrated by the
experimental results on the Intel Image Classification Challenge
dataset. Furthermore, the Xception has shown greater robustness
and ability in generalization with less overfitting problems.

Keywords- Xception model; Inception-V3 model; Convolutional
neural network; Transfer learning; Scene image classification
Introduction

I. INTRODUCTION

Deep-learning based image classification has received an
intensive level of attention from researchers thanks to the
available image databases such as ImageNet [1]. This paper
focuses on scene classification in photographs. Since a scene is
often composed of several entities organized in an
unpredictable layout, scene classification differs from the
conventional object classification.

In 2017, François Chollet proposed the Xception model,
developed from Inception-V3 model, which replaced the
Inception modules with depth wise separable convolutions to
use parameters more efficiently [2]. However, the
classifications of scenes remain challenging if only based on
ImageNet data.

This paper describes a novel scene classification method
using transfer learning on the pre-trained Xception model based
on ImageNet database. The model is proved to be capable of
classifying scenes such as glaciers and mountains that are not
included in the pre-trained dataset. The experimental results

show that the accuracy of transfer learning on Inception-V3
classification reached 91.81%, whereas transfer learning on
Xception reached 91.20%. By investigating the influence of the
source datasets, we found that the transfer learning method was
able to incorporate both relevant and seemingly irrelevant
source datasets for pretraining, and the relevant source dataset
brought better classification accuracy than that of the seemingly
irrelevant source dataset. This study demonstrates that the
transfer learning technique has great potential in effective
identification of random image data sets when the number of
image data is limited. The main contributions of this work can
be listed as follows:

1. The performance of Xception based transfer learning in
scene image classification is analyzed.

2. The generalization performance of Xception and
Inception-V3 model is verified and compared
comprehensively.

3. We prove the effectiveness of transfer learning on the
Xception model to classify specific datasets.

The rest of this paper is organized as follows. In Section 2,
background information is introduced to explain the structure
of Xception and Inception-V3. Section 3 introduces the related
methods and materials in detail. In Section 4, the performance
of the proposed model is verified and analyzed. Finally, in
Section 5, a summary of the performance of the model is given
and suggestions for future work are provided.

II. BACKGROUND INFORMATION

The architectures of Inception and Xception are explained
in detail in this Section. In addition, we compare and analyze
the performance of the two models.

A. Inception-V3
Inception was originally proposed by Szegedy et al.,

containing 42 layers [3]. Inception-V3, the third generation of
the original model, was proposed by Google Brain, containing
159 layers [4].

Specifically, Inception-V3 can be regarded as three parts:
convolution layers, Inception modules, and classifiers (as

262

2020 2nd International Conference on Information Technology and Computer Application (ITCA)

978-0-7381-1141-4/20/$31.00 ©2020 IEEE
DOI 10.1109/ITCA52113.2020.00063

shown in Figure 1). The Inception module is designed based on
Network-In-Network, in which multiple convolution layers are
performed in parallel to scale up the network, and the
convolution results of each branch are then concatenated (as
illustrated in Figure 2) [5]; Inception-V3 achieves superior

performance in object recognition compared with the original
model, including classifications in flowers [6], apparels [7], fast
foods [8], and traffic signs [5]. Owing to the ability and
advantage of Inception-V3 model, this study adopts it as the
baseline model for comparison.

Figure 1. Architecture of Inception-V3

Figure 2. Inception module

B. Xception
Xception is based on Inception-V3, using a linear stack of

depth wise separable convolution layers with residual
connections to reduce time and space complexity, with more
details shown in Figure 3 [2].

The depth wise separable convolution in Xception separates
the learning of channel-wise and space-wise features. Moreover,
the residual connection is used to solve the problem of
vanishing gradients and representational bottlenecks by
creating a shortcut in the sequential network [9].

C. Xception vs Inception
A typical Inception module is illustrated in Figure 2. The

Inception structure is similar to using a 1x1 convolution layer
to learn the association of features between channels from the
input feature map, and then segment the output feature map and
process the following 3x3 convolution layer to deal with the
association of spatial elements [10]. In addition, the depth wise
separable convolution uses a corresponding 3x3 convolution
layer to handle the associations of spatial elements on each
channel separately. As shown in Figure 4, the process produces
a single convolution only. The extreme form of this Inception
module is almost the same as the depth wise separable
convolution, which has been used in neural network design as
early as 2014 [2].

263

Figure 3. Architecture of Xception

Based on these factors, the depth wise separable
convolution is able to replace the Inception module, which
could be used to improve the structure of the Inception series
by constructing a model of stacked depth wise separable
convolutions.

Figure 4. Extreme Inception module

III. MATERIALS AND METHODS

The materials and methods used in this paper are discussed
in this section. Firstly, the experimental environment is
introduced. Then, the dataset used in creating the model, Intel
Image Classification dataset, is examined. Moreover, the data
processing and transfer learning techniques are introduced in
Sections 3.3 and 3.4. Finally, the experimental method is
described in detail in Section 3.5.

A. Experimental Environment
The experiment is carried out on a HASEE Z8-KP7S2

running Windows 10, which has an I7-7700HQ processor and
an Nvidia GTX 1070 graphics card. Python 3.7.0 was used. The
libraries used to create the test models are TensorFlow 2.1.6 and
Keras 2.1.1. Furthermore, Python Imaging Library (PIL) is used

to read data; Matplotlib, Seaborn, and Skearn are used to help
visualize the models.

B. Data
The Intel Image Classification dataset is used for the

transfer learning [11]. This dataset contains 25000 images, 150
x 150 pixels in size, distributed over six different natural scenes,
including forests, mountains, oceans, glaciers, buildings, and
streets. The original dataset is divided into three sets: training
set and validation set, with 14034, 3000, and 7301 images,
respectively (shown in Figure 5).

Figure 5. Distribution of images in Intel Images Classification challenge
datasets

C. Data Preprocessing
Data preprocessing is important because it prepares a

dataset for further analysis. Figure 6 shows an overview of how
we deal with the dataset. Image data is first transformed from
image data to matrix form using vectorization. Vectorization is
used to convert an image from three channels to a matrix by
scaling each value from 0 to 255 to 0 to 1, which is essential for
further processing of the data.

Conv

Conv

Separable Conv

Separable Conv

Max Pool

Separable Conv

Separable Conv

Max Pool

Separable Conv

Separable Conv

Max Pool

Separable Conv

Separable Conv

Separable Conv

Repeat 8 times

Separable Conv

Separable Conv

Max Pool

Conv 1 x 1

Conv 1 x 1

Conv 1 x 1

Conv 1 x 1

Separable Conv

Separable Conv

Global Average Pool

299 x 299 x 3 images 19 x 19 x 728 feature
maps

19 x 19 x 728 feature
maps

2048-Dimensional Vectors

2191

2271

2404

2512

2274

2382

437

474

553

525

510

501

0 500 1000 1500 2000 2500 3000

Building

Forest

Glacier

Mountain

Sea

Street

Training Validation

264

The differences between images in a dataset are extracted
and learned by a model as features. From Figure 5, it is clearly
shown that the image data are distributed unevenly across
different categories. When the training dataset is small, the
limited features would hinder the performance of the model
[12]. As a result, data augmentation was applied to the dataset.
Data augmentation creates new data by applying techniques

such as mirroring, random cropping, rotation, local warping,
and adding noise to the original data. Due to the limited data,
data augmentation is crucial to improve the accuracy of the
model because it can provide more data for the model to learn.
With data augmentation, the model becomes more robust and
has stronger generalization ability.

Figure 6. Data preprocessing for Inception based transfer learning and Xception based transfer learning

D. Transfer Learning
Transfer learning refers to the process of learning new tasks

based on the knowledge learned from related tasks [13]. For
example, knowledge about tree trunks may help in
understanding forests. In the case of sufficient-source but
limited-target domain data, transfer learning can significantly
improve the performance of the model. According to Jason
Yosinski, a machine learning researcher at Cornell, using
weights transferred from a less relevant network is better than
using random weights [14]. Further, even if substantial fine-
tunings are performed on new tasks, initializing the network
with transferred features can improve the generalization of the
model.

E. Methods
This paper discusses two transfer learnings, one based on

Xception and the other based on Inception-V3. In the
experiment, models are created under each transfer learning to
verify the transferability of the pre-trained models based on the
ImageNet dataset. Two control factors play a role in the
experiment: 1) whether pre-trained layers are trainable; 2)
whether weights are transferred from a pre-trained model or
randomized. Varying these two factors lead to the construction
of four models (as shown in Table 1): the base model and three
independent models.

More specifically, the base model is with the randomly
initialized weights and untrainable layers. The first independent
model is with randomly initialized weights and trainable layers.
The second independent model is with pre-trained weights and

untrainable weights. And finally, the third independent model,
is with the pre-trained weights and trainable layers. Before
outputting results, each model has to go through a fully
connected layer with ReLU as the activation function, and a
dropout layer. The process is repeated twice, then followed by
another fully connected layer. Finally, the Softmax function is
used as the uppermost layer. A schematic diagram can be found
in Figure 7.

A ReLU function can be written as the following form: 0,
A Softmax function can be expressed as follows:

TABLE 1. Inception based model and Xception based model with
specified parameters

Model Base
Model

Independent
Model 1

Independent
Model 2

Independent
Model 3

Weights Random Random ImageNet ImageNet
Trainable False True False True

265

Figure 7. Exit flow for Xception based transfer learning and Inception based
transfer learning

The base model was expected to have the worst
performance. The third independent model was expected to
have the best performance. In addition, it was also expected that
the Xception based transfer learning outperforms Inception
based transfer learning.

TABLE 2. Average accuracy (%) of models on Intel Image Classification Challenge dataset; values are obtained by finding average accuracy of 10 runs of
each model with 3 epochs

Inception Xception
Base Independent Base Independent
Model Model 1 Model 2 Model 3 Model Model 1 Model 2 Model 3

Average
Train Accuracy 56.03 62.74 90.2 93.95 69.04 81.36 87.21 92.37

Average
Validation Accuracy 16.38 67.2 86.97 91.81 21.11 78.69 88.04 91.20

Note: Best performance is in bold

TABLE 3. Average accuracy and loss (%) of Model 3 on Intel Image Classification Challenge dataset; values are obtained by finding average values of 10
runs of each epoch

IV. RESULTS AND DISCUSSION

The base model was expected to have the worst
performance. The third independent model was expected to
have the best performance. In addition, it was also expected that
the Xception based transfer learning outperforms Inception
based transfer learning.

From our results, it can be observed that the Xception based
transfer learning has better overall performance than the
Inception based transfer learning, with higher accuracy and less
errors (illustrated in Table 2). However, it is notable that the
Inception based transfer learning surprisingly achieved better
performance than the Xception based transfer learning. Figures
8 and 9 show the detailed experimental results of both Model 3.
The Inception based model has a more severe overfitting issue
as shown in Table 2, the training accuracy of the Xception
model is 1.12% higher than its validation accuracy, whereas
that of the Inception model is 2.14%. Therefore, the
performance of the Inception model is questionable, even with
slightly higher validation accuracy.

Another factor worth-noting is that by allowing the pre-
trained layers to be trainable, the performance of both models
improve. Since fine-tuning does not necessarily improve the
performance of the model, it can be seen that our Xception
based transfer learning could generalize well on scene images.

Our initial test of using 10 epochs showed that most models
converged as early as the third epoch. Therefore, we applied
early stopping in the training process to use 3 epochs for each
model. Table 3 shows the average training and validation
accuracy of 10 runs of each Model 3. The average validation
loss of both Model 3 reaches the minimum at the second epoch.
The fact that both models converge at a quite early stage could
be mainly explained by their structures as both models
incorporate multiple fully connected layers.

Fully
Connected

Repeat 2 times

ReLU

Input

Fully
Connected

Softmax

OutputDropout

Epoch
Inception-V3 Model 3 Xception Model 3
Average Acc Average Loss Average Acc Average Loss
Train Val Train Val Train Val Train Val

1/3 80.00 90.60 58.70 26.29 81.83 89.70 60.84 33.44
2/3 90.94 91.51 26.00 23.67 89.86 91.17 30.93 28.41
3/3 93.95 91.81 17.52 23.22 92.32 91.20 23.02 29.39

266

Figure 8. Confusion matrix for Inception Model 3

Figure 9. Confusion matrix for Xception Model 3

V. CONCLUSION

In this paper, a transfer learning on Xception based CNN for
scene image classification is proposed. The performance of the
model is conducted and evaluated on the Intel Image
Classification Challenge dataset. The experimental results
suggest that the model could achieve the highest training and
validation accuracy on the scene classification task in
comparison with the Inception-V3 when using trainable
weights transferred from ImageNet. It is clear that Xception
outperforms the comparison methods. Therefore, we can argue

that transfer learning via Xception is good at processing scene
image classification.

In the future, it will be interesting to test how the resolutions
of an image affect the classification of scenes using the model.
Furthermore, new transfer learning by adopting weights from
the convolution layers of our model may produce important
findings.

REFERENCES

[1] J. Deng, W. Dong, R. Socher, L. Li, K. Li, & F. Li, "ImageNet: A large-
scale hierarchical image database," IEEE Conference on Computer Vision
and Pattern Recognition, pp. 248-255, 2009.

[2] F. Chollet, “Xception: Deep learning with depthwise separable
convolutions,” IEEE Conference on Computer Vision and Pattern
Recognition, pp. 1251-1258, 2017.

[3] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,V.
Vanhoucke, & A. Rabinovich, “Going deeper with convolutions ,” IEEE
Conference on Computer Vision and Pattern Recognition, pp. 1–9, 2015.

[4] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, & Z. Wojna, "Rethinking
the Inception architecture for computer vision," IEEE Conference on
Computer Vision and Pattern Recognition, pp. 2818-2826, 2016.

[5] C. Lin, L. Li, W. Luo, K. Wang, & J. Guo, “Transfer learning based traffic
sign recognition using Inception-v3 model,” Periodica Polytechnica
Transportation Engineering, 2018.

[6] X. Xia, C. Xu, & B. Nan, "Inception-v3 for flower classification,"
International Conference on Image, Vision and Computing, pp. 783-787,
2017.

[7] E. S G, G. Prabhu J, A. Rishikesh, C. N A, & U. V, "Apparel classification
using Convolutional Neural Networks," International Conference on ICT
in Business Industry & Government, pp. 1-5. 2016.

[8] N. Hnoohom & S. Yuenyong, "Thai fast food image classification using
deep learning," International ECTI Northern Section Conference on
Electrical, Electronics, Computer and Telecommunications Engineering,
pp. 116-119, 2018.

[9] K. He, X. Zhang, S. Ren, & J. Sun, “Deep residual learning for image
recognition,” IEEE Conference on Computer Vision and Pattern
Recognition, 2016, pp. 770–778.

[10] V. Sze, Y. Chen, T. Yang, & J. Emer, "Efficient Processing of Deep Neural
Networks: A Tutorial and Survey," Proceedings of the IEEE,
vol. 105, no. 12, pp. 2295-2329, 2017.

[11] P. Bansal (2019, January 30). Intel Image Classification. Retrieved
December 11, 2020, from https://www.kaggle.com/puneet6060/intel-
image-classification

[12] X. Li, W. Zhang, Q. Ding, & J. Sun, “Intelligent rotating machinery fault
diagnosis based on deep learning using data augmentation,” Journal of
Intelligent Manufacturing, vol. 31, no. 2, pp. 433–452, 2020.

[13] L. Torrey & J. Shavlik, “Transfer learning,” Handbook of Research on
Machine Learning Applications, 2009.

[14] J. Yosinski, J. Clune, Y. Bengio, & H. Lipson, “How transferable are
features in deep neural networks,” Advances in Neural Information
Processing Systems, vol. 27, pp. 3320-3328, 2014.

267

