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Abstract—Over the past decade, image classification, which 

can provide assistance to address complex tasks such as planetary 
exploration and unmanned driving, has become a hot topic. As a 
subproblem of image classification, scene image classification has 
received increasing attention. Based on previous studies, the 
Xception model achieved superior performance on image 
classification tasks in comparison with the original Inception 
model. The Xception model is advantageous at processing image 
classification, yet it has not been used for scene image classification. 
To tackle this issue, this paper proposed an Xception based 
transfer learning, and analyzed the model performance by 
comparing it with the Inception-V3 model. We found that the 
Xception based transfer learning significantly outperforms other 
methods such as Inception-V3, which is nicely demonstrated by the 
experimental results on the Intel Image Classification Challenge 
dataset. Furthermore, the Xception has shown greater robustness 
and ability in generalization with less overfitting problems. 

Keywords- Xception model; Inception-V3 model; Convolutional 
neural network; Transfer learning; Scene image classification 
Introduction 

I. INTRODUCTION

Deep-learning based image classification has received an 
intensive level of attention from researchers thanks to the 
available image databases such as ImageNet [1]. This paper 
focuses on scene classification in photographs. Since a scene is 
often composed of several entities organized in an 
unpredictable layout, scene classification differs from the 
conventional object classification.  

In 2017, François Chollet proposed the Xception model, 
developed from Inception-V3 model, which replaced the 
Inception modules with depth wise separable convolutions to 
use parameters more efficiently [2]. However, the 
classifications of scenes remain challenging if only based on 
ImageNet data.  

This paper describes a novel scene classification method 
using transfer learning on the pre-trained Xception model based 
on ImageNet database. The model is proved to be capable of 
classifying scenes such as glaciers and mountains that are not 
included in the pre-trained dataset. The experimental results 

show that the accuracy of transfer learning on Inception-V3 
classification reached 91.81%, whereas transfer learning on 
Xception reached 91.20%. By investigating the influence of the 
source datasets, we found that the transfer learning method was 
able to incorporate both relevant and seemingly irrelevant 
source datasets for pretraining, and the relevant source dataset 
brought better classification accuracy than that of the seemingly 
irrelevant source dataset. This study demonstrates that the 
transfer learning technique has great potential in effective 
identification of random image data sets when the number of 
image data is limited. The main contributions of this work can 
be listed as follows: 

1. The performance of Xception based transfer learning in 
scene image classification is analyzed. 

2. The generalization performance of Xception and 
Inception-V3 model is verified and compared 
comprehensively. 

3. We prove the effectiveness of transfer learning on the 
Xception model to classify specific datasets. 

The rest of this paper is organized as follows. In Section 2, 
background information is introduced to explain the structure 
of Xception and Inception-V3. Section 3 introduces the related 
methods and materials in detail. In Section 4, the performance 
of the proposed model is verified and analyzed. Finally, in 
Section 5, a summary of the performance of the model is given 
and suggestions for future work are provided. 

II. BACKGROUND INFORMATION

The architectures of Inception and Xception are explained 
in detail in this Section. In addition, we compare and analyze 
the performance of the two models. 

A. Inception-V3 
Inception was originally proposed by Szegedy et al., 

containing 42 layers [3]. Inception-V3, the third generation of 
the original model, was proposed by Google Brain, containing 
159 layers [4].  

Specifically, Inception-V3 can be regarded as three parts: 
convolution layers, Inception modules, and classifiers (as 
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shown in Figure 1). The Inception module is designed based on 
Network-In-Network, in which multiple convolution layers are 
performed in parallel to scale up the network, and the 
convolution results of each branch are then concatenated (as 
illustrated in Figure 2) [5]; Inception-V3 achieves superior 

performance in object recognition compared with the original 
model, including classifications in flowers [6], apparels [7], fast 
foods [8], and traffic signs [5]. Owing to the ability and 
advantage of Inception-V3 model, this study adopts it as the 
baseline model for comparison. 

Figure 1. Architecture of Inception-V3 

Figure 2. Inception module 

B. Xception 
Xception is based on Inception-V3, using a linear stack of 

depth wise separable convolution layers with residual 
connections to reduce time and space complexity, with more 
details shown in Figure 3 [2].  

The depth wise separable convolution in Xception separates 
the learning of channel-wise and space-wise features. Moreover, 
the residual connection is used to solve the problem of 
vanishing gradients and representational bottlenecks by 
creating a shortcut in the sequential network [9]. 

C. Xception vs Inception 
A typical Inception module is illustrated in Figure 2. The 

Inception structure is similar to using a 1x1 convolution layer 
to learn the association of features between channels from the 
input feature map, and then segment the output feature map and 
process the following 3x3 convolution layer to deal with the 
association of spatial elements [10]. In addition, the depth wise 
separable convolution uses a corresponding 3x3 convolution 
layer to handle the associations of spatial elements on each 
channel separately. As shown in Figure 4, the process produces 
a single convolution only. The extreme form of this Inception 
module is almost the same as the depth wise separable 
convolution, which has been used in neural network design as 
early as 2014 [2]. 
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Figure 3. Architecture of Xception 

Based on these factors, the depth wise separable 
convolution is able to replace the Inception module, which 
could be used to improve the structure of the Inception series 
by constructing a model of stacked depth wise separable 
convolutions. 

Figure 4. Extreme Inception module 

III. MATERIALS AND METHODS

The materials and methods used in this paper are discussed 
in this section. Firstly, the experimental environment is 
introduced. Then, the dataset used in creating the model, Intel 
Image Classification dataset, is examined. Moreover, the data 
processing and transfer learning techniques are introduced in 
Sections 3.3 and 3.4. Finally, the experimental method is 
described in detail in Section 3.5. 

A. Experimental Environment 
The experiment is carried out on a HASEE Z8-KP7S2 

running Windows 10, which has an I7-7700HQ processor and 
an Nvidia GTX 1070 graphics card. Python 3.7.0 was used. The 
libraries used to create the test models are TensorFlow 2.1.6 and 
Keras 2.1.1. Furthermore, Python Imaging Library (PIL) is used 

to read data; Matplotlib, Seaborn, and Skearn are used to help 
visualize the models. 

B. Data 
The Intel Image Classification dataset is used for the 

transfer learning [11]. This dataset contains 25000 images, 150 
x 150 pixels in size, distributed over six different natural scenes, 
including forests, mountains, oceans, glaciers, buildings, and 
streets. The original dataset is divided into three sets: training 
set and validation set, with 14034, 3000, and 7301 images, 
respectively (shown in Figure 5). 

Figure 5. Distribution of images in Intel Images Classification challenge 
datasets

C. Data Preprocessing 
Data preprocessing is important because it prepares a 

dataset for further analysis. Figure 6 shows an overview of how 
we deal with the dataset. Image data is first transformed from 
image data to matrix form using vectorization. Vectorization is 
used to convert an image from three channels to a matrix by 
scaling each value from 0 to 255 to 0 to 1, which is essential for 
further processing of the data.  
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The differences between images in a dataset are extracted 
and learned by a model as features. From Figure 5, it is clearly 
shown that the image data are distributed unevenly across 
different categories. When the training dataset is small, the 
limited features would hinder the performance of the model 
[12]. As a result, data augmentation was applied to the dataset. 
Data augmentation creates new data by applying techniques 

such as mirroring, random cropping, rotation, local warping, 
and adding noise to the original data. Due to the limited data, 
data augmentation is crucial to improve the accuracy of the 
model because it can provide more data for the model to learn. 
With data augmentation, the model becomes more robust and 
has stronger generalization ability. 

Figure 6. Data preprocessing for Inception based transfer learning and Xception based transfer learning

D. Transfer Learning 
Transfer learning refers to the process of learning new tasks 

based on the knowledge learned from related tasks [13]. For 
example, knowledge about tree trunks may help in 
understanding forests. In the case of sufficient-source but 
limited-target domain data, transfer learning can significantly 
improve the performance of the model. According to Jason 
Yosinski, a machine learning researcher at Cornell, using 
weights transferred from a less relevant network is better than 
using random weights [14]. Further, even if substantial fine-
tunings are performed on new tasks, initializing the network 
with transferred features can improve the generalization of the 
model. 

E. Methods 
This paper discusses two transfer learnings, one based on 

Xception and the other based on Inception-V3. In the 
experiment, models are created under each transfer learning to 
verify the transferability of the pre-trained models based on the 
ImageNet dataset. Two control factors play a role in the 
experiment: 1) whether pre-trained layers are trainable; 2) 
whether weights are transferred from a pre-trained model or 
randomized. Varying these two factors lead to the construction 
of four models (as shown in Table 1): the base model and three 
independent models. 

More specifically, the base model is with the randomly 
initialized weights and untrainable layers. The first independent 
model is with randomly initialized weights and trainable layers. 
The second independent model is with pre-trained weights and 

untrainable weights. And finally, the third independent model, 
is with the pre-trained weights and trainable layers. Before 
outputting results, each model has to go through a fully 
connected layer with ReLU as the activation function, and a 
dropout layer. The process is repeated twice, then followed by 
another fully connected layer. Finally, the Softmax function is 
used as the uppermost layer. A schematic diagram can be found 
in Figure 7. 

A ReLU function can be written as the following form: 0,
A Softmax function can be expressed as follows: 

TABLE 1. Inception based model and Xception based model with 
specified parameters 

Model Base 
Model 

Independent 
Model 1 

Independent 
Model 2 

Independent 
Model 3 

Weights Random Random ImageNet ImageNet 
Trainable False True False True 
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Figure 7. Exit flow for Xception based transfer learning and Inception based 
transfer learning 

The base model was expected to have the worst 
performance. The third independent model was expected to 
have the best performance. In addition, it was also expected that 
the Xception based transfer learning outperforms Inception 
based transfer learning. 

TABLE 2. Average accuracy (%) of models on Intel Image Classification Challenge dataset; values are obtained by finding average accuracy of 10 runs of 
each model with 3 epochs 

Inception Xception 
Base Independent Base Independent 
Model Model 1 Model 2 Model 3 Model Model 1 Model 2 Model 3 

Average 
Train Accuracy 56.03 62.74 90.2 93.95 69.04 81.36 87.21 92.37 

Average 
Validation Accuracy 16.38 67.2 86.97 91.81 21.11 78.69 88.04 91.20 

Note: Best performance is in bold 

TABLE 3. Average accuracy and loss (%) of Model 3 on Intel Image Classification Challenge dataset; values are obtained by finding average values of 10 
runs of each epoch 

IV. RESULTS AND DISCUSSION

The base model was expected to have the worst 
performance. The third independent model was expected to 
have the best performance. In addition, it was also expected that 
the Xception based transfer learning outperforms Inception 
based transfer learning. 

From our results, it can be observed that the Xception based 
transfer learning has better overall performance than the 
Inception based transfer learning, with higher accuracy and less 
errors (illustrated in Table 2). However, it is notable that the 
Inception based transfer learning surprisingly achieved better 
performance than the Xception based transfer learning. Figures 
8 and 9 show the detailed experimental results of both Model 3. 
The Inception based model has a more severe overfitting issue 
as shown in Table 2, the training accuracy of the Xception 
model is 1.12% higher than its validation accuracy, whereas 
that of the Inception model is 2.14%. Therefore, the 
performance of the Inception model is questionable, even with 
slightly higher validation accuracy. 

Another factor worth-noting is that by allowing the pre-
trained layers to be trainable, the performance of both models 
improve. Since fine-tuning does not necessarily improve the 
performance of the model, it can be seen that our Xception 
based transfer learning could generalize well on scene images. 

Our initial test of using 10 epochs showed that most models 
converged as early as the third epoch. Therefore, we applied 
early stopping in the training process to use 3 epochs for each 
model. Table 3 shows the average training and validation 
accuracy of 10 runs of each Model 3. The average validation 
loss of both Model 3 reaches the minimum at the second epoch. 
The fact that both models converge at a quite early stage could 
be mainly explained by their structures as both models 
incorporate multiple fully connected layers. 

Fully 
Connected

Repeat 2 times

ReLU

Input

Fully 
Connected

Softmax

OutputDropout

Epoch
Inception-V3 Model 3 Xception Model 3 
Average Acc Average Loss Average Acc Average Loss 
Train Val Train Val Train Val Train Val

1/3 80.00 90.60 58.70 26.29 81.83 89.70 60.84 33.44 
2/3 90.94 91.51 26.00 23.67 89.86 91.17 30.93 28.41 
3/3 93.95 91.81 17.52 23.22 92.32 91.20 23.02 29.39 
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Figure 8. Confusion matrix for Inception Model 3 

Figure 9. Confusion matrix for Xception Model 3 

V. CONCLUSION

In this paper, a transfer learning on Xception based CNN for 
scene image classification is proposed. The performance of the 
model is conducted and evaluated on the Intel Image 
Classification Challenge dataset. The experimental results 
suggest that the model could achieve the highest training and 
validation accuracy on the scene classification task in 
comparison with the Inception-V3 when using trainable 
weights transferred from ImageNet. It is clear that Xception 
outperforms the comparison methods. Therefore, we can argue 

that transfer learning via Xception is good at processing scene 
image classification. 

In the future, it will be interesting to test how the resolutions 
of an image affect the classification of scenes using the model. 
Furthermore, new transfer learning by adopting weights from 
the convolution layers of our model may produce important 
findings. 
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