
World of Empowered IoT Users

Sayed Hadi Hashemi, Faraz Faghri, Paul Rausch∗ and Roy H Campbell
University of Illinois at Urbana-Champaign, ∗ExaByte Labs

Abstract—In a world deploying an Internet of Things,
sensors and actuators are owned, accessed, and activated by
a plethora of individuals and organizations. Access to the
data produced by this world can both be beneficial and
have drawbacks to society. This data potentially represents
the activities of millions of individuals and their possessions
collected by billions of “things’. Aggregations of this data
can be analyzed through the Internet and Clouds. This raises
possible privacy, security, moral and ethical challenges whose
solutions will require flexible protection mechanisms. How do
we “acquire” and “distribute” data at the IoT world scale
while retaining the rights of individuals and organizations
to protect, use, and share their data? Clearly a well-defined
mechanism and control needs to regulate access to the data
and its aggregations.

Our paper describes a user-centric multi-level multiple
granularity mechanism to share the data from these de-
vices to people and organizations. Revisiting the fundamental
mechanisms in security for providing protection, our solution
uses capabilities, access lists, and access rights following well-
understood formal notions for reasoning about access. Our
contribution is to describe an auditable, transparent, dis-
tributed, decentralized, publication-subscription based, robust
mechanism and automation of these ideas in the IoT realm
that is well-matched to the current generation of clouds. It is
based on well-tested principles and practices used in crypto
currencies exploiting block chains of transactions. The scheme
puts users (including organizational entities) in the center of
control over the access to their collections of sensory data. In
our paper, we describe a deployment of these ideas for health
care, smart cities, and autonomous cars.

I. INTRODUCTION

The Internet of Things is growing and sensors are being
installed at ever increasing rates. In not too long a fully
deployed IoT will become a reality, with it comes huge
promises for the future of Big Data, Analytics, and research
in general. However, this promise relies on accessibility of
massive amount of data which resides on the clouds and at
the edge (e.g. sensors) and owned by IoT users. Our current
models for data sharing and user privacy will not scale to this
level. In order to meet the expectations of this revolution,
data needs to be controlled by users and shared easily with
multiple parties, but this raises new challenges.

Scalable data sharing is already becoming an active
problem in several areas of IoT including healthcare, smart
cities, and autonomous cars. For instance, intelligent de-
cision making in these areas involves analyzing sensitive
data in heterogeneous environments. Health Tracker data
is providing a particularly difficult challenge as Electronic
Health Record (EHR) systems attempt to integrate more and
more patient data from devices that are bridging the gap
between consumer electronics and medical devices. Gaining

access to this data, while keeping the user informed and
empowered is proving difficult. The same can be said about
the huge number of sensors in GPS devices and phones that
remain siloed and inaccessible due to concerns over data
privacy and sharing. In these environments, users themselves
frequently do not know what private data has been stored,
who manages it, or where it resides.

Data sharing provides both huge benefits and presents
substantial risks for society. We should be able to provide
previously unimaginable insights and a level of control
unequal to anything prior. The substantial benefits make
it worth overcoming the issues of sharing and meeting
the IoT’s goal of providing an extremely high level of
autonomicity and device intercommunication.

Arguably, there is always a user (or organization) who
owns or manages data and this user factor should be the
ultimate deciding factor in regard to the data sharing. What
we need is a system that can securely provide this basic
functionality for locating and sharing data between things,
and/or entities. However, as IoT scales to billions of sensors
and millions of users, conventional sharing and access con-
trol solutions do not scale. It becomes impossible to maintain
an Access Control List (ACL) on each single sensor, or near
impossible to rely on a centralized access control server,
or agreed upon trusted parties based protocols. Networks
of billions of devices and millions of users would require
maintaining enormous accessible access control lists that if
possible at all would be very expensive and challenging with
their strict availability and consistency needs.

A protective mechanism tailored for this setting which
enables sharing and eliminates (or reduces) risks is nec-
essary. In this paper we present a model to address these
challenges utilizing best practices in computer security and
distributed systems. Our solution is to build a user oriented
data dissemination and distribution system. Data collected
by the IoT potentially represents the activities of billions
of individuals or organizations and their possessions, it is
intuitive that we should put these data owners in control of
their data rather than third parties. Naturally, trusted third
parties should contribute in helping ascertain the trustwor-
thiness of a party. But this role should be advisory, whereas
now they are actively making these decisions on behalf of
data owners.

Our system has three main components, the first is a
data management protocol in which different roles can
interact with each other in a secure and private manner
based on capability-based access control. The second is a
decentralized and distributed data store system that allows
each role able to communicate with each other without the

2016 IEEE First International Conference on Internet-of-Things Design and Implementation

978-1-4673-9948-7/16 $31.00 © 2016 IEEE

DOI 10.1109/IoTDI.2015.39

13

need for a trusted third party based on Blockchain. Although
our solution has a different purpose, recent cryptocurrencies
such as Bitcoin provide an interesting and similar successful
implementations of decentralized and secure circulation of
currency. The third is a scalable messaging service based
on publish-subscribe model designed to provide flexible and
reliable communication between many senders and receivers
without the need of persistent connectivity. Our solution is
fully decentralized and distributed in order to accommodate
the massive scale of the IoT paradigms. Because the system
is user-centric, no trust of any participant is implied and
automatic. While still maintaining the ability to scale, this
provides full control of access control and propagation,
system security, and user privacy.

The remainder of the paper is organized as follows. In
Section II, we give an overview of how IoT plays an
important role in three emerging domains and fundamental
data exchange challenges they are facing. The overview of
our solution is the subject of Section III. Sections IV, V, and
VI will describe the three components of our solution, data
management protocol, data store system, and messaging ser-
vice respectively. We discus the practicality of our proposed
solution and future works in Section VII. We provide related
works in Section VIII, and conclude in Section IX.

II. IOT WORLDS

IoT finds its way to enhance our society in many domains.
These systems are tangled with users’ every day job. In this
section, we provide an overview of how IoT embodies in
different applications, and what are the open challenges. All
these applications include billions of data sources including
sensors and millions of users. For the benefit of each
application, data has to be shared with data analyzers.

A. Health Care

The amount of data generated by healthcare providers
is increasing rapidly [1]. Much of this new data is being
generated by a new generation of things. Medical devices are
now communicating directly with Electronic Health Record
(EHR) systems. When we look at these trends and consider
them in the context of the evolving discussion regarding
patient privacy and data security, our model presents some
unique opportunities to facilitate better sharing of data
between parties.

In the past patient records were typically stored on paper
in the offices of their physicians. Most countries provide
a legal mechanism requiring physicians to archive records
for a certain period of time, as well to provide patients
access to their medical records. However, when it comes
to ownership of the records themselves, as well as to when
they may be shared for research purposes, there exists no
such consensus. Because data is also stored with a wide
range of providers and organizations, patients may not even
be aware of all of the places where their data is stored.
This provides challenges for protecting that data, as well
as providing access to it. Our system enables healthcare
providers to share electronic health records directly with

each other, and avoids the need for information exchanges
and paper authorization forms.

It is becoming clear that patients need better privacy
protections. This is happening at a time when the demand
for this data from bona-fide research endeavors is also
increasing. This creates a mismatch whereby more protected
data is necessary at a time when patients are pulling back
on what they want to share. Our model addresses this
by providing more power to the patient and facilitates
the inclusion of a larger patient population. Furthermore,
our model can reduce liability and depoliticize when it is
appropriate to share records as each patient is able to opt-
in or out at their discretion. Currently much of this data
may be protected by complex competing policy constraints
or overlapping IRBs (Institutional Review Board). Although
these are good practices when the patient cannot be di-
rectly involved, they provide significant hindrances if current
research efforts are to scale. Our model also provides a
particular advantage in countries which proscribe specific
requirements and liabilities upon organizations that hold or
manage healthcare data. Because our system does not store
any data, or user identifiable information, it may not be
subject to the regulatory requirements of entities covered
by healthcare privacy regulations such HIPAA, Directive
2011/24/EU, and other similar laws.

B. Smart City
The promise of the IoT and Big Data Analytics for future

cities is the reduction of frictions and inefficiencies. By
installing sensors and effectively analysing data, there are
numerous opportunities to revolutionize many aspects of
city management. Public transport, public health and safety,
energy management, infrastructure, and environment will
all evolve to take advantage of this data. Sensors collect
data regarding the behavior of passengers, for example
how denizens commute to work. Public transport systems
could aggregate data, make intelligent decisions, and convey
actuator orders. This would allow for extremely efficient
utilization of transportation resources.

Without Big Data Analytics the IoT cannot produce
actionable insight. For instance the municipality reroutes
services based on demand by conducting the analysis of
their ridership data. But in order to take full advantage
of the IoT, data will need to be available for analysis to
a diverse group of external sources. Cities will need to
involve external researchers like social entrepreneurs, private
sectors companies, startups, in additional to more traditional
participants like city departments, healthcare providers, and
academia.

As these agencies and governments deploy sensors we
find that this data is owned and managed by such a wide
range of organizations that data becomes effectively siloed.
Furthermore, private companies, individuals and NGOs may
wish to collaborate with governments. Imagine a network
of smart homes, or building automation systems working
directly with electric producers. This is further complicated
by a wide range of laws concerning public records and
individual privacy. In order to make the dream of smart cities

14

a reality, it will become critical to have more flexible and
scalable data sharing models to allow for inter organization
sharing.

Our model allows for such sharing at both small and
massive scales. Imagine a group of cities that have agreed
to work together with a group of universities to provide
detailed data regarding law enforcement. Many cities already
have surveillance cameras, body cameras, drones, gunshot
detection equipment, GPS fleet management, as well as
a massive array of sensors that are yet to be developed.
However, this data is and will be owned and managed by
municipal police, regional police, municipalities, as well
as many layers of government. The current centralized
models would not allow a large group of researchers to
gain access to these highly heterogeneous and disparate data
sources. Also, they would create significant delays as well
as requiring full time employment of an entire department
of administrators and supporting administrative personnel.
Once deployed, our model can effectively handle this task
quickly, and securely.

C. Autonomous Cars
Autonomous cars have moved from being prototypes with

a massive array of unwieldy instruments into mature and
polished products with millions of real world miles. It is
likely within the next 5 years that many cars will be able
to gather data and communicate with each other and the
Internet.

Autonomous cars are going to require data communication
with both their surrounding cars, as well as with centralized
traffic management. Cars will need to communicate securely
data such as speed, braking, signaling and collision avoid-
ance data. These are all prerequisites to enable autonomous
cars to share roadways at high efficiency.

Currently, no one company has a comprehensive view
of these problems. Many cars already have a mechanism
for communication (OnStar and similar services). Some
manufacturers are also beginning to take this problem se-
riously and conduct research into car to car communication
technologies [2]. Recently, GM has made a significant
investment in Lyft in order to build a network of self-driving
cars and align itself strategically when ride sharing ser-
vices evolve into autonomous car sharing services [3]. Ride
sharing services themselves are also aggregating substantial
usage data. Right now this data is becoming siloed as car
owners have little control over who has access to them.

However, all of this ridership, usage data and car to car
data could be quite sensitive. Furthermore, sensor data on
cars will become integrated with calendars and intelligent
personal assistants like Google Now in order to provide an
integrated experience. Our system allows for autonomous
cars to decide what, when and with whom their data is
shared.

III. WORLD OF EMPOWERED IOT USERS

As the IoT grows and matures, the number of connected
‘things’ is rapidly increasing. There is a growing need to
share the data produced by these things. However current

security models do not work well for the complex needs
of the heterogeneous systems emerging in the IoT. Previous
systems often placed data on equipment owned by the same
owner as the data itself. Within the emerging IoT often times
data is stored in a variety of locations, managed by different
service providers, and subject to varying regulations. These
systems less and less frequently have centralized control, and
are typically managed by a very diverse group of service
providers. Because of these heterogeneous and disparate
environments it is often difficult to manage the issues of
trust relationship management, data management, regulatory
compliance and data sharing.

The IoT solutions being employed today either sacrifice
scalability or user control. Google serves more than one
billion users globally, arguably, offering the most scalable
products on Earth. The issue of Google storing users’
personal data has been ‘addressed’ by a clause in the privacy
policy. Users are commonly unaware of ways their data is
stored and managed. This confusing wording reached the
attention of regulators, eventually culminating in Google’s
fining by the European Union [4]. Meanwhile, at 23andMe,
the largest consumer based genomic company, the issue
of privacy delegation surfaced. Users had delegated the
management of their data to 23andMe who had subsequently
sold the data [5]. In both cases the user has lost control of
their privacy, and are no longer actively able to decide what
should be shared.

Granting control to users at the massive scale of IoT is a
very challenging problem. At the scale of IoT, conventional
best practices are not practical, it becomes impossible to
maintain an access control list on each single sensor, or
near impossible to rely on centralized access control server,
or an agreed upon trusted parties based protocols. Server-
client models such as Kerberos [6] can not be used in
these environments due to lack of central point of trust.
Distribution and privacy concerns make implementation of
very basic Big Data Analytics primitives nearly impossible.
For instance, in the current setting, ‘dataset lookup’, the
simple task of finding a data set is a major quest.

Access control at massive scale is not the only chal-
lenge. Solutions have to still overcome many traditional
IoT challenges including connectivity. IoT sensors might not
be nearly as well connected. An example of this might be
the network of sensors implemented in a house that is not
necessarily exposed to the whole world.

Our solution’s goal is to provide a mechanism for the
user to control at scale. Two differentiating contributions
in our solution are: first, separation of the data store from
the data management, and second, architecting both com-
ponents scalable, decentralized and distributed. These two
major contributions provide substantial benefit for a user-
empowered IoT; it grants the possibility of keeping data at
its origin, overcomes the single point of trust and failure, and
adapts to the growth of users and sensors. Before explaining
the solution in depth, we provide an overview of our IoT
world. Further, we explain the roles, primitives offered to
these roles, along with the scalability and threat assumptions

15

which are considered in this world. For the rest of this paper
we use Abadi et. al notations [7], [8] (explained in I) to
formally describe the system and protocols.

A. Roles
Four main roles are introduced in our world:

• Data Owner: an individual or organization who is
in possession of data. This role does not necessarily
generate or store the data. In our system, data owner
grants the access to the data.

• Data Source: represents a computer system, individual,
or organization, who manages and stores data objects,
be it at rest or in motion. A sensor can act as data source
if it has enough performance, connectivity, and storage,
otherwise its data is stored elsewhere. Examples would
include cloud providers, managers of EHR systems,
application gateways, and archival systems.

• Data Requester: an individual or organization that
requests access to other data owners’ data, available
within the network. Examples are researcher, company,
data aggregator, or another device.

• Endorser: a third party individual or organization that
validates a request. This may be a trusted authority,
organization, or known individual. Endorser either pro-
vides supplementary information regarding credibility,
or validates authenticity of the role’s identity. Examples
of endorser are but not limited to:

– Internal Review Board (IRB)
– External review by additional research institution

(Hospital A asks hospital B for review)
– Governmental entity (e.g. FDA, NIH, municipal,

state health department)

B. Primitives
Following primitives are considered for the above roles in

our world:

• Data Discovery: users have many sensors and more
likely no substantial data storage. They should know
what data they own or have the rights to. They should
have one view that allows them to see a portfolio of all
of the data they own.

• Data Request: the subject should be able to search for
a collection of data that meets their conditions. The
request should be easily converted to a data access
authorization.

• Audit: users should be able to share their data with any
chosen data requester, as well as track and monitor the
requester’s access.

C. Assumptions
Following scalability and threat assumptions are consid-

ered in our world:

A1. We assume that data sources are aware of their users’
identity (public key), i.e. data source S knows its
user’s public key KX , and can securely authenticate
signed messages by that user:

{message}X′ =⇒ X says message

Table I
NOTATIONS USED IN THIS PAPER ADOPTED FROM ABADI ET. AL [7], [8]

Notation Description
{M}X Encrypted message M using X’s public key.

{M}X′ Signed message M using X’s private key.

X Identity of X .

KX X’s public key.

Oi Data Owner i.

Si Data Source i.

Ri Data Requester i.

Ei Endowser i.

DOT Data Object Ticket.

DAP Data Access Path.

RT Request Ticket.

DAT Data Access Ticket (Capability)

X says Y X makes the statement Y .

X for Y Y on behalf of X .

X controls Y
X is trusted on Y : if X says Y then Y . This
is the meaning of X appearing in the ACL for
Y . [7]

A2. We assume that during user registration, users are
provided with a mechanism to authenticate the identity
of the data source. This mechanism can be verification
from a certificate authority or a token:

{KC}X =⇒ C

A3. We assume that the endorsers’ identity can be relied
upon as valid via currently available technologies such
as PKI, i.e. if a subject trusts a certificate authority
such as C which signs an endorser identity E, then:

KC =⇒ C

KC says (KE =⇒ E) → KE =⇒ E

A4. We address the issue of traffic analysis in this paper;
however we make a best effort attempt rather than
attempting to completely obfuscate users’ access pat-
terns.

A5. It is assumed that users may trust their local computing
environment. We understand that this assumption is
difficult to guarantee and the execution of sensitive
programs in untrusted environments will continue to
be a risk.

A6. We assume that attackers have a specific set of abili-
ties. We assume that attackers can view system’s data,
are able to present modified data to participants, and
may impersonate roles. We also assume that attackers
do not have access to private keys, and cannot gain
local administrator access to the systems.

A7. We assume the security of the Blockchain system,
and cryptographic integrity of the utilized encryption
protocols.

16

A8. We assume that ‘things’ either have the capability to
act as a data source or are able to transmit their data
to a data source securely.

A9. We assume that each data object has at least one data
owner.

A10. We do not address DoS attacks in the current system.
In the future works, this attack can be addressed by
the best efforts and practices.

D. Our solution
Reviewed the roles, primitives, and assumptions in our

world, we introduce our solution for empowering the IoT
users. Our solution’s goal is to provide a mechanism for the
user to control the access to their data at scale. Our system
consists of three main components:

1) Data management protocol
2) Data store system
3) Messaging service

An overview of our system with the three components is
illustrated in Figure 1. Data management protocol provides
a framework for interaction among different roles with
an access control mechanism. The protocol is a secure
capability-based system. Data store system provides a per-
sistent, distributed, and decentralized storage for the access
control component; it is based on Blockchain and provides
full transparency of transactions very similar to Bitcoin.
The messaging service plays an important role for the
scalability of our solution; it is based on publish-subscribe
architecture and designed to provide scalable, flexible, and
reliable communication between many senders and receivers
without the need of persistent connectivity.

Our solution is user-oriented; users are the bridge be-
tween different networks of things, and they are ultimately
authorizing the access to their data. Information regarding
the user’s possessions is sent to the user securely and
privately. This data is accessible whenever the user demands
to view it. Data owners are aware of the existence of data
by direct knowledge or control over the sensor/actuator
producing the data. Additionally, they may learn about the
existence of data via notifications generated by the data
sources and transmitted directly to the data owner, mainly
to communicate the management of data by the data source.

Data requests are broadcasted to all the data owners within
the system. Data owners are not required to review all the
requests. In case a data owner is not interested in sharing
any data, they can easily filter out all the requests, or they
can selectively filter out requests based on their interest.
Also, User’s trusted endorsers may verify a data request.
This helps to protect users against malicious or unethical
data requests, as well as assisting them assess the risk of
received data requests.

Data requests, upon arrival by the user, will be checked
against the user’s portfolio in the client. If the conditions are
met, and data owner is willing to share the data, a capability
ticket will be issued to the data requester which provides
necessary authorization for accessing the requested data.

Whenever two roles want to interact, one sends a message
to the messaging service component. Then, the elements

Figure 1. Our solution consists of three main components: i. data
management protocol, ii. data store system, and iii. messaging service. Data
management protocol is a secure capability-based system which provides a
framework for interaction among roles. Data store system based on the
Blockchain provides a persistent, distributed, and decentralized storage
for the access control. The messaging service based on publish-subscribe
architecture provides scalable, flexible, and reliable communication between
many senders and receivers.

of messaging service will send the message to the data
store system which is based on Blockchain. After successful
storage of the message in the Blockchain (data store system),
it will be fetched by the recipient through the messaging
service.

In the next sections, we explain our solution’s three main
components in detail.

IV. DATA MANAGEMENT PROTOCOL

Data management protocol provides a framework for
different roles to interact in a secure and private manner. The
protocol is a decentralized capability-based access control.
The communication between different roles is performed
by message passing. Each message contains a sender, a
receiver, and a payload. Messages are delivered through the
underlying “Messaging Service” which is described later in
Section VI.

In this section, first, we compare our data management
protocol to capability-based access control systems. Later,
we introduce data structures used in the message payloads
along with the messages transmitted in the protocol. Through
this section, we use notions described in Table I.

A. Capability-Based Access Control
Our system is implementing a distributed and decentral-

ized capability based access control system. Capability is a
token that gives a data requester permission to access a data
owner’s data object on a data source. Using capability based
access control, our system avoids the necessity of having a

17

centralized trusted party to confer trust. Instead, the data
owners are responsible for issuing the capability to other
users.

In our implementation, capabilities are issued by the data
owners (O). Each one indicates who is the issuer, to which
data requester (R) this capability is issued, and the object
to grant access to. Additionally, each capability contains the
access rights in the form of data queries, it also contain
information about where and how the data can be accessed.
Capabilities are not transferable or usable by any other
subject rather than intended data requester. As the result,
the data owner will remain the sole controller of the data:

(R for O) says d

Our capability is implemented as a data structure that
contains:

• Access rights: every capability issued contains a query
that adds additional restrictions on the data access.
In the case of data, restrictions are limitations on
the access to data attributes, elements, or may apply
a accumulative function on the data. In the case of
actuators, a query can restrict the types of actions to
be sent.

• Identities: they are used to describe uniquely subjects
of a capability. Due to the decentralized nature of the
system, it is not an easy task to identify every subject.
Therefore, public keys are used to identify subjects
in the capability. Based on implementations such as
RSA, or PKI, it is assumed that generated key pairs
are always unique. Capabilities are issued and used to
only represent one public key (one identity). Multiple
entities can share a public/private key pair in order to
implement joint ownership.

KX ⇒ X

In our implementation of capability, following operations
are contained:

• Create: right to create capabilities is restricted to the
data owners (O). As soon as the data object (d) is
generated and stored on a data source (S), this right
is delegated to the owners of data to give access to
possible data requesters (R). This creation of right is
not transferable.

∀R,O controls [(R for O) says d]

• Delegate: deleting a capability is not possible for the
sake of audition and non-repudiation. However, a data
object referred by the capability can be revoked by
moving (or removing) the data on the data source.

Audit is a critical feature to track who, when, and where
has access a data. In the absence of a centralized trusted
party, our implementation provides the audit feature through
the capability call back key. Data sources will inform the
data owners when capabilities are used to access data
objects.

Also, the capability is stored by the data requester. Upon

arrival, capability can be verified without an external access
control list. As a result, having more capabilities or data
objects may not require extra storage or computing power
on the data storage or the data owner.

B. Protocol Data Structures

Five data structures are used in the payload of messages.
Data Objects are data at rest or data in motion stored in the
data sources. Even though the data objects are not directly
used and transmitted in the message, the ultimate goal is to
manage their access. Data objects could be files or records
within a file repository, database, cloud provider, or any
other data storage system. In practice, there are no limiting
factors that would prevent our system from supporting other
documents such as paper documents, film, recordings or
another non-digitized media. Data Objects in motion could
be a variety of live data sources, including but not limited
to: sensors, video streams, audio streams, health trackers,
location data, etc. Lastly, a Data Object may represent an
actuator or device that the data requester may interact with.
An example may be a Physical Access Control Systems
(door locks, and alarm systems), a PTZ camera, a traffic
light, a shared vehicle ignition system, etc.

Five data structures used in the payload of messages
transmitted in the Data Management Protocol are:

1) Data Object Ticket (DOT): the right to issue a
capability to access a data object. This ticket is issued
by the data source and contains the unique id of
specified data object, the identity of the owner (KO),
the identity of the data source (KS), data access path
(DAP), and metadata describing attributes of data
object, signed by the data source:

DOT = {Data ID,KO,metadata,DAP}K′
S
,KS

2) Data Access Path (DAP): this message represents a
mechanism for an authorized role to gain access to the
data object. Some examples of this DAP can be:

• URL/URI (FTP/SFTP/SCP/HTTP/HTTPS)
• Record Locator
• Contact Information
• Instructions
• Physical Location

Note: In our implementation, tickets can be utilized as
the authentication mechanism for TLS/SFTP/SSH as
they are generated from the TLS standard.

3) Request Tickets (RT): these are messages broad-
casted by the data requester to all the subscribers. A
data request ticket typically consists of a data query,
participation conditions, duration of access, and some
relevant metadata:

RT = {Request ID,KO,Query,Conditions,Duration,

Metadata,KR}K′
R

A data query indicates to the data owner what data
the data requester intends to collect from data owners.
The query format is determined by data sources.

18

Participation conditions are constraints on data owner
in order to determine if they are qualified to participate
in the data request. For example in a medical data
collection this condition can be on:

• Nationality of Participant
• Demographic information about participant, age,

gender, or residency
• Relationships with certain data source providers,

i.e. only data stored with Google or Apple

4) Endorsements: provide a method for an endorser or
endorsers to provide additional third party information
to the data request. This information will help the data
owners to decide whether they are willing to share data
for a request. For example, endorsement can be:

• Metadata regarding the data privacy policy of the
data requester

• Results of a third party audit or attestation re-
garding the information security controls in place
at the organization

• Results of an Internal Review Board (IRB) deci-
sion

• Authorization by a government entity to conduct
a trial or research (FAA, NIH, HHS)

• Indication that data will be shared in a joint
collaboration

• Verification of the data requester authenticity by a
service provider or other trusted third party (Think
CA/Trusted Roots in PKI)

Endorsement is done by chain of signatures. For
example the following request ticket is endorsed by
two endorser E1 and E2:

{{RT,KR, FeedbackE1}K′
E1
, E1, F eedbackE2}K′

E2

5) Data Access Ticket (DAT): is a capability that gives
authorization to access a data object. The ticket is
issued by the data owner to grant the specified data
requester access to the data source and contains the
identity of the entity who will access the data. But
it is not sent directly to the data source. Additionally
it contains an identity to receive the acknowledgment
when the ticket is being used.

DAT = {KO, DOT, {Data ID,Query,

KO,K
3
O,KR}K′

O
}KS

In order to protect the real identity of data owners,
a data owner may choose to use multiple identities
during the ticket exchange process:

• KO is the identity that is shared with the data
source

• K2
O is the identity to be used to communicate with

the data requester. This identity is not known by
the data source

• K3
O is the identity to receive the acknowledgment

of ticket being used. This identity is not known
by the data requester

Figure 2. Data Management Protocol with five class of messages
transmitted among four roles. Numbers on connections correspond to the
message types.

C. Authorization Messages in the Protocol

In this section, we describe the messages transmitted in
the protocol. These five class of messages are illustrated in
Figure 2 and a summary is provided in Figure 3. Messages
contained in the protocol are:

• Message 1: Data Source Ticket Generation The goal
of this message is to let the data owner (O) know about
the existence of a new data object which belongs to the
recipient. Furthermore, the included data object ticket
allows for the owner to delegate discretionary access to
the data object.
The other included token {KS}K′

O
(from A1 assump-

tion) authenticates the data source to the data owner.
Later, DOT can be used to authenticate the recipient.

• Message 2: Data Request The data requester broad-
casts a data request to the system subscribers. This data
request may contain endorsements from one or more
endorsers which may provide supplementary informa-
tion regarding the data request.
The data owner’s client will process the data requests
against its library of data object tickets in order to check
if participation condition is met, and identify which
tickets may meet the specifications of the data query.
Endorsements as well as supplementary information
can also help the data owner to decide on whether
to participate in the data request. Data owner can
verify originate of endorsement by checking endorser’s
identities (from A3 endorsement) as well as confirming
the KR in RT is matched with the sender of request.

• Message 3: Ticket Exchange When the data owner
consents to grant access to the data object(s), a ticket
exchange message is sent to the data requester. This
ticket contains one or more data access tickets per
data source, each one containing part of requested data.
Each data access ticket includes identity KS of the data
source which is storing the data object, as well as the
address that the data can be accessed by (DAP).

19

(M1) S → O : {DOT {KS}K′
O
}KO

DOT = {Data ID,KO,metadata,DAP}K′
S

(M2) R → ∗ : {{RT, Feedback}K′
E1

,KE1,KR}K′
R
,KR

RT = {Request ID,Query,Conditions,
Metadata,Duration,KR}K′

R

(M3) O via K2
O → R : {Request ID,K2

O,

[{Data ID,DAP,DAT,KS}K2′
O
]+}KR

DAT = {KO, DOT, {Data ID, Request ID, Query,

KO,K
3
O,KR}K′

O
}KS

(M4) R → S : {[{DAT}K′
R
]+,KR}KS

(M5) S → O : {KS , DOT,

{Query,KO,K
3
O,KR}K′

O
}K3

O

Figure 3. Five access control messages in the Data Management Protocol.

• Message 4: Data Access As as a result of the message
3, the data requester has now received the data access
path as well as any other relevant information needed
to access the data. Depending on the application, the
data requester may contact the data source(s) directly
or indirectly through the system.
Data source can verify the access by testing:

1) DOT is signed by the data source S and includes
KO. This will verify O right to grant a capability
on Data ID:
DOT ⇒ O controls Data ID

2) DAT includes signed Data ID, Query, and KR

with KO which matched with requester key. This
verifies O grant a capability on Data ID using
Query for R:

{KR, Data ID , Query}K′
O
⇒

O says (KR ∧ Data ID ∧ Query)
(R for O) says DataID ∧Query

3) Optionally, the data source can check Request ID
against a data request black list.

• Message 5: Access Announcement In step 5, it is
expected that Data Sources will announce to the system
that access has been made utilizing the DAP(s) and
credentials provided in Step 3 and accessed as part of
Step 4. This allows the data owner to monitor accesses
to their data and inform other parties about successful
transmission of transaction.

V. DATA STORE SYSTEM

In this section we explain the design of the access
control data store system. This storage system supports

the distributed access control and is separated from the
source data. Separation of source data grants the possibility
of keeping source data at its origin. The access control
data store component is a persistent, scalable, decentralized,
and distributed storage system based on Blockchain. We
model the Blockchain as a form of persistent data storage
with update notification support. It overcomes the single
point of trust and failure, and provides full transparency of
transactions very similar to Bitcoin. It has to be noted that
the Bitcoin’s Blockchain is just an example of an appropriate
protocol, possibly, there exists other such appropriate proto-
cols. Before explaining the system, it is necessary to review
core components of the system which are adopted from the
Bitcoin’s Blockchain. Then we show how Blockchain can
be used as data storage:

A. Blockchain
Bitcoin, the system first introduced by Nakamoto [9], is

the first truly decentralized global currency system. Like
any other currency, its main purpose is to facilitate the
exchange of goods and services by offering a commonly
accepted value. Unlike traditional currencies however, Bit-
coin does not rely on a centralized authority to issue, control
the supply, distribution and verification of the validity of
transactions. Bitcoin enables a network of computers to
maintain a collective bookkeeping via the internet. This
bookkeeping is neither closed nor in control of one party.
Rather, it is public and available in one digital ledger called
Blockchain which is fully distributed across the network and
relies on a network of volunteers that collectively implement
a replicated ledger and verify transactions. Traditionally,
Blockchain has been discussed in the context of Bitcoin,
however Blockchain goes beyond the scope of consensus
currency, introduces many new and innovative methods for
propagating information in the network, public transaction
history, multi granularity and many others.

Blockchain uses a multi-hop broadcast to propagate trans-
actions and blocks through the network to update the ledger
replicas. In the Blockchain, all transactions are logged
including information on the date, time, participants and
amount of every single transaction. Each node in the network
owns a full copy of the Blockchain and on the basis of
cryptographic principles, the transactions are verified by
the so-called Bitcoin Miners, who maintain the ledger. The
systematic eventual consistency principles also ensure that
these nodes automatically and continuously agree about the
current state of the ledger and every transaction in it. If
anyone attempts to corrupt a transaction, the nodes will not
arrive at a consensus and hence will refuse to incorporate the
transaction in the Blockchain. So every transaction is public
and thousands of nodes unanimously agree that a transaction
has occurred on particular date and time. In Blockchain, trust
comes from the fact that everyone has access to a shared
single source of truth.

In our solution, we use the Blockchain to store the access
control data in a decentralized manner. Prior to describing
the decentralized access control, we need to discuss the
Blockchain as data storage.

20

Figure 4. Overview of the Blockchain. Every block contains a hash of
the previous block. New transactions are constantly added to the end of the
chain, source [9].

B. Data Model in Blockchain

A block chain is a transaction database shared by all nodes
participating in a system. As pointed out earlier, Blockchain
can be used as data storage for many different applications;
it provides various storage functionalities, among those three
primitives are essential to our system: i. retrieve, ii. update,
and iii. add. Further, we explain how these primates are
supported in the Blockchain and form the data flow, but
first we review some definitions in the Blockchain adapted
from Nakamoto paper [9] and the Bitcoin Developer Guide
[10], illustrated in Figure 4:

• Transaction: a transaction is a transfer of value (e.g.
Bitcoin, information) that is broadcast to the network
and collected into blocks. A transaction references
previous transaction outputs as new transaction inputs
and dedicates all input Bitcoin values to new outputs.
It is possible to browse and view every transaction ever
collected into a block.

• Block: transaction data is permanently recorded in
files called blocks. Blocks are organized into a linear
sequence over time (also known as the block chain). As
Figure 4 illustrates, every block contains a hash of the
previous block. New transactions are constantly being
processes by miners into new blocks which are added
to the end of the chain and can never be changed or
removed once accepted by the network.

• Mining: is a distributed consensus system that is used
to confirm transactions and add transaction records to
the public ledger of past transactions (Blockchain). It
enforces a chronological order in the Blockchain and
allows different computers to agree on the state of the
system.

• Miner: is an individual or an organization performing
the mining. Miners dedicate considerable computa-
tion power for maintaining the Blockchain. In Bitcoin
miners are incentivized by a reward i.e. Bitcoins. In
our system miners are researchers and organizations
requesting and analyzing the data; it is in their benefit
to mine the Blockchain.

• Blockchain: is a transaction database shared by all
nodes participating in a system. A full copy of a
Blockchain contains every transaction in order, dating

back to the very first one. The entire Blockchain can
be downloaded and openly reviewed by anyone.

• Genesis block: is the first block of a Blockchain. The
genesis block is hardcoded into the software and is a
special case in that it does not reference a previous
block.

Our system’s data flow is based on three essential primitives
enabled by the Blockchain:

1) Retrieve: per design, the entire Blockchain can be
retrieved and downloaded by anyone. With this infor-
mation, one can find out how much value (e.g. Bitcoin,
information) belonged to each entity at any point in
history.

2) Update: transactions and mining results are broad-
casted in the network, every new block is ordered and
linked to the previous block which makes it impossible
for nodes to miss any added information.

3) Add: adding data is the same process as transferring
data:

a) When a node in a Blockchain wants to transfer
data, the node broadcasts the request, the request
is received by all the nodes on the Blockchain
network.

b) After receiving the request, nodes which are min-
ers will add this most recent transaction request
into a block. Then they run the new block and
the previous block into a set of hash function
based calculations.

c) All the miners start racing on the compli-
cated cryptographic puzzle. When the first miner
solved the block, it adds the block to the end of
Blockchain and will broadcast it to its peers.

d) After the broadcast, peers will check the trans-
action and will start using the new version of
Blockchain.

In the next section, we discuss different mechanisms to allow
our clients to connect to the data store system. We use the
above primitives and implement a publish-subscribe mes-
saging servie which delivers transactions to their intended
recipients.

VI. MESSAGING SERVICE

In the world of empowered IoT users, interaction with
the data flow is a major issue and it is crucial to adopt the
most scalable solution. In general, there are three different
client data access models available for users to access and
communicate with the data store system: i. direct access, ii.
server-client model, and iii. publish-subscribe model.

In this section, we review these three options in the
context of the IoT world. We explain how publish-subscribe
architecture provides scalable, flexible, and reliable commu-
nication between many senders and receivers without the
need of persistent connectivity. Furthermore, we explain how
we adapt the publish-subscribe model into our solution. In
our system, whenever two roles want to interact, one sends

21

Figure 5. Client Access Models to the BlockChain. Left: Direct Access,
Right: Server Client. Blue lines indicate Blockchain access, red line
indicates API call.

a message to the messaging service component. Then, the
elements of messaging service will send the message to
the data store system which is based on Blockchain. After
successful storage of the message in the Blockchain (data
store system), it will be fetched by the recipient through the
messaging service.

A. Data Access Model
In order to address a variety of use cases we present three

different client data access models for data owners and other
participants to interact with the Data Flow.

• Direct Access: Blockchain openness allows anyone
to download the whole distributed database up to the
present and subsequent updates as deltas (blocks).
(Figure 5-Left) This method is very straightforward
and requires minimal implementation. It provides full
validation of the Blockchain, as well as maintaining
the highest level of safety and privacy. However, this
model is not feasible to implement in all environments.
This model requires a powerful, always-on computer to
handle a large amount of data and to query this data.
Devices such as mobile phones, embedded systems or
other less powerful systems typically lack the resources
to interact directly with the data flow. In reality, each
entity whether it is Data Owner, Data Source, or Data
Requester, is interested only in a small fraction of
data. Excess amount of redundant processing, as each
client will need to process and download the entire
Blockchain, results in a high amount of waste.

• Server-Client: In environments where there is a high
degree of trust between two entities a client-server
model avoids the redundant processing associated with
the Direct Access Model. In a client-server model the
server handles all of the client’s interactions with the
data flow (Figure 5-Right). In these environments the
client’s public and private keys are transmitted to the
server which acts on the client’s behalf. Typically the
client’s interaction with the data flow will be completely
abstracted by an application that interprets communi-
cation received from the server. Some strengths of this
model include: it allows for password resets or other
ways for the server to validate the client’s identity, in

Figure 6. Publish-Subscribe client access model to the Blockchain. Blue
lines indicate the Blockchain access, red lines indicate API call, and black
lines indicate publish-subscribe data transfer.

case the client loses its keys. This model introduces
risks into the system. Since client’s keys are stored on
the server, in a server-client environment, if a server
is compromised, a client’s keys might also get stolen.
Since these servers typically store large number of keys,
they are often the target of attackers.

• Publish-Subscribe (Pub-Sub): This model represents
a mixture of the previous two systems. In a Pub-
Sub system the Publisher or Server monitors the data
flow on behalf of the Subscriber (Figure 6). This
substantially minimizes the processing load placed on
the data owner. Clients subscribe to a set of queries. The
publisher then filters out incoming traffic based on these
queries, and only communicates matching queries to
the subscriber. In these systems, the publisher does not
have access to the data. It communicates the encrypted
information, via a subscription, to the subscriber who is
then able to decrypt the information with their private
key. The traffic will be decrypted and processed on the
client side. The only query required in the protocol is
matching the destination to an identity. This query can
be implemented very efficiently using Bloom filter and
provided by the pub-sub model.

Next, we explain how we adopt the publish-subscribe model
into our solution.

B. Publish-Subscribe Model
In this section, we explain how users’ clients utilize the

subscribers to receive specific updates from the Blockchain.
As explained in the previous section, a Blockchain is a
collection of blocks. Each block contains a set of trans-
actions such as ticket request and data access, between
different roles in the system. By using a publish-subscribe
model, publishers join the Blockchain, collect and filter
appropriate transactions, and provide subscribers with their
requested transactions. This process includes the following
mechanisms:

22

1) Join: after joining the Blockchain, each publisher
receives updates and will be able to access previous
blocks in the Blockchain. Then, subscribers subscribe
to one or more publishers, request a dedicated cache
space to be initiated on the publisher, and provide
them with a set of identities (public keys). The set of
identities determines which transactions the subscriber
is interested to receive. The cache space is intended
to store data so data can be served faster when the
subscriber requests it. It should be noted that pub-
lishers are located on machines that have access to
the Blockchain updates, and also have stored copy of
the Blockchain for fast local access. Subscribers are
located on the client’s machine.

2) Receive updates: whenever a new subscriber is added,
it is typically specified from which past block it
would like to start receiving new blocks. Because
of this, publishers can ensure that they are sending
updates beginning with the correct block. Ideally all
subscribers will receive updates from the same block,
i.e. the last added block. Hence, publishers use one
reader to retrieve updates, and then relay them to all
interested subscribers. In the case of error conditions,
the publisher needs to restart sending updates from the
last acknowledged location. For this, the publisher may
need to read an older update. If many subscribers are
recovering simultaneously, a naive implementation, a
publisher would read from many positions in blocks
simultaneously, which might cause high publisher I/O
load. Another approach is to have one recovery thread
from the oldest position working towards the end.

3) Filter: after receiving the updates from the
Blockchain, publisher breaks down the blocks
into original transactions. Then, transactions are
filtered on the publisher side; the subscribers inform
the publishers of what filters they need. The Publisher
only delivers updates that meet the specifications of
the supplied filters. While the evaluation of filters
does place some additional processing overhead on
the publisher, it helps conserve both memory and
network bandwidth. This is especially the case when
there are many subscribers that require only a small
subset of the data.
Subscribers request filtering for a set of identities that
may be matched with either the sender or recipient of
a transaction. For example, a subscriber may request
that a publisher filters messages only set as broadcast
to all members. Using this structure we can easily
implement a Bloom filter, which works efficiently
under these conditions. If a transaction is matched,
it will be kept and stored in the cache corresponding
to the subscriber.

4) Deliver: reliability is an important requirement. For
example, one missed update could lead to permanent
corruption in a user’s portfolio. Subscribers receive
the update stream of blocks. Publishers periodically
track the delivery of updates by having subscribers

acknowledging the delivery of updates. It is assumed
that Subscribers are stateless, i.e it is not required for
them to keep track of the state of deliveries. When
a subscriber asks for receiving its updates, publisher
sends all the transactions in the cache corresponding
to the subscriber and asks for the subscriber’s ac-
knowledgment. Upon receiving the acknowledgment,
publisher clears the cache. Otherwise, publisher keeps
trying upon receiving the acknowledgment.

It should be noted that one client may deploy many
subscribers, and one subscriber could join many unique
publishers. Each publisher joins only one Blockchain.

VII. DISCUSSION AND FUTURE WORKS

Scalability and security correctness are two important
requirements for a practical IoT. Intuitively, in our proposed
system, these two factors are met through the underlying
mechanisms. System scales as the underlying storage layer
is based on the Blockchain and access layer is based on
the publish-subscribe best practices, both very well studied
and practically proven methods. Even though the intuition
is sound, further work is necessary to show the scalability
with thorough experiments. For the prototype, we plan to
use Etherium Blockchain [11]. As for metrics, Blockchain
throughput and complexity, publish-subscribe throughput
and performance are examples of necessary metrics to
evaluate and analyze.

Another important requirement for a practical IoT, is
the security correctness of the control layer. Our proposed
system is based on delegation by certificate method. This
method and its security correctness is described in Abadi et
al’s [7] and [8]. Further investigation is required to formally
prove our proposed capability based access control.

We also realize that sensory power consumption is a major
concern in IoT and Blockchain based systems. We believe
that intelligent data subscription of sensors is a potential
solution. However, further investigation is planned in the
future work.

VIII. RELATED WORKS

Other user-oriented and privacy preserving designs in IoT
have been proposed [12], [13], [14], [15]. Some models
have utilized publish-subscribe methods to support the flex-
ibility in configuring and building assemblies of services
or peer-to-peer data management [16], [17], [18]. Others
have used capability based security and Access Control
Lists, in distributed contexts [19], [20], [21], [22], [23]. For
data sharing and privacy-preserving distributed data mining
problem, some cryptography solutions have been proposed
[24], [25], [26]. However, these methods are commonly
impractical at the scale of IoT with billions of things and
millions of users.

IX. CONCLUSION

This paper describes a new user-oriented world of IoT. In
this world, users are empowered by their ability to control
the access to the data which knowingly or unknowingly was
generated and belongs to them. This data can be requested by

23

other users and organizations to be collectively analyzed and
potentially deliver value to the society. Our solution is based
on well-tested principles and practices used in large-scale
distributed systems and cryptocurrencies, exploiting capabil-
ities, access lists, publish-subscrib, and Blockchain methods.
The scheme has many use cases including healthcare, smart
cities, and automated vehicles.

ACKNOWLEDGMENTS

This research program is supported by a collaborative
award from the National Science Foundation (NSF award
numbers CNS-1329686, CNS-1329737, CNS-1330142, and
CNS-1330491).

REFERENCES

[1] Z. D. Stephens, S. Y. Lee, F. Faghri, R. H. Campbell, C. Zhai,
M. J. Efron, R. Iyer, M. C. Schatz, S. Sinha, and G. E.
Robinson, “Big data: astronomical or genomical?” PLoS Biol,
vol. 13, no. 7, p. e1002195, 2015.

[2] S. Hu, H. Liu, L. Su, H. Wang, T. F. Abdelzaher, P. Hui,
W. Zheng, Z. Xie, and J. A. Stankovic, “Towards automatic
phone-to-phone communication for vehicular networking ap-
plications,” in INFOCOM, 2014 Proceedings IEEE. IEEE,
2014, pp. 1752–1760.

[3] Wired. (2016, Jan.) Gm and lyft are building a network of
self-driving cars. [Online]. Available: http://goo.gl/PVvDvP

[4] Reuters. (2015, Jan.) Surprise! with $60 million genentech
deal, 23andme has a business plan. [Online]. Available:
http://goo.gl/AMqJYm

[5] Forbes. (2014, Dec.) Google faces $18 million fine for
web privacy violations: Dutch watchdog. [Online]. Available:
http://goo.gl/0xq3O5

[6] B. C. Neuman and T. Ts’ O, “Kerberos: An authentication
service for computer networks,” Communications Magazine,
IEEE, vol. 32, no. 9, pp. 33–38, 1994.

[7] M. Abadi, M. Burrows, B. Lampson, and G. Plotkin, “A cal-
culus for access control in distributed systems,” ACM Trans-
actions on Programming Languages and Systems (TOPLAS),
vol. 15, no. 4, pp. 706–734, 1993.

[8] B. Lampson, M. Abadi, M. Burrows, and E. Wobber, “Au-
thentication in distributed systems: Theory and practice,”
ACM Transactions on Computer Systems (TOCS), vol. 10,
no. 4, pp. 265–310, 1992.

[9] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash sys-
tem,” Consulted, vol. 1, no. 2012, p. 28, 2008.

[10] Bitcoin developer guide. [Online]. Available: https://bitcoin.
org/en/developer-guide

[11] V. Buterin, “A next-generation smart contract and decentral-
ized application platform,” White Paper, 2014.

[12] J. Al-Muhtadi, R. Campbell, A. Kapadia, M. D. Mickunas,
and S. Yi, “Routing through the mist: privacy preserving
communication in ubiquitous computing environments,” in
Distributed Computing Systems, 2002. Proceedings. 22nd
International Conference on. IEEE, 2002, pp. 74–83.

[13] M. Román, C. Hess, R. Cerqueira, A. Ranganathan, R. H.
Campbell, and K. Nahrstedt, “A middleware infrastructure for
active spaces,” IEEE pervasive computing, vol. 1, no. 4, pp.
74–83, 2002.

[14] R. Campbell, J. Al-Muhtadi, P. Naldurg, G. Sampemane, and
M. D. Mickunas, “Towards security and privacy for perva-
sive computing,” in Software SecurityTheories and Systems.
Springer, 2003, pp. 1–15.

[15] X. Wang, W. Cheng, P. Mohapatra, and T. Abdelzaher,
“Enabling reputation and trust in privacy-preserving mobile
sensing,” Mobile Computing, IEEE Transactions on, vol. 13,
no. 12, pp. 2777–2790, 2014.

[16] M. Blackstock, N. Kaviani, R. Lea, and A. Friday, “Magic
broker 2: An open and extensible platform for the internet of
things,” in Internet of Things (IOT), 2010. IEEE, 2010, pp.
1–8.

[17] L. Roalter, M. Kranz, and A. Möller, “A middleware for intel-
ligent environments and the internet of things,” in Ubiquitous
Intelligence and Computing. Springer, 2010, pp. 267–281.

[18] D. Guinard, V. Trifa, S. Karnouskos, P. Spiess, and D. Savio,
“Interacting with the soa-based internet of things: Discovery,
query, selection, and on-demand provisioning of web ser-
vices,” Services Computing, IEEE Transactions on, vol. 3,
no. 3, pp. 223–235, 2010.

[19] J. Li and A. H. Karp, “Access control for the services oriented
architecture,” in Proceedings of the 2007 ACM workshop on
Secure web services. ACM, 2007, pp. 9–17.

[20] G. Sampemane, P. Naldurg, and R. H. Campbell, “Access
control for active spaces,” in Computer Security Applications
Conference, 2002. Proceedings. 18th Annual. IEEE, 2002,
pp. 343–352.

[21] S. Gusmeroli, S. Piccione, and D. Rotondi, “A capability-
based security approach to manage access control in the
internet of things,” Mathematical and Computer Modelling,
vol. 58, no. 5, pp. 1189–1205, 2013.

[22] J. Liu, Y. Xiao, and C. P. Chen, “Authentication and access
control in the internet of things,” in 2012 32nd International
Conference on Distributed Computing Systems Workshops.
IEEE, 2012, pp. 588–592.

[23] J. L. Hernández-Ramos, A. J. Jara, L. Marın, and A. F.
Skarmeta, “Distributed capability-based access control for
the internet of things,” Journal of Internet Services and
Information Security (JISIS), vol. 3, no. 3/4, pp. 1–16, 2013.

[24] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Inter-
net of things (iot): A vision, architectural elements, and future
directions,” Future Generation Computer Systems, vol. 29,
no. 7, pp. 1645–1660, 2013.

[25] V. Oleshchuk, “Internet of things and privacy preserving tech-
nologies,” in 2009 1st International Conference on Wireless
Communication, Vehicular Technology, Information Theory
and Aerospace&Electronic Systems Technology, 2009.

[26] C. C. Aggarwal and S. Y. Philip, A general survey of privacy-
preserving data mining models and algorithms. Springer,
2008.

24

