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Abstract—Participatory sensing plays an important role in
Internet of Things (IoT) applications to collect large scale data
via powerful sensors from ubiquitous devices. However, without
a proper incentive mechanism to pay rewards to the users, the
application provider (platform) cannot keep the motivation of
users due to their costs during the data collection and uploading
process. Moreover, conventional incentive mechanisms can hardly
meet the requirements of data quality in various application
scenarios in which the importance of data quality differs. In this
paper, we present a novel incentive mechanism for sustainable
participatory sensing considering the user selection and payment
allocation in the long run. It takes data quality and historical
participation information into account to prevent users from
dropping out. It makes users report their costs truthfully and
easily adjusts the adaptability to applications with different qual-
ity requirements. Extensive evaluation results demonstrate that
our solution outperforms alternative state-of-the-art approaches
and significantly improves system sustainability.

I. INTRODUCTION

In this paper, we develop a novel incentive mechanism

for participatory sensing applications that successfully retains

high-quality users to improve system sustainability. This work

is motivated by the emergence of participatory sensing appli-

cations [1], where data are collected from smartphones, social

networks, and other sensing devices, then offloaded to back-

end cloud servers. We assume that users will typically expect

rewards from the application provider for contributing to the

participatory sensing platform, otherwise lose momentum and

finally quit. The application provider, on the other hand, aims

to keep those who generate data with high quality stick to the

platform, meanwhile minimize the total cost of rewards. This

research challenge motivates the work described in this paper.

Participatory sensing plays an important role in the Internet

of Things (IoT) field and allows a group of users to con-

tribute sensory information to form a body of knowledge. A

growth in mobile devices, such as the smartphones, which has

rich and ubiquitous sensors, has made participatory sensing

viable in large scales. Participatory sensing can be used to

retrieve information about the environment, weather, urban

mobility, congestion as well as any other sensory information

that collectively forms knowledge [2]. Therefore, continuous

collection of data with sufficiently good quality is the most

critical factor for sustainable participatory sensing platforms.

To avoid users losing their interests and momentum in

participating the service, the concept of incentive mechanism
has been proposed in research community in recent years [3].

Typically, the platform claims several sensing tasks at first,

Fig. 1. Incentive mechanism in participatory sensing.

then each user asks the platform for a price (also called a bid)

as the payment of the data they collected, finally the platform

would make decisions on purchasing data from which users

and the amount of their rewards based on the value of data,

as illustrated in Figure 1. For instance, mechanisms based on

Reverse Auction [4] allows users to bid for selling their sens-

ing data, where the platform selects a certain number of users

with lower bid price. The selected users are called winners,

while the rest are losers. Then the platform allocates payments

for the winners. As another example, Random Selection with

Fixed Price (RSFP) [5] randomly selects winners from users

and pay the same reward to all winners. However, all existing

work aims to maximize the quantity of data or minimize the

platform’s cost, but ignores the quality of the data and the

stickiness of users. We argue that this may significantly reduce

the system sustainability in the long run.

The philosophy underlying our work is that we believe it

is reasonable to increase the rewards to users who always

contribute data with high quality, instead of paying just as

much as the user’s bid (zero profit) as in existing incentive

mechanisms, to achieve a sustainable participatory sensing

platform. The encouraging nature of this new approach helps

control the whole bidding process and avoid the dropping out

of high-quality users.

The main contribution in this paper lies in that we de-

velop a novel incentive mechanism in participatory sensing

applications, in which user historical information and data
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quality are taken into account and a decision making algo-

rithm is designed to exploit the trade-off between minimizing

the platform’s cost on rewards and keeping users active on

participation. The biggest challenge behind this problem is

that as the result of information asymmetry, the exact utility

composed of quality of users is unknown, thus conventional

incentive mechanisms are not applicable here. Instead, our so-

lution predicts such information by taking advantage of users’

historical data, and provides a decision making algorithm to

decide the winner set and the payment to each winner.

Our solution is evaluated by results from extensive sim-

ulations with up to one thousand participants. Evaluation

results demonstrate that our proposed solution successfully

improves the sustainability of participatory sensing platform,

more importantly, we achieve the goals of maintaining the

platform utility at a high level and keeping the users active. In

addition, the design of our incentive mechanism is general

enough to be used in any long-term participatory sensing

application.

The remainder of this paper is organized as follows. We

compare our work with state of the art in Section II and

present the system model and incentive algorithm in Section III

and IV, respectively. The evaluation for our proposed solution

is discussed in Section V. Finally, we conclude the paper in

Section VI.

II. STATE OF THE ART

Thanks to the fast development of smartphones and social

networks, participatory sensing receives more attention in vari-

ous applications in recent years. People share their information

about the point of interests (POIs) to social networks and

special-purpose services, to help each other in health [6], [7],

environmental monitoring [8], [9], transportation [10]–[12],

disaster response [13], personal security [14] and so forth.

For instance, [9] has presented the Personal Environmental

Impact Report (PEIR) that uses location data sampled from

everyday mobile phones to calculate personalized estimates

of environmental impact and exposure. [12] predicts the fuel

consumption for each segment of the road and recommend

a fuel-efficient path to the driver by collecting consumption

together with other information about moving vehicles. How-

ever, due to the opportunistic nature of participatory sensing,

continuously collecting data with sufficient quality is the most

critical factor for participatory sensing platforms. Our work

takes advantage of these services, aiming to provide users with

encouraging incentive to improve their stickiness.

The work proposed in this paper complements a large body

of participatory sensing literature that focused on short-term

data collection. For example, a platform-centric and a user-

centric models are introduced in [15]. In the platform-centric

model, the platform determines the payments to users by their

sensing time following a Stackelberg Equilibrium, with the

assumption that platform has the knowledge about unit costs

of users. In the user-centric model, the user claims a task set to

accomplish and the bid price. The aim of platform in both case

is to maximize the total value of data completed subtracts the

payments to winners. A reward decision strategy is designed in

[16] for client (platform) to maximize the utility. If the joined

users are more than a certain number, the client will get a

utility and pay each user the equally divided reward, otherwise

the auction is failed. Complete and incomplete information

scenarios are investigated under probabilistic framework. [17]

designs a mechanism in a location based multi-task scenario.

The users claim multiple tasks-bid pairs to the platform, then

the platform choose some pairs to cover all the tasks while

minimizing the total payments. An approximate algorithm is

proposed for determining the winning bids, then a critical

payment scheme is implemented to guarantee that submitted

bids of users reflect their real costs. A payment allocation

function under all-pay auction has been designed in [18] to

maximize the platform’s utility with a stochastic framework.

In this work, all the users need to upload their data while only

one user can be selected as the winner. This method is valid

for risk-averse user and in information asymmetry condition.

And the mechanism is proved to satisfy individual rationality.

An online mechanism is proposed in [19], in which the

platform can decide whether to pay the user whenever she

arrives. Conditions that users are with or without an arrival-

departure time have been discussed. The user will be selected

if the cost performance of this user is higher than a dynam-

ically changing threshold. This mechanism also satisfies bid

truthfulness. Another online mechanism is designed in [20],

which applies a sequential all-pay auction to solve a multi-

task utility optimization problem. The effect of extensive user

participation and users’ efforts into consideration. [21] designs

an incentive negotiation mechanism, in which the platform

will interact with the users by broadcasting prices for each

subregion and collecting users’ responses before selecting

winners and allocating payments. A utility-based incentive

mechanism with the concept of micro-economics via a third-

party server is designed in [22], [23], in which the demand

and supply influence the value of data. Three models in

single-requester single-bid, single-requester multiple-bid and

multiple-requester multiple-bid conditions are discussed in

[24], where “requester” is the platform and “bid” means user.

[25] designs three online incentive mechanisms, in which one

method pursues utility maximum while the other two ensure

bid truthfulness. Also, the mobile nature of users is discussed

in this paper.

The IDF method is designed in [26], which studies the

fairness of incentive distributions among participants in a

specific scenario, where users are both data contributors and

data consumers. The fairness was reflected on the relationship

between data contribution and received service quota for future

data consumption of the users. A mechanism considering

amount and distribution of samples in data is designed in [27].

This mechanism uses a weighted entropy as quantitative metric

to evaluate the distribution of samples and a greedy-based

allocation strategy. [28] designs an optimal reverse auction

mechanism considering the calculation of data value and pay-

ments to be allocated with bid truthfulness using a stochastic

framework. A multi-attributive auction is designed in [29],
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which considered many attributes of the sensing data. The

platform measures the value of the data and gives the users the

incentive through price negotiation. [30] designs two methods

which consider optimizing the social welfare (subtracting the

total costs of all users from platform’s utility), in which the

former is based on the Lagrangian dual decomposition while

the later can be converted to optimal pricing problem.

This paper is different from the above work in considering

the long-term development of participatory sensing platforms

and emphasize the stickiness of high-quality users to the

platform.

More importantly, our work focuses on a new problem

in participatory sensing. Namely, the problem of designing

incentive mechanism to improve system sustainability. Past

research on long-term incentive mechanism in participatory

sensing describes how to prevent users from dropping out of

the service, since the losers of the selection based on reverse

auction take higher risks than the winners in each round due

to several factors (e.g. higher costs than winners) which may

lead to a reduction of number of users, and will eventually

increase the cost of platform.

A winner selection strategy is proposed in [31] for selling

e-services with a method to prevent bidder drop problem.

The service provider allocates services to the bidders who bid

higher than a threshold, and the rest of services are primarily

sold to the bidders who bid less than the threshold but have

higher probabilities to drop out in next round. A Reverse

Auction based Dynamic Price with Virtual Participation Credit

(RADP-VPC) mechanism using fixed payments is introduced

in [5]. The service provider (platform) gives the virtual credits

to the losers in reverse auction, which is used in winner

selection stage as if the bidders’ bids are reduced by the

credits. The credit keeps rising when the bidder continuously

lose and will be reset to zero once she wins. Besides, the

provider reveals the highest price of the winners in this round

to the losers, to recruit them if this bid is higher than the

losers’ expected bids. A location based data collection with

budget constraints is discussed in [32]. It is assumed that each

user has a coverage of sensing, and the valuable points covered

by the user is the task set that the user has completed. The

object is to select the cost-minimum set of the users who

cover all the points. The authors use an approximate algorithm

combined with the method the same in [31] to select users

while preventing them from dropping out and recruiting them

back. [33] provides a mechanism that maximize the social

welfare, which is the total payments to users, and prevents

users from dropping out by keeping all participated users’

winning probabilities higher than the dropping threshold of

the users.

This paper complements that past work by taking a step

further and looking at the important problem of how to

prevent high-quality users dropping out. This unique challenge

comes from the design of auction process in which users with

high quality may be treated unfairly and lose interests to the

platform gradually.

Finally, our system design is related to state of the art

auction algorithms in other application scenarios. For example,

[34] considers the problem of spectrum sharing among primary

(licensed) users (PUs) and secondary (unlicensed) users (SUs)

based on bandwidth auction, in which each SU makes a bid

for the amount of spectrum and each PU assigns the spectrum

among the SUs according to the information from the SUs

without degrading PS’s own performance. [35] presents a

new algorithm of on-demand P2P streaming protocol design

which deems streaming session as an auction where each peer

participates locally by bidding for and selling media flows

encoded with network coding. However, our paper is different

from this existing work in that our mechanism is based on

reverse auction while the above two are based on ordinary

auction (where bidders pay money). Besides, our method

uses single-buyer multi-seller framework while the other two

methods are in multi-buyer multi-seller conditions.

To the best of our knowledge, no previous work has been

applied to participatory sensing application scenarios where

incentive mechanisms were investigated that (i) takes data

quality and user historical information into consideration and

that (ii) aims to improve system sustainability. Our paper fills

in this gap by proposing a novel incentive mechanism in which

user historical information and data quality are taken into

account and a decision making algorithm is designed to exploit

the trade-off between maximizing the platform’s utility and

keeping users active on participation.

III. SYSTEM MODEL

In this section, we present the system model for incentive

mechanisms to achieve sustainable participatory sensing. We

first describe the model and assumptions, then illustrate the

problem statement in detail.

A. Model and Assumptions

Our system is designed to operate in a participatory sensing

platform of N users that can generate sensory data via smart-

phones or other mobile devices. The set of users is denoted by

U = {1, 2, · · · , i, · · · , N}. The participatory sensing serves in

a long-term scheme, i.e., it collects data from users in multiple

rounds, denoted by a sequence of time slots {1, 2, · · · , t, · · · }.
In each round t, user i can upload her data with quality

qit ∈ (0, 1], and the quality is set to 0 if this user does not

participate in this round. The platform pays the users for the

uploaded data based on their quality.

We assume that the platform knows all historical informa-

tion of all users. Ideally, if the platform knows all information

about data quality from users, it can easily pick up the winners

after negotiation. However, it is impractical for the platform to

foresee the data quality as it is not a priori known information.

In order to find a reasonable measurement to select winners,

we leverage the historical information of the users, such as

participation frequency (i.e., how many times this user has

participated in) and average data quality in the past.
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To represent the average data quality, we introduce a par-

ticipation array hi for each user,

hi
t =

{
1 if user i participates in round t

0 otherwise

to represent the participation information of a user, which

contains t′−1 elements in round t′ (the same as other arrays in

rest of this paper), since all information about users updates

after each round. In addition, we use qi to denote the data

quality series of user i in past rounds. Therefore, the average

data quality can be represented by q̄i = hi·qi

|hi| , in which | · |
indicates the l − 1 norm of the array, and the average quality

is set to a constant (for convenience) when the first time

user i participates in the platform. Since there is no priori

information about quality in the current round, the average

data quality only considers historical information.

The joined users in one round form the active user set Ut.

For each participant in active user set at round t, there is a cost

cit, and a bid bit from this participant. The bid is no less than

the cost bit ≥ cit, as we assume that a rational user won’t take

the risk to get negative revenue. Some active users are chosen

as winners at round t, and they compose the winner set St.

The payments to active user i is pit, p
i
t ≥ bit if i ∈ St to ensure

the winners get a non-negative profit, otherwise the payment is

set to 0. Since the formulation of processes in different rounds

are the same to each other, we omit the subscript t in the rest

of the paper unless otherwise specified.

The auction process in each round acts as follows: First,

users bid prices to the platform to compensate the prediction

costs generated in data collection. Then, the platform selects a

subset of them, allocates payments and then receives the data.

The decision making of selection and allocation processes are

all based on the historical information of users as well as the

remaining budget of the platform. In order to combine the

participation information and average quality of the user, and

to support a sustainable participatory sensing, we propose the

concept of “fitness” to replace the conventional total utility

the platform expects to obtain, so as to represent the trade-off

between system gain and high-quality user stickiness. For each

active user in a round, the fitness is defined as f i = g(hi) · q̄i,
where g(·) measures the historical participation behaviors of

the users. The total fitness of users in the winner set is F =∑
i∈S (g(hi) · q̄i), which contains the historical participating

information and data quality of users.

The platform allocates payments to all winners, the total

cost of the platform in each round is denoted as P =
∑

i p
i,

it is unnecessary to indicate whether i is in winner set S since

for those who lose in that round, their payments are zeros. The

platform has a finite budget R for each round, the total cost of

platform cannot exceed the budget in each round, i.e. P ≤ R.

The total utility of the platform in one round should be the

sum of real qualities of the winners. However, since we only

know the average quality and the platform won’t figure out

qualities of this round before it ended, we cannot straightly

maximize the utility but the expected-utility calculated by

average quality. Thus the utility is defined as M =
∑

i∈S q̄i,
which means the expectation of the total qualities the platform

can get from the winners in this round.

B. Problem Statement

Under this system model, we are interested in solving the

following problem: which users should be chosen as winners

in each round? Our goal is to find a winner set S to maximize

the fitness in each round, thus the optimization function is:

max
S

∑
i∈S

(g(hi) · q̄i)

s.t.
∑
i∈S

pi ≤ R

The biggest challenge lies in the information asymmetry,

i.e., the platform has no priori knowledge about neither the

qualities of the users, nor their real costs in performing data

collection. Thus how to make decisions about payment to each

user and the selection of the winners to optimally reduce this

asymmetry is the most important and complex part of the

designing. Next, we will describe the details of sustainable

incentive mechanism.

IV. SUSTAINABLE INCENTIVE MECHANISM

In this section, we present our proposed incentive mecha-

nism in detail. It consists of three main parts. First, we explain

the reasons and advantages of using the concept of fitness.

This concept is indivisible in our model since the platform

aims at maximizing its long-term and short-term utilities under

an asymmetry of information. Second, we discuss how to

calculate the potential payments to users adopting a Vickrey

Auction based approach to allow users to bid prices truthfully.

Finally, we describe a winner selection method under the

budget constraint in each round, and explain our algorithm

which uses a dynamic programming solution of Knapsack

problem.

A. Concept of Fitness

The usage of fitness helps us achieve the trade-off between

platform’s utility and users’ participation. The asymmetry of

information makes the platform to act blindly, to reduce the

influence of this asymmetry, the platform expects the users to

bid truthfully and leverage valid information from accumulated

data (e.g., average quality) since the platform will not get

the data before the winners get their payments. Thus the

fitness contains two parts, one is about the participation array,

and the other about the average quality. We first discuss the

advantage of choosing average quality. Assume that there is

an opportunistic user who has the highest average quality in

this round, if the data quality is manipulated in order to lower

cost and finally increase the net revenue, it is safe in this

round since the platform cannot detect this cheat activity in

advance. But after this round, this data will also reduce the

average quality of this user, and the probability being selected

as winner will be affected. Thus the best strategy of user is to

upload data with relatively stable quality.
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Fig. 2. An illustrating example with three users u1, u2 and u3: all points
in each curve have the same fitness value. u1 has higher fitness while u2

and u3 are the same. With the same participation frequency, user with better
average quality has higher fitness; while with the same average qualities, the
user who participates more has higher fitness.

The explanation for participation function containing histor-

ical participation information is a little more complicated. In

an extreme case that participation function g(·) is chosen to be

a constant (e.g. g(·) = A), it is obvious that fitness is propor-

tional to platform’s expected utility, F =
∑

i∈S (A · q̄i) =
A · ∑i∈S q̄i = A · M , which implies that our model can

be simply specialized to fit the methods that only consider

platform’s utility.

1) Sustainable Utility of the Platform and Long-term User
Participation: The concept fitness is introduced to achieve a

global concern about both long-term participation of users and

the utility of the platform. The reason to consider long-term

participation is that if the platform only aims at maximizing

the short-term utility, where all users are treated without

difference regardless of the historical contributions, long-term

active users will feel unfair (i.e., the winning probability or

reward of them are the same with brand new users), and

may quit. Although this may not lead to a systematical user

drop problem, the long-term utility is still influenced. As we

explained above, the fitness can be transformed to platform’s

utility, but by a suitable historical participation function, we

can maintain a high utility of platform and at the same time

encourage users to contribute in the long run.

To attract users’ attention, we need to use non-trivial partic-

ipation function. The most important property of participation

function is monotone increasing. For illustration, we simply

use a function g(hi) = |hi| (i.e., the number of rounds user

i has participated in before this round). As shown in figure 2,

the points on each of the two curves have the same fitness,

assume that there are three active users u1, u2 and u3: u2

and u3 are on the green dashed line, which means they share

the same fitness while u1 is on the blue solid one higher than

the green one, this means u1’s fitness is more than u2’s or

u3’s. For the pair of u1 and u3, the data qualities of them are

the same, but u1 has participated twice while u3 only once.

And for the pair of u1 and u2, they both participated twice,

however, the data quality of u1 is higher than u2’s. In both of

the cases, if the platform can only choose one user as winner,

due to the high fitness u1 will be the winner.

Though with a simplest form of g(·), this example properly

shows that we address the two concerns of the platform. When

the users have the similar qualities, who participated more

(more active) are likely to win, this attracts users to continually

contribute. On the other hand, if all users have nearly the same

participation rates, those with higher quality are likely to win,

this ensures the platform’s short-term utility and encourage

users to upload data with high quality. These two property

together ensure the platform’s long-term utility since users are

attracted to participate permanently and more likely to provide

high quality data.

2) Solve the User Dropping Problem: The bidders with

high costs or low qualities will struggle in winning the

auction, since their marginal utility to the platform is lower

than others’. Some of them may lose repeatedly due to their

relatively high costs and mediocre qualities. As a result of

lack of revenue, they will possibly quit the reverse auction

and never participate again. In a long-term scenario, this

effect will gradually decrease the number of users, and after

a considerable part of users quit, the competition level will be

significantly influenced and the price level of the rest users

will increase rapidly.

In our work, the participation function g(h) is used to solve

this problem in our mechanism. Before we select the winners,

all active users will be related to fitness scores, and these

scores are relevant to the users’ historical participation infor-

mation. The function g(h) is a strictly increasing monotonic

function of the historical participation, therefore, even without

efforts to increase the data quality, the fitness of the users still

increases as long as they keep participating thus the winning

chance also improves. As a result, our mechanism can still

attract users to participate even after they lose for several

rounds. The choice of g(h) is out of the scope of this paper,

and a more sophisticated test function for g(h) is used in

Section V.

3) Adjust the Importance of Quality: We introduce another

function w(q) to adapt to various scenarios with different qual-

ity requirements. Actually, this function is set to w(q) = q by

default as appeared in Section III. After replacing q by w(q),
the objective function becomes max

∑
i∈S (g(hi) · w(q̄i)),

while the constraints stay unchanged. For simplicity, we omit

the average symbol and only focus on one round scenario

in this part, but the results also apply to multi-round sce-

narios. In the aforementioned formula of fitness, we use the

average quality directly, while in different sensing scenarios,

the importance of the quality may differ. For example, some

applications predict the occurrence of some events, the results

are highly depended on the data quality. While for other

applications recording daily information, the quantity of data

is more important than the quality. Thus we can use the non-

linear function w(q) to change the distribution of data utility

evaluated by the platform. Here we assume that the cost-
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quality curve is monotone increasing for all users. We will

illustrate different choices of w(q) in place of q.

First we set c = α · q (the parameters in this part are

always positive constant) as the simplest case to explain the

usage of w(q). Now we assume bids are equal to costs. If

w(q) ∝ q, e.g. w(q) = β ·q (β is also a constant), the marginal

ratio of fitness is dw
dc = βdq

αdq = β
α for all possible q, thus

w(q2)−w(q1)
c2−c1

= β(q2−q1)
c2−c1

= w(q2−q1)
c2−c1

(assume q2 > q1), this

means that two users with profile (q1, c1) and (q2−q1, c2−c1)
together take the same reward and also provide the same

fitness with another user with (q2, c2), thus the platform cannot

achieve a certain fitness using a lower total payment. However,

if w(q) is monotone increasing and convex, for example,

w(q) = 1
2β · q2, the marginal ratio of fitness is dw

dc = β
α · q for

all possible q. Still use the two users case, now

w(q2)− w(q1)

c2 − c1
=

β

2

q22 − q21
c2 − c1

= (q2 + q1) · β
2

(q2 − q1)

c2 − c1

> (q2 − q1) · β
2

(q2 − q1)

c2 − c1

>
w(q2 − q1)

c2 − c1

thus two users with (q1, c1) and (q2−q1, c2−c1) will together

get the same reward as another user with (q2, c2) but provide

a lower total fitness, this means that the platform can achieve

the same fitness with lower total payments by choosing users

with high quality as much as possible. As the result, with

the same goal of trying to maximizing the fitness of all

winners, if we convert the function w(q) to another form,

the distribution of the final quality the platform get will also

change. The following theorem shows that as long as the cost

is an increasing function of the true quality q, we can always

choose a w(q) to achieve higher fitness with fewer users given

a fixed total cost.

Theorem 1: If c = c(q) is strictly monotone increasing,

there exists w(q), s.t., dw/dc is an increasing function of q.

Proof: We have c′(q) > 0, then the marginal ratio of

fitness is dw
dc = w′(q)

c′(q) , and d2w
dc2 = w′′(q)c′(q)−c′′(q)w′(q)

c′(q)3 . First

we prove the positive marginal ratio is achievable. Since c =
c(q) is fixed, c′(q) and c′′(q) are known, we only need to find

a proper w(q) to satisfy w′′(q)c′(q) − c′′(q)w′(q) > 0, let

m > max(| c′′(q)c′(q) |) (m is a constant larger than | c′′(q)c′(q) | for all

possible q) and γ = max{2,m}, w(q) = qγ+1 is one of the

candidate functions,

w′′(q)c′(q)− c′′(q)w′(q) = η(q)[γ − q
c′′(q)
c′(q)

]

≥ η(q)[γ − |c
′′(q)
c′(q)

|]

> η(q)[max(|c
′′(q)
c′(q)

|)− c′′(q)
c′(q)

]

> 0

where η(q) = (γ+1)qγ−1c′(q) > 0. Which means d2w
dc2 >0. As

the quality increases, the marginal ratio of fitness also grows,

i.e. w(c1+c2) > w(c1)+w(c2), this property makes platform

to select fewer users with high data quality to achieve the

maximum fitness.

Here we only discuss the increasing monotone condition,

otherwise the users can increase their quality while maintain-

ing or even reducing the sensing cost, which hardly happens

in a real-world scenario. This theorem shows that if the main

interest of an application is quality, it should select those

users with higher quality than others by choosing a proper

function of w(q) to replace the quality in fitness. This means

that our method has the capability to meet different quality

requirements in various application scenarios. Note that for

an application with high-quality requirement, function w(q)
amplifies the differences of fitness between high-quality (HQ)

users with low-quality (LQ) users, combined with function

g(h), the effect of preventing bidder drop problem will be

better for HQ users than LQ users, thus our method can be

applied in such applications to ensure the stickiness of high-

quality users.

B. Potential Payments to Users

Before we introduce the winner selection method, we pro-

pose an algorithm to calculate the potential payments to each

active user in this round. This is because the winner selection

is processed under a constant budget, and to maximize the

total fitness under this budget, the fitness and payment of each

user are both indispensable. If the active user finally wins, this

potential payment then becomes the real reward of this user.

The method we use here is similar to a Vickrey Auction. In

a single winner Vickrey Auction, the winner who has claimed

the highest price only need to pay the second highest price.

Since in a ordinary auction (e.g. English Auction), in order to

ensure a positive net profit after winning, the bidders will bid

slightly lower than their expected values of the good. While

in Vickrey Auction, the net profit is the difference between

the highest two bids (all bids are distinct) and is positive,

thus bidders don’t struggle considering a lower price than

their assessments of the good. More detailed, if a bidder bids

higher than her expected value, she may have to pay more

than this value with a negative net profit, this will not happen

to a rational bidder. On the other hand, since the bidder with

highest bid wins, if the bidder bids lower than that value, she

will take a higher risk to lose, and any winner gets a positive

net profit naturally, thus the best strategy for bidders is to bid

exactly the same as the assessment values, which is called the

bid truthfulness property.

On the contrary, in the reverse auction, bidders with lower

bids are more likely to win but usually will bid prices higher

than their true costs for receiving a positive profit. Since the

platform wants to grasp the real profiles of information about

users, it expects the users to bid their true costs. However, if

the platform pay winners as much as their costs respectively

after they bid truthfully, the net profit will be zero to any

of winner, this lead to unwillingness of the users to keep

participating in. But if the platform allocates higher payment

to a user than her bid (e.g. take a higher bid as the reward

of this user), then she can feel free to bid truthfully since she
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will always get a positive net profit after winning. The essence

that winner’s net profit is ensured to be positive is the same

as Vickrey Auction.

In our method, we guarantee the net profit of users to

be positive by allocating payments a little bit more than the

winners’ bids. More specifically, the payment of one winner

depends on her bid, other users’ bids and other information.

Once we get the bid prices of all active users, the cost

performance ratio of each user’s data r = q̄
b will be calculated,

and then sorted in non-decreasing order, as

q̄i1

bi1
≥ q̄i2

bi2
≥ q̄i3

bi3
≥ · · · ⇔ ri1 ≥ ri2 ≥ ri3 ≥ · · ·

For user i, we use the largest r that strictly less than ri to

calculate the payment, which is pi = q̄i

rj , r
j = max{rk|k ∈

Ut, r
k < ri}. Thus pi = q̄i

rj > q̄i

ri = bi. Note that for the users

with the lowest r, there do not exist a lower r to calculate the

payments, in this condition, we slightly increase their bids as

payments to them. If a user bids more than the real cost, the

probability to lose is increased, while if she bids less than the

real cost, she may obtain a negative revenue. Since bidding

with truthfulness will get the winner a price more than her

bid, the best strategy is to claim a bid exactly the same as the

cost. Hence our mechanism satisfies the bid truthfulness.

C. Optimal Winner Set Selection

Winner selection is an important part of the incentive

mechanism whatever the mechanism does, since the platform

always needs to choose a set of users to achieve its goal.

In our framework of model, the optimization problem shares

the same essential elements with the optimization of well-

known Knapsack problem and is NP-hard [36]. To explain the

equivalence of the two problem, we take each active user as

an item, the fitness and cost of this user as value and weight of

the item, and the budget as the capacity of the knapsack. Now

we need to maximize the total value (fitness) of items (users)

subjected to the total weight (costs) not exceeding the capacity

(budget). Since each user can at most be selected once, our

optimization problem is equivalent to a 0/1 Knapsack problem.

A 0/1 Knapsack problem can be solved by a dynamic

programming algorithm in pseudo-polynomial time [37]. The

restriction of Knapsack problem is that the weights of items

and capacity of the knapsack are all integers. In our condition,

since a bid is supposed to have a monetary minimum unit, and

the number before that unit should be integer, if we multiply

a large integer to both budget and bids of whatever unit, the

final numbers all will become integers, thus the restriction can

be easily satisfied.

Since the value in our algorithm is exactly fitness, the

selection result is highly dependent on the fitness of all

users, our method is called Fitness Determined Selection

(FDS). The algorithm is shown in Algorithm1. This algorithm

is the combination of two parts, one is potential payments

calculation, the other is winner selection, as mentioned before.

The time complexity mainly concerns on two parts, finding the

largest r less than each user (Lines 15-21) takes O(n2) time,

input : An integer budget R of the platform

output: The set of winners in this round

1 initialization;

2 for j from 1 to R do
3 lj ← 0;

4 Vj ← ∅;
5 end
6 if some users participate in round t then
7 Ut contains all these users;

8 bi is the uploaded bid of user i ∈ Ut;

9 else
return : ∅

10 end
11 for each user i in Ut do
12 calculate q̄i, f i;

13 ri = q̄i/bi;
14 end
15 for each user i in Ut do
16 if ∃ rj = max{rk|k ∈ Ut, r

k < ri} then
17 p′i = q̄i/rj ;

18 else
19 p′i = bi + ε, ε > 0;

20 end
21 end
22 for each user i ∈ Ut do
23 j ← R;

24 while p′i ≤ j do
25 if lj < lj−p′i + f i then
26 lj ← lj−p′i + f i;

27 Vj ← Vj−p′i ∪ i;
28 end
29 j ← j − 1;

30 end
31 end

return : VR

Algorithm 1: Fitness Determined Selection (FDS)

selecting winners using in dynamic programming part (Lines

22-31) takes O(nR) time. For a large n, the time complexity

is dominated by O(n2), thus our algorithm is scalable to large

user sets.

V. EVALUATION

In this section, we evaluate the performance of our solution

FDS in terms of system sustainability based on extensive

simulation experiments. For better understanding of the impact

of the fitness, we investigate the performance trend with regard

to varying amount of users.

A. Experimental Setting

We now give detailed information on the simulation we

conduct. We set number of time slots to 100. The number

of users (N) ranges from 300 to 1100, stepping by 100, and

set to 300 by default. We assume that the cost and data quality

of each active user is approximately (since c, p ∈ (0, 1] and c
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has a minimum unit) normal distributed N (μ1, μ2, σ
2
1 , σ

2
2 , ρ),

in which μ1 ∈ [0.3, 0.7], μ2 ∈ [0.3, 0.7] and ρ ∈ [0.3, 0.6]
are uniform distributed respectively, and σ1 = 0.1, σ2 = 0.1.

Moreover, we allocate each user a participating probability

subjected to uniform distribution U(0.3, 0.7). The budget in

each round is set to 12. The function g(h), w(q) are set to

g(h) = 1+0.1× ln(1+10|h|) and w(q) = q if not explicitly

mentioned. Each measurement is repeated for at least 100

times to eliminate the noise of randomness.

B. Methodology

We proceed to describe the methodology adopted in our

evaluation. In each experiment, we repeat at least 100 imple-

mentations. In each implementation, we initiate the users and

repeat for 100 rounds with storing the results of each round as

historical information. And in each round, the payments and

optimal winner set are calculated using our algorithm.

We compare the system performance of three candidate

solutions: Baseline, PFHQ, and OPT. Baseline represents

the default random selection method to select winners from

active user sets, which is popular in participatory sensing

applications. It picks up a user randomly, and selects this user

to be winner if the platform still has sufficient budget to pay

this user. The process is repeated until the remaining budget

cannot afford anyone left in current active user set. PFHQ
stands for Pick From Highest Quality method, which means

the active users are sorted in non-increasing order of their

average qualities, then each user in the sorted user set will be

visited, and then be selected as winner if with sufficient budget.

Because our mechanism is intended to increase the platform’s

utility which is composed by users’ qualities, comparing with

this quality-oriented method is meaningful. OPT is a powerful

but impractical method, in which user’s quality and real cost

assume to be known by the platform, thus the platform can

choose the optimal winner set which can maximize the total

utility of the platform, which means it can get the optimal

utility none of any other possible method can achieve, thus is

named optimal method. Since this is also a quality-oriented

method, we choose this alternative approach to illustrate the

performance in partially maximizing the total utility.

C. Results

Figure 3 presents the results of total fitness of the winners

in each round when four candidate solutions are adopted. We

observe that the total fitness slowly increases as the number

of round increases in all cases, for instance, the total fitness

is 23 at round 1 and goes up to 33.3 at round 100 for FDS,

and 21 at round 1 and increases to 31.6 at round 100 for OPT.

This is mainly because as the number of round increases, the

participation times of all users also increase, so does the fitness

of each user since the average quality is relatively steady, and

finally the total fitness of winner set grows. We can also see

that our FDS mechanism outperforms the other candidates,

for example, the fitness is 31, 29.5, 22, and 18 on average for

FDS, OPT, PFHQ, and Baseline respectively, which implies

an 5.08%, 40.9%, and 72.2% increase. This indicates that our

Fig. 3. Total fitness of the winners in each round.

Fig. 4. Total utility the platform obtains in each round.

solution manages to increase the total fitness by considering

the historical information which other methods do not use.

Especially, FDS performs better than OPT because the later

aims only at the total utility and ignores other information of

the users. And since the fitness of each round grows slowly

and steadily, we can take the average value of all rounds to

illustrate the dependency of fitness on other parameters.

Figure 4 shows the total utility the platform obtains in

each round of the four candidate algorithms. Firstly, we note

that the values of OPT, PFHQ, and Baseline almost remain

at 20, 16, and 12, respectively. The main reason is that the

patterns of user profiles maintain mostly the same in each

round. Secondly, we observe that with FDS, there is a slowly

increases in total utility from 17 at Round 1 to 19 at around

Round 10, and then keeps almost unchanged. This is because

as number of rounds grows, the platform has gradually grasp

the pattern of profiles of users by collecting information,

thus the prediction of the final utility becomes more stable.

Finally, OPT performs the best since it has all information to

get the maximum utility of each round and has the optimal

selection. The average utility of FDS is 18.7% and 58.3%
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Fig. 5. Total utility under varying budgets.

better than PFHQ and Baseline, respectively. Although FPHQ

sorts the users in order of qualities, the costs of the top users

still have uncertainty to some extent, thus will increase the

platform’s cost and limit the total utility the platform can

get. As for Baseline, this method selects users completely at

random, thus the utility is similar to an average condition.

The slight difference between FDS and OPT is because of

the information asymmetry, FDS can only predict the optimal

selection while the OPT can find that selection with excessive

assumption.

Figure 5 presents the total utilities under varying number

of budgets, ranging from 2 to 20. We can see that the total

utility increases linearly with the budget in all cases. This is

because the platform can select more users with more budget

and the number of users are nearly proportional to the budget.

In addition, we notice that the OPT results with the largest

increase ratio, due to that it can utilize the budget optimally

at any condition. FDS has larger increase ratio than PFHQ

and Baseline, which implies that as more budget can be used,

the marginal utility increase of FDS is higher than PFHQ and

Baseline, and thus the budget is well (though not optimally)

leveraged.

Figure 6 shows the total utilities under varying number of

users, ranging from 300 to 1100. We can see that the total

utility increases linearly with the number of users for OPT and

FDS, and remains unchanged for PFHQ and Baseline, this is

because as more users join in, the selection of the former two

methods can pick up more top users with higher qualities and

lower costs, while the later two either ignore the cost or don’t

take cost and quality into consideration. In addition, we notice

that OPT has the largest total utility, and FDS performs better

than PFHQ and Baseline, which indicates that FDS is more

suitable in large scale scenarios while also performing well in

small scale and thus is scalable in real applications.

Figure 7 presents the total fitness under varying number

of budgets, ranging from 2 to 20. We can see that the total

fitness increases linearly with the budget in all case, this is

also because the platform can take more winners with more

Fig. 6. Total utility under varying number of users.

Fig. 7. Total fitness under varying budgets.

Fig. 8. Total fitness under varying number of users.

budget. In addition, we notice that the FDS results in the

largest increase ratio, which means that the consideration of

combining both participation and quality performs the best in

all methods.
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Fig. 9. Total utility under different σ of cost in the normal distribution

Fig. 10. Average payment and bid of winners under varying budgets.

Figure 8 shows the total fitness under varying number of

users, ranging from 300 to 1100. We can see that the total

fitness increases linearly with the number of users for OPT

and FDS, and remains unchanged for PFHQ and Baseline. This

is because the selection of OPT and FDS can leverage more

information of the user set (although OPT only use the quality

part), and the other two cannot achieve this. In addition, we

notice that FDS has the largest total fitness, which indicates

that it can work well in various scales of user sets.

Figure 9 shows the total utility under different variances

(σ) of the cost. We can see that as the variance of cost

grows, the total utility of OPT and FDS increases while PFHQ

and Baseline maintain nearly unchanged. This is because the

former two method can utilize the information both high

qualities and lower costs while the later two barely concern

the costs change in users. A higher variance in cost is more

likely to generate users with lower cost thus enables the

platform to potentially take more winners. This indicates that

our method works well for both applications with high or low

cost variance.

Figure 10 and 11 presents the average payment to and bid

Fig. 11. Average payment and bid of winners under varying number of users.

Fig. 12. Average quality of winners and losers with different index of w

from winners under varying budgets and number of users.

First, both the payments and bids increase as the budget goes

up. This is reasonable because as budget grows with other

parameters unchanged (especially the number of users), the

platform will choose more high cost users since each user can

be selected at most once and thus the average of payments and

bids are increased by this part of winners. Second, both the

payments and bids decrease as the number of users increases.

This indicates that as the user set grows, the platform can

replace a part of users by those with higher cost performance,

and thus rise the utility of platform with the same budget.

Finally we observe in both figures that the average payment

is always slightly higher than the bid, which exactly shows

the fact that our method offers the winners higher payments

than their bids and the payments decision based on Vickrey

Auction works as intended.

Figure 12 shows the average quality of winners and losers

respectively under varying index n of q in w(q) = qn. Here we

use this form of function w(q) to show the effect of changing

distribution of received quality by this function. We can see

that as the index n grows, the average quality of winners also
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Fig. 13. Distribution of winners’ quality with different index of w

grows while quality of losers declines. Also, before n = 0.5
q̄ of losers is higher than q̄ of winners while for n > 0.5
the rank reverse. This is because that for a lower index, the

fitness of lower quality is enhanced since q ≤ 1, but for an

index greater than 1, the fitness of higher quality is amplified.

This indicates that even without a constraint of strict relation

between quality and cost, the function w(q) can still filter out

higher or lower quality users, which can be utilized in various

scenarios with different quality requirements.

Figure 13 shows the actual distribution of qualities of the

winners under varying index of w(q) = qn. We can see that

for larger index, the distribution curve moves to the right and

has a higher maximum value, which implies that the effect of

w(q) has a limit in changing received quality distribution, this

is because the qualities of users have an inherent distribution,

the force of this distribution interact with w(q) forms the final

curve.

Figure 14 shows the total fitness and utility under varying

index of w(q) = qn. We can see that as the index increases, the

utility changes a little bit and stays around 20, while the fitness

rapidly decreases at first. This is because the utility does not

directly depended on the index in w(q) but fitness does, also

the quality is between 0 and 1, thus the higher the index is, the

less w(q) and fitness are. The stable utility tells that though

the total fitness changes, the utility of the platform is barely

influenced. Besides, together with Figure 12, these two graphs

indicate that the total number of winners varies under different

index (dividing the total utility by the average utility per user),

more specifically, when the index is higher, the average quality

of each winner increases while the total utility stays nearly

unchanged and the number of winners decreases. This implies

that our method indeed select fewer but higher quality users

when the index is high even without a strict constraint on

relation between quality and cost.

D. Discussions

Simulation results show that our proposed solution achieves

better system performance in terms of system sustainability,

Fig. 14. Total fitness and utility under different index of w

and exploits the trade-off between system gain and high-

quality user stickiness. In addition, the design of the incentive

mechanism is general enough to be used in any long-term

participatory sensing application.

Possible future improvements of our work include consi-

dering more complicated factors in general or specific partici-

patory sensing scenarios, designing a proper function of g(h)
and w(q) for various scenarios, and applying our solution into

real world participatory sensing applications.

VI. CONCLUSION

In this paper, we presented the design and evaluation of

a novel incentive mechanism for participatory sensing that

leverages the historical information of users to improve sys-

tem sustainability. Our proposed solution incorporates a new

decision making algorithm designed to exploit the trade-off

between maximizing the platform’s utility and keeping users

active on participation. Extensive simulation results show that

our solution outperforms three alternative approaches in terms

of total fitness. Given the popularity and stronger power of

sensing devices and importance of Internet of Things, we

hope that this work will motivate further research on achieving

sustainable participatory sensing applications.
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