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Abstract—Over the last decade, there has been a trend
where water utility companies aim to make water distribution
networks more intelligent in order to improve their quality of
service, reduce water waste, minimize maintenance costs etc.,
by incorporating IoT technologies. Current state of the art
solutions use expensive power hungry deployments to monitor
and transmit water network states periodically in order to
detect anomalous behaviors such as water leakage and bursts.
However, more than 97% of water network assets are remote
away from power and are often in geographically remote
underpopulated areas; facts that make current approaches
unsuitable for next generation more dynamic adaptive water
networks.

Battery-driven wireless sensor/actuator based solutions are
theoretically the perfect choice to support next generation
water distribution. In this paper, we present an end-to-end
water leak localization system, which exploits edge processing
and enables the use of battery-driven sensor nodes. Our system
combines a lightweight edge anomaly detection algorithm based
on compression rates and an efficient localization algorithm
based on graph theory. The edge anomaly detection and
localization elements of the systems produce a timely and
accurate localization result and reduce the communication
by 99% compared to the traditional periodic communication.
We evaluated our schemes by deploying non-intrusive sensors
measuring vibrational data on a real-world water test rig that
have had controlled leakage and burst scenarios implemented.

Keywords-IoT, Cyber-Physical Systems, Wireless Sensor Net-
works, Anomaly Detection, Burst Localization

I. WATER DISTRIBUTION AND SENSOR NETWORKS

Water security is currently a hot topic. Water demands

are not being met in regions of the world; both developed

and underdeveloped; where climate change and economic

water scarcity are two issues that have the largest impact.

The former sees areas of the planet less able to generate

enough water for its people, whereas in economic scarcity

the principality is unable to build or maintain a water

distribution network to continuously meet demands. Drought

prone areas such as California in the USA have had severe

water restrictions in place for some time. Wet countries, such

as the UK, have been experiencing what has been termed

wettest droughts over the past few years. Notwithstanding

the 7.5bn investment in UK water distribution networks,

3.3bn litres of water were lost per day in 2010 [1].

The use of sensing systems to identify water leakage

have been around for some time [2], but their uptake has

not been prolific. ICT to support WDN typically consists

of remote or online battery-powered telemetry units (data

loggers) that record water data such as flow and pressure,

over numbers of minutes, then aggregate this data and send

to a server periodically - typically via the mobile phone

networks. Contemporary approaches use Wireless Sensor

Network (WSN) [2], [3], [4], [5], [6] technologies to monitor

the status of the water network and detect leakage or water

bursts closer to real-time. The main drawbacks of these

approaches are: (a) the analysis of the data takes place off-

line, in base-stations or servers meaning that optimal real

time decision-making for control would be unrealistic and

(b) the sensor nodes require a lot of energy, which places

upper bounds on the amounts of data that can be sensed and

relayed for analysis. The latter issue particularly impacts on

what is important to water companies, leakage localization.

Given the cost of digging up roads to fix leaks, timely and

accurate determination of the location of a leak is now

more important than identifying all leakages. However, to

carry out localization high-fidelity sensing and analytics are

required to triangulate leakage accurately; current systems

are not quite there yet.

In parallel, civil engineers advocate that next generation

water networks will not be passive water delivers, but

active highly-distributed control systems that route the water

intelligently to match demand and route round failures etc.

[7]. Such a dynamical system will heavily rely on sensing

and actuation and will effect a dual control system of a

water distribution network coupled with a smart distributed

sensor/actuator network. This will require that both networks

interact in a complex cyber-physical way and make use

of state-of-the-art low-powered high-precision sensing and

processing technologies. It is our premise that state of the

art high-precision sensors can help build such a system, but

that it is too costly, and not very useful, to send all this

higher precision data back to off-line servers for processing.

That is, much of the identification of a leak can be carried

out on edge devices (i.e. the sensor nodes) and they can

collaborate to localize that leak and carry out control. This

is a step change from the tradition of sending periodic data

to servers to make control decisions, replacing it with a

distributed event-based control system.

This paper presents a highly distributed lightweight

scheme that combines compression and anomaly detection to

identify and locate water leak events and is the first steps to

the aforementioned distributed event-based control system.

On event detection we only need to send timestamp data
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Figure 1: System architecture: sensor nodes,communication,

and server side system.

to our novel graph topology-based scheme that recursively

examines data from pairs of sensor nodes that detect an

anomaly simultaneously to localize the leak. Though in-

spired by water distribution network leakage management,

these algorithms are designed for generic sensing and analyt-

ics for other pipe based cyber-physical systems and beyond.

Here we focus on the event detection and localization, the

complete control function is outside the scope of this paper.

The work presented here has been developed as part of

two Smart Water projects (NEC and WISDOM) and we

show that we can not only significantly reduce the amount

of communications between sensor devices and servers, but

also that early transient or event (such as water bursts)

detection can run on low-resourced sensor nodes meaning

that local control functions can occur with minimal latency.

The event detection software uniquely uses compression

rates rather than raw data for analysis. The localization

scheme demonstrates that it substantially improves position-

ing accuracy through capturing the water network topology

information without sacrificing computational efficiency.

The search algorithm combines average distances in the

abstractions of the water network topology with differences

in arrival times of the sensed anomaly as detected at the

sensor locations. As far as we are aware we are the first

to provide an edge analytics solution to water network

distribution systems and the first to combine this with highly

efficient graph processing to localize leaks.

This paper is organized as follows: Sections 2 and 3

presents the edge anomaly detection algorithm and the self-

tuning system based on active learning. Section 4 proposes

efficient graph-based techniques to effectively localize water

burst events. Section 5 demonstrates the experimental envi-

ronment followed by the empirical evaluation in Section 6.

Section 7 surveys the related work and Section 8 concludes

the paper.

II. EDGE-ANALYTICS FOR ANOMALY DETECTION

To provide a non-intrusive solution to leakage localization

we fit sensor nodes to water pipes. For this project we use

the NEC Tokin Ultrahigh-Sensitivity Vibration Sensor that

covers a frequency band of 10 to 15 kHz (and acceleration at

0.0001 G) with very low power requirements [8]. Such high

fidelity sensors allow us to better explore water network tran-

sient phenomena, but the cost of fully transmitting that data

is prohibitive using battery powered low-resourced devices.

Therefore, each sensor node utilizes lossless compression

techniques which reduce the energy cost related to the

communication without sacrificing the precision of the data.

After extensive evaluation of different lossless compression

algorithms [9], miniLZO [10] was selected as the most

appropriate algorithm. Our choice takes typical MCU class

devices memory and energy constraints into account, e.g.

typical ultra-low power MCUs have 64Kbytes memory [11],

therefore we limit the compression algorithms working space

to 10K.

We now introduce our anomaly detection algorithm that

uniquely does not analyse raw data for anomalies that

could be leaks, but instead automatically detects significant

changes in compression rates in the compressed data and

in doing so identifies the timestamps of anomalies that

represent leaks [9]. In this paper, we use vibration data -

vibration sensors fixed externally to the pipe providing a

less intrusive and lower cost sensing solution attractive to

water companies. Initially, the input stream is separated into

windows of wstream bytes (i.e. 512 bytes) and for each

window, the sensor node applies lossless compression and

produces a compression rate value. Figure 2a illustrates both

raw pressure data and compression rate (noisy signal). To

maximize anomaly detection while minimizing the number

of false-positive results, noise is removed from the compres-

sion rate stream using a one-dimensional Kalman Filter [12],

[13] indicated in Figure 2 and Figure 3 with a blue line.

The use of Kalman filters is motivated by: (a) their support

for streaming analysis using only current input measure-

ments (therefore making the solution more memory effi-

cient), (b) they do not require matrix calculations (therefore

the solution is more computationally efficient), (c) the ease

of the algorithm tuning process, and (d) their implementation

simplicity. During the initialization process the parameters

which need tuning are the process noise covariance q, the

sensor measurement noise covariance r, the initial estimated

error covariance p and an initial measurement x (i.e. q =
0.005, r = 25, p = 0, and x = the first compression rate

measurement). Afterwards, for every new compression rate,

the Kalman filter algorithm updates these parameters and

produces the filtered value of compression rates. After noise

removal, the anomalies can be detected accurately as can

be seen in Figure 2a the anomalies are presented as great

drops (arrows). The anomalies are being detected by using
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(a) Raw data, compression rates, and Kalman filter results.

(b) Anomaly detection results

Figure 2: Anomaly detection based on water pressure data.

an adaptive thresholding approach based on the mean and the

standard deviation of the compression rate moving average

for a predefined window size wmavg (i.e. 128). We use this

because it smooths states for easier analysis and reduces

threshold computations to window sizes. Specifically, the

algorithm computes the moving average of the filtered

compression rates (x values), with the average avg and

the standard deviation std of the moving average. In every

Kalman state update, the algorithm identifies as an anomaly

the values which hold the following condition:

x > (avg + std ∗ l) or x < (avg − std ∗ l)

where l represents the elasticity of anomaly detection

(smaller values mean that the system is more sensitive -

Figure 4).

As can be observed in Figure 4a, the algorithm suffers

Figure 3: Anomaly detection over vibration data from NEC

Token sensors externally fixed to the water pipe

from a cold start effect (it identifies the first values to be

outliers because the moving average is yet to be calculated).

To solve this problem, the algorithm initializes the avg

and computes std by using the current compression rate

value. Another challenge occurs where there is a significant

variation of compression rate data detected (Figure 4a). In

that case, because the standard deviation has a high value,

this indicates that the algorithm requires more intervals for

the moving average calculations to detect the outliers or

anomalies. The solution is to reset the values, that is, to

initialize the avg and std, every time the distance between

the thresholds created by the standard deviation become

greater than a specific value t (in our system the t = 35).

Figure 4b illustrates the anomaly detection results after the

reset feature application.

Based on the above analysis, by tuning the input param-

eters, our algorithm can be applied to any case of high

sample rate anomaly detection (i.e. pressure, vibration - see

Figure 3) in hardware constrained sensor nodes. However,

to maximise the performance of the algorithm, a self-tuning

technique is required thus bringing Autonomic properties to

the system.

By exploiting this edge anomaly detection algorithm,

communication costs can be reduced significantly. The lo-

calization system requires only the anomaly detection arrival

times from every sensor node. Therefore, each sensor trans-

mits timestamps only instead of raw data, and only whenever

an anomaly is observed at the edge. This is in contrast to the

traditional periodic sense and send routine of current water

network sensing solutions as well as many WSN systems

in general. It also better fits modern distributed event-based

control systems such as [14].
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(a)

(b)

Figure 4: Filtered compression rates and anomaly detection

based on (a) pressure data and (b) vibration data(a) Cold

Start, Large Variation and inelastic outliers detection (l =

1.5), and (b) fixed algorithm results (l=3).

III. OPTIMAL SELF-TUNING VIA ACTIVE LEARNING

By tuning the input parameters, our algorithm can be

applied to any case of high sample rate anomaly detection in

hardware constrained sensor nodes. Table 1 lists the tuning

parameters required by our edge algorithm. In order to

optimize the tuning process of the algorithms, we borrow

ideas from active learning techniques [15]. Here true anoma-

lies for a single representative training dataset are labelled.

For the results that we present here, we applied the active

learning idea by asking water data technicians to manually

Table I: Algorithm parameters

Process Parameters

Input stream split windows size wstream

Kalman Filter initialization

Process noise covariance q

Sensor measurement noise covariance r

Initial estimated error covariance p

Moving average window size wmavg

Threshold Elasticity l

Reset Threshold t

Figure 5: Anomaly detection parameter tuning.

label anomalies on a subset of our evaluation data. Then,

we created an offline cross-evaluation system [9], which

uses our algorithm and calculates the correct, false/positive

(FP ), and true/negative (TN ) anomaly detections based

on the initial labelling. This establishes the optimal input

parameters as the combination that maximizes the distance:

Distance D = [Correct − (FP + TN)] Detections

Using this, one can imagine that a system would update

parameters to re-update the in-node anomaly detection al-

gorithm as the water network evolves. We not only use

anomaly identification but also leakage localization in the

labelling process; this extends our prior work significantly.

IV. WATER BURST EVENT LOCALIZATION

In this section, efficient graph-based techniques are used

to efficiently and accurately localize the water burst event.

We first devise a novel graph topology-based measure that

can quantify the “average length” between every two senor

locations, and then define our search method to localize burst

events.

A. Graph Topology-Based Measures

A water network can be modelled as an attributed graph

G = (VJ ∪ VS , E,A), where VJ is a vertex set of pipe

junctions, VS is a vertex set of deployed sensor locations, E
denotes an edge set of pipe sections connecting two vertices,

and A carries the length of each pipe section.
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Figure 6: Modelling a water network (left) as a weighted graph (right) based on graph topology

To evaluate the “average length” between every two

vertices in a graph G, let us first introduce the notions of

the distance matrix D and the adjacency matrix A.

Definition 1: Given a water network G = (VJ∪VS , E,A)
with |V | = |VJ | + |VS | vertices and |E| edges, its distance

matrix D is a |V | × |V | matrix, with its entry Du,v being

Du,v =

{
the length of pipe section (u, v), if (u, v) ∈ E;
0, otherwise.

The adjacency matrix of G, denoted as A, is defined by

Au,v =

{
1, if u �= v and ∃ pipe section (u, v) ∈ E;
0, otherwise.

Example 1: Figure 6 depicts the water network G, whose

edge weights are the length of pipe sections. By Definition 1,

its distance matrix D and adjacency matrix A are

D =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a b c d e f g h i j

a 0 0 0 8 0 0 0 0 0 0
b 0 0 3 6 0 0 7 0 0 0
c 0 3 0 0 0 2 0 0 0 0
d 8 6 0 0 2 0 0 4 0 0
e 0 0 0 2 0 0 0 0 6 0
f 0 0 2 0 0 0 0 0 0 0
g 0 7 0 0 0 0 0 5 0 0
h 0 0 0 4 0 0 5 0 4 3
i 0 0 0 0 6 0 0 4 0 0
j 0 0 0 0 0 0 0 3 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a b c d e f g h i j

a 0 0 0 1 0 0 0 0 0 0
b 0 0 1 1 0 0 1 0 0 0
c 0 1 0 0 0 1 0 0 0 0
d 1 1 0 0 1 0 0 1 0 0
e 0 0 0 1 0 0 0 0 1 0
f 0 0 1 0 0 0 0 0 0 0
g 0 1 0 0 0 0 0 1 0 0
h 0 0 0 1 0 0 1 0 1 1
i 0 0 0 0 1 0 0 1 0 0
j 0 0 0 0 0 0 0 1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Utilizing D and A, we can determine the “average length”

between every two sensor locations on graph G.

We first introduce a |V |× |V | matrix, W(d), whose entry

[W(d)](u,v) is the “average length” of all paths with d hops

between vertices u and v, that is,

[W(d)](u,v) =

the sum of the pipe section lengths over all paths with d hops between vertices u and v

the number of the paths with d hops between vertices u and v
. (1)

To obtain the denominator of Equation (1), we can utilize

the property of the power of an adjacency matrix. That is, the

(u, v)-th element of the d-th power of A, that is, [Ad](u,v),
counts the number of the paths with d hops between vertices

u and v.

However, evaluation of the nominator of Equation (1)

is non-trivial as the power of a distance matrix can only

evaluate the product (instead of sum) of the pipe section

lengths over all paths. As an example in Figure 6, to

determine the sum of the pipe section lengths over all paths

with 2 hops between vertices d and g, the result of [D2](d,g)
would produce the product of the pipe section lengths as

follows:

[D2](d,g)
= (the d-th row of D)× (the g-th column of D)

=
[ a b c d e f g h i j

8 6 0 0 2 0 0 4 0 0
]
·

[ a b c d e f g h i j

0 7 0 0 0 0 0 5 0 0
]
T

= 6×7 + 5×4 �= (6+7)︸ ︷︷ ︸
d→b→g

+ (5+4)︸ ︷︷ ︸
d→h→g

(2)

We notice that, if the “×” sign in Equation (2) were

changed into “+” sign, the result would turn into the more

desirabe sum of the pipe section lengths over all paths

(d→ b→ g and d→ h→ g) with 2 hops between vertices

d and g. To obtain the correct “+”-based results, we can

perhaps take advantage of the power of a distance matrix

while changing its “×” sign (in Equation (2)) into “+” sign

as well?

To address this, we introduce an element-wise operator

exp(∗). We construct the element-wise exponential distance

matrix, denoted as exp(tD), as follows:

[exp(tD)]u,v =

{
exp (tDu,v), if Du,v �= 0;
0, if Du,v = 0.
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where t ∈ R denotes an arbitrary scalar.

Intuitively, the matrix exp(tD) is formed by replacing

every nonzero element in D, say x, with ex, and keeping

the zero elements of D unchanged.

Then, to assess the sum of the pipe section lengths over

all paths with 2 hops between vertices d and g, we compute

the (d, g)-th element of (exp(tD))2, that is,

[(exp(tD))2](d,g)

= (the d-th row of exp(tD))× (the g-th column of exp(tD))

=
[ a b c d e f g h i j

e8t e6t 0 0 e2t 0 0 e4t 0 0
]
·

[ a b c d e f g h i j

0 e7t 0 0 0 0 0 e5t 0 0
]
T

= e6t×e7t + e5t×e4t = e(6+7)t + e(5+4)t (3)

In contrast to Equation (2), we can see that, by utilizing

the operator exp(∗), Equation (3) converts all “×” signs into

“+” signs. In light of Equation (3), our next step is to find

out an “inverse” operator that can map e(6+7)t+e(5+4)t back

into (6 + 7) + (5 + 4). Our key observation is that

lim
t→0

2

t
log

(
1

2

(
ext + eyt

))
= x+ y (4)

Thus, applying the “inverse” operator lim
t→0

2
t
log

(
1
2 (∗)

)
of

Equation (4) into Equation (3) produces

lim
t→0

2

t
log

(
1

2

(
[(exp(tD))2](d,g)

))

= lim
t→0

2
t
log

(
1
2

(
e(6+7)t + e(5+4)t

))
= (6 + 7) + (5 + 4) (5)

whose result gives the sum of the pipe section lengths over

all paths (d→ b→ g and d→ h→ g) with 2 hops between

vertices d and g.

Equations (3)–(5) provide an effective technique to obtain

the nominator of [W(d)](u,v) in Equation (1). To generalize

our above result for any arbitrary element of (exp(tD))2,

we need to extend the “inverse” operator in Equation (4):

Theorem 1: For any positive integer N = 1, 2, · · · , the

following equation holds:

lim
t→0

N

t
log

(
1

N

(
ex1t + ex2t + · · ·+ exNt

))

= x1 + x2 + · · ·+ xN . (6)

As a special case of N = 2, Theorem 1 reduces to the

result in Equation (4). Theorem 1 is used for generaliz-

ing the result of Equation (3) for any arbitrary element

of (exp(tD))k. More specifically, in our aforementioned

example, we choose Equation (4) (that is, N = 2 in

Equation (6)) to “inverse” [(exp(tD))2](d,g) because there

are two summands (e(6+7)t and e(5+4)t) in Equation (3). In

the general case, we observe that the number of summands

for arbitrary element (u, v) of (exp(tD))k in Equation (3)

should be consistent with (i) the choice of N in Equation (6)

and (ii) the number of paths with d hops between vertices

u and v (that is, [Ad](u,v)).
Example 2: Consider the water network in Figure 6. To

compute the sum of the pipe section lengths over all paths

with d = 3 hops between vertices b and i, we first obtain its

distance matrix D and adjacency matrix A (see Example 1).

Next, we evaluate [A3](b,i) = 3 and

[(exp(tD))3](b,i) = e(6+2+6)t︸ ︷︷ ︸
b→d→e→i

+ e(6+4+4)t︸ ︷︷ ︸
b→d→h→i

+ e(7+5+4)t︸ ︷︷ ︸
b→g→h→i

Finally, choosing N = 3 in Theorem 1, we can “inverse”

[(exp(tD))3](b,i) as follows:

lim
t→0

3

t
log

(
1

3

(
[(exp(tD))3](b,i)

))

= lim
t→0

3

t
log

(
e(6+2+6)t + e(6+4+4)t + e(7+5+4)t

3

)

= (6 + 2 + 6) + (6 + 4 + 4) + (7 + 5 + 4) = 44.

Hence, the sum of the pipe section lengths over all paths

with 3 hops between vertices b and i is 44.

After the nominator of Equation (1) is obtained, the

“average length” [W(d)](u,v) follows immediately:

Theorem 2: The “average length” of all paths with d hops

between every two vertices u and v can be computed as

[W(d)](u,v) =

⎧⎨
⎩ lim

t→0

1
t
log

(
[(exp(tD))d](u,v)

[Ad](u,v)

)
, if [Ad](u,v) �= 0;

0, if [Ad](u,v) = 0;

As a special case, W
(1) = D. This is because, when

d = 1 and u �= v, [Ad](u,v) = 1. Then,

[W(1)](u,v) = lim
t→0

log([exp(tD)](u,v))
t

= lim
t→0

[(tD)](u,v)

t
= D(u,v).

Example 3: Recall Example 2. Since [A3](b,i) = 3 and

the sum of the pipe section lengths over all paths with d = 3
hops between vertices b and i is 44, the “average distance”

is

[W(3)](b,i) = 44/3.

Theorem 2 gives an effective way to evaluate the “average

length” [W(d)](u,v) with a fixed number d of hops in terms

of D and A. Based on [W(d)](u,v), we can obtain the

“average length” matrix S
(L) within L hops as follows.

Definition 2: Let 0 < λ < 1 be a user-controlled decay

factor. Given a water network G, its “average distance”

matrix S
(L) within L hops (L = 2, 3, · · · ) is defined by

[S(L)](u,v) =

{
1
β

[
λD+ λ2

W
(2) + · · ·+ λL

W
(L)

]
(u,v)

, (u �= v);

0, (u = v).
(7)
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where

β =

L∑
i=1

λi · 1{[W(i)](u,v) �=0}.

Here, 1{[W(i)](u,v) �=0} is an indicator function, which returns

1 if [W(i)](u,v) �= 0, and 0 otherwise.

Intuitively, [S(L)]u,v captures the weighted average dis-

tance within L hops between vertices u and v. In Equa-

tion (7), the first term λD signifies that the paths of 1 hop

have a contribution of λ to S
(L); the second term λ2

W
(2)

means that the paths of (longer) 2 hops have a (smaller)

contribution of λ2 to S
(L), and so forth. The parameter 1

β

is a normalization factor, which guarantees that the sum of

all the weighted factors {λ, λ2, · · · , λL} in Equation (7) is

1.

The constant λ is between 0 and 1, which can be thought

of as a confidence level. Empirically, it is set to 0.6–0.8,

representing the rate of decay as the leak signature wave

spreads across pipe sections.

Example 4: Recall the water network in Figure 6 and its

distance matrix D and adjacency matrix A in Example 1. We

choose λ = 0.85 and L = 5. By Definition 2, the “average

length” matrix S
(5) can be obtained as follows: S(5) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a b c d e f g h i j

a 0 17.902 20.609 14.996 14.162 19.000 22.707 15.729 19.902 18.729
b 17.902 0 9.667 12.999 12.214 8.512 13.998 14.512 18.424 17.512
c 20.609 9.667 0 12.609 14.973 6.159 13.512 17.306 17.666 17.000
d 14.996 12.999 12.609 0 9.395 14.609 14.707 10.792 11.902 10.729
e 14.162 12.214 14.973 9.395 0 13.000 17.465 11.434 11.271 14.434
f 19.000 8.512 6.159 14.609 13.000 0 15.512 16.000 19.666 19.000
g 22.707 13.998 13.512 14.707 17.465 15.512 0 11.853 12.902 11.772
h 15.729 14.512 17.306 10.792 11.434 16.000 11.853 0 10.273 8.951
i 19.902 18.424 17.666 11.902 11.271 19.666 12.902 10.273 0 10.382
j 18.729 17.512 17.000 10.729 14.434 19.000 11.772 8.951 10.382 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

As opposed to the previous work [16] that considers only

one single path of the shortest length, S
(L) can capture

multiple paths of different lengths between every two sen-

sor locations by fully exploiting water network topology

information. Thus, if the “average length” S
(L) is used to

quantify the wave distance travelled from a burst location to

a sensor location, water loss events can be positioned more

accurately, as will be shown in the next section.

B. Effectively Localizing Water Loss Events

Having evaluated the “average length” matrix S
(L), we

next present an efficient algorithm to position a water loss

event with higher accuracy.

Our basic idea is to measure the difference in “average

length” to two sensor locations that detect the burst transient

at given times. Specifically, let ν̄ denote the average wave

speed, and let tu and tv be the time points when the burst

transient event is detected at sensor locations u and v,

respectively. Note that the sensor points in the water network

are time synchronized, and the time of the burst event tx
is unknown in advance, but such a burst event must occur

before min{tu, tv} (earlier than either of the detected time

Figure 7: Water company research partner pipe rig.

at locations u and v). We observe that the time gap between

(tu− tx) and (tv− tx) (which can be calculated as |tu− tv|)
is mainly due to the difference in “average length” from the

burst (source) location x to both sensor locations u and v.

Hence, ideally we have the following equations:

tu − tv = (tu − tx)− (tv − tx) ⇒

ν̄(tu − tv) = ν̄(tu − tx)︸ ︷︷ ︸
dist(u,x)

− ν̄(tv − tx)︸ ︷︷ ︸
dist(v,x)

which implies that

ν̄(tu − tv) = dist(u, x)− dist(v, x)

≈ [S(L)]u,x − [S(L)]v,x (8)

Then, we can enumerate each sensor location in V to find

out the top-k (k is often set to 3–5 in practice) that best

approximate solutions X̂ ⊆ V of x to Equation (8), that is,

X̂ = arg (top-k)min
x∈V

{|ν̄(tu− tv)− ([S(L)]
u,x
− [S(L)]

v,x
)|} (9)

Thus, the elements in X̂ form a “hyperbolic curve” with two

focal points u and v. To determine the precise location along

this “hyperbolic curve”, we need to choose another pair of

sensor locations, say u and w, as two focal points, with the

aim to produce the another “hyperbolic curve”, that is, to

find out another set of the top-k best approximate solutions

Ŷ ⊆ V to the following equation:

Ŷ = arg (top-k)min
y∈V

{|ν̄(tu−tw)−([S(L)]
u,y
−[S(L)]

w,y
)|} (10)

The intersection of the two “hyperbolic curves” X̂ ∩ Ŷ will

produce a small number of possible locations where a water

loss event may occur. Finally, we can search locally for the

most likely water loss position along pipe sections connected

to the closest sensor locations in X̂ ∩ Ŷ .

V. EXPERIMENTAL SETUP

The ultimate aim of this Smart Water project is to

study and develop real-time control algorithms that take

feedback from sensors and aim to respond to anomalies,

demand changes, and reconfiguration in an optimal fashion.
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Figure 8: Pipe rig floor plan and infrastructure.

Given the security requirements of a live water distribution

network, water companies typically have test rigs that are

representative of the live network but which are more iso-

lated and used for training staff etc. In this project we used

such a test rig which was developed by our water company

research partner1 (Figure 7). The pipe rig was instrumented

with sensor nodes based on Intel Edison development boards

and NEC Tokin Ultrahigh-Sensitivity vibration sensors.

Figure 8 illustrates the infrastructure of the water network

test rig. The rig has total length of pipes (30cm outer

diameter) of 220 meters and contains 8 valves, 5 pressure

sensors (with a sample rate of 10 samples per second), one

pressure regulator, and one valve to emulate bursts and leaks.

On top of this infrastructure, 7 nodes equipped with vibration

sensors were deployed to the right area of the rig. Figure 8

presents only three nodes which produce non redundant data

and are located in 2m, 8.7m, and 13.7m distances from the

burst location respectively.

VI. EVALUATION

Using the aforementioned infrastructure, a variety of burst

emulations were conducted with different pressure levels and

observed using vibration data (1000 samples per second)

from 7 sensor nodes. For sake of brevity, the non-redundant

data from the three sensor nodes of Figure 9 were used.

Figures 10 illustrate the results of the in-node anomaly

detection algorithm that resides in nodes (A, B, and C) and

using 16000 data points. For this we represent the water burst

on a highly pressurised water network. Table II aggregates

the performance of the in-node decision-making algorithm

based on average compression, anomaly detection accuracy,

and communication savings for transmitting compressed

data or only timestamps.

A. Compression Rates

Data fluctuation influences the performance of the com-

pression algorithm and the position of the node in the

1Our water company research partner has a policy whereby they remain
anonymous in research publications.

topology means that data fluctuation rates differ. In this case

the closest node to the burst (Node A) performs the lowest

average compression rate. However even with this high level

of fluctuation, the compression algorithm achieves more than

28% average compression rate.

B. Anomaly Detection

The accuracy of the algorithm for all the nodes is greater

than 90% for the dataset. The remaining 10% error is due

to specificity as the current version of the algorithm remains

slightly conservative. For subsequent work we would adjust

the processing to filter this data and identify outliers.

C. Communication Savings

Table II presents two different communication types. In

the first type, the node transmits the compressed data only

when an anomaly is locally observed with a result that

reduces communication by 79.26%; this is for the worst case

of (Node A) compared to the base-line scenario of periodic

transmission which is how such data is relayed today. On

the other hand, the second communication type is where we

only send timestamps to the localization algorithm which

saves more than 99% communication.

D. Burst Event Localization

To estimate the burst location, we use the proposed

methods as per Equations (9) and (10) to localize the water

burst event. The sound velocity in PVC is 2395 m/sec. By

using the time stamp information from all sensor locations

in Figure 9, we can compute the difference in arrival times

for every pair of sensor locations. Figure 10 illustrates the

anomaly periods from the three individual nodes, as defined

in server side, and allows easier interpretation of anomaly

arrival time differences. First, we use the time difference

between node A and B, which will produce a “hyperbolic

curve” with A and B being two focal points. Next, we use

the time difference between node A and C, which will yield

another “hyperbolic curve” with A and C being two focal

points. The two “hyperbolic curves” will intersect at node �
within an error radius no more than 0.5m. Note that the error

radius is 0.5m because any burst event that occurs along the

pipe section ab (whose length is 0.5m) will produce the same

time difference information. More precisely, as depicted in

Figure 11, let x and y be the locations of any two burst

events occurring along the pipe section ab. Then, the time

differences from any burst location to both A and B are

exactly the same. That is,

|t(�→A) − t(�→B)| = |t(b→A) − t(b→B)|

= |(t(x→b) + t(b→A))− (t(x→b) + t(b→B))|

= |(t(y→b) + t(b→A))− (t(y→b) + t(b→B))|

This tells us that, by using the time difference information,

the burst event can be determined inside a circle whose

center point at node � with guaranteed ±0.5m accuracy.

79



(a) (b) (c)

Figure 9: Anomaly detection from three sensor nodes (A, B, and C) which are located 2m, 8.7m, and 13.7m from the burst

respectively.

Table II: Edge Processing Evaluation Results

Average
Compression Rate

Observed
Anomalies

Real
Anomalies

Anomaly Detec-
tion Accuracy

Communication Savings
(Transmit Compressed Data)

Communication
Savings (Transmit only

Timestamps)

Node A 28.01% 18 20 90% 79.26% 99.88%
Node B 30.06% 11 12 91% 87.69% 99.93%
Node C 39.25% 8 8 100% 92.22% 99.95%

Figure 10: Anomaly detection periods.

VII. PRIOR RELATED WORK

In the realm of Civil Engineering, there have been numer-

ous mechanisms used to detect leaks using novel devices that

mostly focus on intrusive sensing techniques such as in-pipe

sensors or even mobile sensor bots that roam within the pipe

network. Some of this prior work we touch on below, but a

comprehensive review is too voluminous for this publication.

Our work is instead focused on less intrusive approaches

that can specifically form a cost-effective distributed control

system to implement the next generation dynamic water

A

Ba

b

x

y
0.5m

Figure 11: ±0.5m accuracy in localizing the burst event

network topology. The work related to this briefly discussed

in this section.

Edge processing. In current smart water networks, physical

states such as water pressure or pipe vibration are sampled

at a reasonably high frequency (e.g. more than 128 samples

per second) and stored in underground battery-driven sensor

nodes. Currently, such raw data transmission is via cellular

networks which is very costly. The alternative is to transmit

over long-range (several kilometers) wireless communica-

tions, however high transmission power is required that leads

to fast battery depletion. Current state of the art solutions

[6] are unable to support underground battery driven sensor

nodes and therefore the typical choice remains to be the

expensive over ground sensor nodes directly connected to

power and transmit data periodically every 15minutes using

3G.

Furthermore, these solutions use offline computationally
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intensive algorithms to detect anomalies and require large

amounts of historical data, leading to the inability of the

algorirthm to be distributed and deployable on sensor nodes.

For example, [16] describes a wavelet-base algorithm which

requires data continuously from the sensor nodes. To over-

come these drawbacks, we have introduced an efficient

stream-based edge data processing and decision making

algorithm [9] which enables lightweight event-based com-

munication.

Water Burst Localization. Over the last decade, there

are some pioneering techniques proposed for water burst

localization, such as wave propagation analysis [17], spectral

clustering, and multiple hypotheses testing [18] (see [19]

for a survey). Nonetheless, only a paucity of methods have

been proposed in the context of a water network structure

that explores graph topology. One excellent piece of work is

Misiunas et al. [20] who leveraged a search-based technique

to localize a burst point. Its main idea consists of two phases:

in the first phase, the search is performed globally over

all nodes in the network; in the second phase, if the burst

is inferred to have occurred along the pipe, extra nodes

are placed along each of the pipes and the global search

is repeated. However, both steps of this method require

that a global search over all sensor locations is performed.

Therefore, its computation is expensive and will have scale

issues in a water network with a high density of nodes.

Recently, Srirangarajan et al. [16] utilizes wave-based

multiscale analysis of pressure signals to detect burst tran-

sients. To localize burst events, they also exploited the Dijk-

stra’s algorithm for calculating the shortest distance between

every two sensor locations. Nevertheless, we observe that,

when a burst occurs, its wave may travel in all the possible

directions of the paths (rather than down only one path in one

direction with the shortest distance) from the burst location

to sensor points. Thus, to accurately position burst events, it

is not appropriate to depend only on the shortest travel time

between two sensor locations.

We have some prior work on localisation using graph

theory [21], [22], [23] but with pressure data only. Again,

not only have we reapplied this work to use vibration data,

which has some subtle differences, but we have integrated

the end-to-end localization systems for the first time and

successfully. That is, the edge anomaly detection and lo-

calization elements of the systems which produce a timely

localization result and reduce the communication by 99%

compare to the tradition periodic communication. Further,

this is the first use of the combination of manual and

automatic localization feedback information to tune the end-

to-end system parameters to maximize its performance in a

low-cost way.

VIII. CONCLUSIONS

This paper presents a burst detection and localization

scheme that combines lightweight compression and anomaly

detection with graph topology analytics for water distri-

bution networks. We show that our approach not only

significantly reduces the amount of communications between

sensor devices and the back end servers, but also can effec-

tively localize water burst events by using the difference in

the arrival times of the vibration variations detected at sensor

locations. Our results can save up to 90% communications

compared with traditional periodical reporting situations.

Further our localisation can find the position of the anomaly

for our particular scenario within 0.5m error. This data

driven approach is significantly better than many hydraulic

modelling approaches that at best identify a leak to the

length of a given pipe which can be 10s of metres [24].

In this paper we show that early transient or event detec-

tion can run on low resourced sensor nodes meaning that

local control functions can occur with minimal latency and

this paves the way for distributed control for next generation

water networks. One can imagine that event time stamps are

sent to the back end to be localized and this information

fed into a control decision process (such as model driven

control) where the pipe network would be reconfigured

using remotely controlled valves to save both water and

customer demand issues. Such networks ultimately mean

a reduction of economic water scarcity due to poor water

network operation and at the same time make use of scarce

water resources.
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