
Enhancing Dependability of Cloud-based IoT
Services through Virtualization

Kashif Sana Dar, Amir Taherkordi and Frank Eliassen
Networks & Distributed Systems Group, Department of Informatics

University of Oslo, Norway

Email: {kashifd, amirhost, frank}@ifi.uio.no

Abstract—As Internet of Things (IoT) technology moves for-
ward, more and more IoT provided services are being pushed
toward clouds. Since the operation of IoT services runs the risk
of failures due to lossy communication links and error prone
nature of physical objects, cloud providers (offering such services)
should provide suitable platforms supporting two desired service
dependability features—i.e., reliability and availability. This issue
has so far been addressed for specific application scenarios and
often at the network layer. In this paper, we therefore aim at
proposing a generic, model-based approach for enhancing these
two important features at the application layer of cloud-based
IoT systems. Following the principle of dependability by design,
we build a framework based on the concept of virtualized IoT
services, promising a service abstraction model to efficiently and
simultaneously meet the dependability requirements of multi-
ple cloud-based IoT applications. The proposed virtualization
approach supports a variety of different dependability patterns
and implements them according to the demands of the target
application. We implemented the virtualization framework using
the SicthSense cloud platform with satisfactory evaluation results
on dependability metrics, such as maximum availability and the
probability of failure on demand.

I. INTRODUCTION

The Internet of Things (IoT) is rapidly being proposed

for scenarios where various smart things or objects—such as

Radio-Frequency IDentification (RFID) tags, sensors, mobile

phones, etc.—are supposed to interact with each other through

unique addressing schemes in a pervasive fashion. Being

tightly integrated with the physical world, a degree of unre-

liability and uncertainty is introduced by things into end-user

IoT applications, in addition to the fact that wireless links are

lossy, unstable and sensitive to environmental conditions [1],

[2]. The massive scale deployments of IoT devices make the

dependability concern more critical due to external (e.g., water

infiltration) or internal natural processes (e.g., power transient)

that cause physical deteriorations [3], [4], [5], resulting in

questionable quality of user experience and quality of infor-

mation. We target both reliability and availability features of

dependability for IoT devices. These features become more

important especially when IoT devices (henceforth called

sensors as well) are shared among several application scenarios

since they are being employed to construct a plethora of smart-

* applications.

For instance, consider a smart home that has a security

system with perimeter intrusion sensors (e.g., occupancy sen-

sor) on doors and windows, and motion detection sensors

in some indoor areas. Additionally, a home typically has

smoke sensors that, in case of fire, can inform the fire-station

via the fire alarm application. It contains a thermostat for

indoor temperature sensing, connected to a cooling or heating
system. Now, consider all of these sensors are accessible

from a common interface (e.g., a private cloud [6]) and

are shared among all applications for home automation. For

instance, the perimeter intrusion and motion sensors could be

used in an activity tracking application. These sensors along

with the thermostat could be used in a home energy control
application. Similarly, the activity tracking could also be used

for an assisted living application (Fig.1). Moreover, by sharing

existing sensors, adding additional application specific sensors

to such an existing infrastructure is much cheaper than adding

an entire sensor suite for each new application.

Assisted
Living

Fire
Alarm

Energy
Efficiency

Activity
Tracking

Smoke
Sensor

Occupancy
Sensor

Thermostat
Sensor

Motion
Sensor

Fig. 1. Different application scenarios.

To enable this vision, one main problem is that each applica-

tion will have its own sensing and dependability requirements.

For instance, the sensors’ data accuracy and availability may

have more strict dependability requirements in an assisted
living application than in an activity tracking application.

These devices are therefore required to reliably convey the

monitoring information and remain available for a maximum

time period as per consumer application demands. Failure in

delivering the sensed values in a reliable and timely fashion

may result in high costs, insufficient user satisfaction, and

even physical hazards to people or things [7]. Consequently,

as the range of applications extends to even more safety-

critical systems [8], additional dependability requirements may

be introduced to the system.

To cope with this problem, we need a rigorous solution

2016 IEEE First International Conference on Internet-of-Things Design and Implementation

978-1-4673-9948-7/16 $31.00 © 2016 IEEE

DOI 10.1109/IoTDI.2015.38

106

that allows applications to specify their sensing and associated

dependability requirements, transforms them into enactable

software artefacts, and coordinates between applications and

IoT devices to fulfil the required sensing functionality along

with their expected trustworthiness. Towards this goal, we

envisage the following desirable dependability properties for

IoT applications:

• How to specify application-specific dependability require-

ments in a more declarative way so that they can be

autonomously processed.

• How to provide a trustworthy mechanism on top of error-

prone devices to fulfil a certain level of dependability.

IoT dependability has become one hot topic of research [9],

[10] in recent years since today’s approaches do not guarantee

dependability in building IoT systems [7], [11]. Moreover, the

broader picture of design of robust IoT applications is not clear

yet [12]. Dependability modelling and analysis techniques [13]

help understand the dynamics of IoT environments but are

more restricted to quantify the reliability in given network

conditions. The techniques that actually aim to enhance the

dependability concentrate only on a specific problem e.g.,

end-to-end data reliability [14], adaptive routing [15], and

improving reliability of multi-hop WSN protocols [16], etc.

However, a generic approach is still required to lay the

scientific foundation for an IoT system that works dependably

and is resilient against variety of different failure types.

To address the above challenge, we exploit the concept

of virtualized IoT services i.e., the sensed data acquired by

a set of physical devices can be collected and processed

according to an application-provided virtualization function

and dependability requirements. Using virtual services (hence-

forth also called services), the programmer focuses on the

application logic, rather than on low level implementation

details and rigorously integrating the dependability require-

ments. It should be noted that IoT device virtualization is

not a novel approach [17], [18], [19]. Whereas the common

goal of reported works has been to enable the sharing of

sensor-provided services among multiple applications, our

virtual service design concept is distinguished from others

with respect to its special consideration to the dependability

needs of IoT applications. In addition to sharing IoT services,

our virtualization approach supports a variety of different

dependability patterns and implements them according to the

demands of the target application. Existing virtual services in

our system can also be reused in subsequent new applications

if they depend on equivalent sensing functionality with the

same level of dependability.

To demonstrate the feasibility of our proposed framework,

we implement both real and simulation based test-beds. Con-

sidering both random and systematic failures, our simulation

results show the effectiveness of the use of our framework with

98.57% of maximum availability under 40% random nodes

failure, 0.45% of probability of failure on demand under 10%
of nodes failures and 95.5% of net producibility of the system

under 10% of a partial network failure.

In the rest of this paper, we first present the concepts of

dependability and virtualization techniques for IoT systems

and discuss our contribution in the context of existing literature

produced during the recent years. Section III describes the

design of our proposed framework with dedicated sub-sections

for each design aspect of the framework. In Section IV,

we describe the real test-bed implementation using Tmote

Sky nodes followed by the detailed simulation-based results

presented in Section V. Finally, in Section VI we discuss the

achieved evaluation results and make the concluding remarks.

II. BACKGROUND AND RELATED WORK

Dependability is an integrating concept that incorporates

the reliability, availability, integrity, maintainability, safety, and

security attributes of the system [20]. In this paper, we con-

sider only reliability and availability in the context of cloud-

based IoT services, henceforth, using the term dependability
collectively for both of these features. According to ANSI1,

software reliability is defined as the probability of failure-free

software operation for a specified period of time in a specified

environment. The availability is the amount of time a system

is actually operating as the percentage of total time it should

be operating. A highly available system would disable the

malfunctioning portion and continue operating at a reduced

capacity. We follow these definitions and aim to enhance the

capability of IoT systems by masking failures in their critical

services. This is often achieved through redundancy [9] as the

redundant system components are often treated as replacement

for primary components when they are failed.

On the other side, virtualization, during the past few years,

has evolved as an efficient technique that allows the abstraction

of actual physical computing resources into logical units,

enabling their efficient usage by multiple independent users.

In the context of IoT, virtualization has become an established

technique to share sensor resources over the network [19],

[18].

Below, we elaborate on the most recent work carried out for

both dependability and virtualization in the context of Wireless

Sensor Networks (WSN) in general and IoT in particular.

A. Dependability

A wide range of strategies toward dependability for low

powered resource-scarce devices include dependability plan-

ning [21], [22], modelling and analysis [9], [3], [4], [23], and

enhancement techniques [13]. The description of each is as

follows.

1) Dependability Planning: Dependability planning

deals with the problem of finding a well-balanced level of

dependability during the application design. A set of system

level guidelines are provided in [10] to identify the reliability

requirements for IoT applications to ensure reachability

to all the sensors and replacement of faulty nodes. For

the safety critical embedded systems, [21] investigates the

best engineering practices (design patterns) and discusses

1American National Standards Institute

107

variety of different software and hardware-based redundancy

techniques. Similarly, [24] proposes a mathematical model

equipped with a mix of redundancy providing components

considering either active and/or passive redundancy. However,

we believe that the proposed model is not verified for real

IoT scenarios.

2) Dependability Modelling and Analysis: The most com-

mon dependability modelling techniques include Fault Tree

Analysis (FTA), the Reliability Block Diagrams (RBDs), and

reliability graphs. In [5], the fault trees are dynamically

generated out of present network topology to detect network

faults, which is further extended in [9] through the Markov

Chain based redundancy model. A counter-part approach for

above is the DRBD [4] that explains how a WSN can be

depicted through the DRBDs under different failure conditions

and different network topologies. Similarly, in [3], authors

exploit reliability graphs and represent a typical WSN through

an undirected graph. The above techniques are more suitable to

detect network failures and assess network reliability, instead

the modelling scope we target in this paper is to enhance the

dependability of IoT systems through redundancy patterns.

3) Dependability Enhancement: The current dependability

enhancement approaches target reliable data transfer e.g.,

network coding [14], multipath data sending [15], and reliable

sensor data fusion [25]. Similarly, authors in [26] demonstrate

how to make communication protocols more robust against

temperature fluctuations. In [12], the same authors explain

how to perform an automatic protocol configuration to increase

dependability of IoT applications.

An alternative category for enhancement lies in fault-

injection experiments [27], [28]. These approaches aim at

accelerating the occurrence of faults for the purpose of as-

sessing the effectiveness of built-in detection and recovery

mechanisms. Normally, to inject such faults, simulation-based

techniques are used during the development.

B. Virtualization for Smart Devices

In embedded systems, a common trend is to introduce in-

node or network level virtualized environments that provide

an integrated access of these devices. The node level virtual-

ization allows multiple applications to run their tasks on a

single node in a sequential and/or concurrent fashion e.g.,

implementation of a tiny virtual machine [29]. In network

level virtualization, a virtual sensor network is formed by a

subset of actual WSN’s nodes dedicated to one application at

a given time. In this category, two main approaches are based

on service orientation and aggregation function.

Within service based techniques, [17] presents a high level

architecture and implementation details of the IoT-VN (Virtual

Networks) for both constrained and non-constrained devices.

Similarly, [19] proposes a novel architecture based on: i)

service enablers (provide actual IoT services), ii) service

providers (guarantee their availability), and iii) end users.

They ensure connectivity through a gateway node which

plays a major role in providing network-level virtualization

and maintains several registries to create and manage virtual

networks. However, sensor nodes willing to be part of the

virtual network must be aware of functionalities offered by

the gateway node.

Within aggregation based techniques, [30] defines virtual

sensors with the help of aggregation function and design a

middleware that provides high level Application Programming

Interfaces (APIs) for programming these virtual sensors. Sim-

ilarly, [31] defines a virtual sensor as the function of input,

output, and configuration parameters. They further define the

composition of high level virtual services from the existing

ones by introducing virtual service manager and a buffer
to store sensor data which is further accessible by other

applications.

C. Discussion on Related Work

There are many recent efforts that have investigated both

dependability and virtualization functionality within IoT envi-

ronments. One major limitation of works on dependability is

that the underlying design is quite proprietary to a single ap-

plication scenario [16], [31], [3] and has not been thought in a

broader sense to target general purpose dependability features

that can be configured to the specific needs of each IoT ap-

plication. Furthermore, dependability modelling and analysis

[32], [3], [23], [21] techniques consider static arrangement of

different system components failures (e.g., battery depletion,

communication link, sensor hardware or software) and eval-

uate the overall system reliability by investigating individual

components’ probability of being functional at a given time

in given circumstances. While these efforts provide abstrac-

tions by mathematically formalizing the concepts of reliability

within IoT, they still lack practical dependability issues of

actual deployment problems and therefore the effectiveness of

fault tolerant mechanisms for real dynamics of the network is

still needed to be investigated. Also, dependability enhance-

ment techniques only focus on specific issues e.g., reliable

data transfer [14], [33], communication links redundancy [15],

effect of the external environment on IoT communication [26],

and simulation-based fault-injection experiments [27], [28]

to test dependability. We extend the latter techniques by

introducing reliability features at the very initial stage of IoT

applications’ design and facilitate to dynamically enact those

requirements through our proposed framework.

Requirements
specification

Fault
Tolerant IoT

Services

Creation of
virtual services

Dependability Planning Dependability Modelling

Service & Aggregation based
Virtualization

Redundancy based
Dependability Enhancement

Fig. 2. Our contribution in the context of existing literature.

Figure 2 depicts our contribution landscape in the context

of existing literature. Believing that dependability should be

an important design consideration, we exploit the depend-

ability planning techniques in [21] to design application’s

108

requirements. In order to fulfil these requirements, we adopt

a model-based approach [3], [23] and exploit both service-

oriented [17], [18], [19] and aggregation based [34], [30]

virtualization techniques. To realize this model, we create

a virtualized environment that weaves the application de-

pendability demands with available dependability patterns,

based on component redundancy. We then provide support for

invocation of IoT services through our previously developed

framework [35], and process the acquired data using the

specified virtualization function.

Using virtualization as a technique to enhance dependabil-

ity will have several advantages. First, applications will be

releaved from having to deal with the complexity caused by

service failure since such failures will be managed at the

virtualization layer. Second, since failure in a single device

has the potential to spread among numerous applications using

its services, risk of cascading effects of failure propagation

in such scenarios will be mitigated. Failure management

increases complexity especially when it is handled at the

application level which is translated into higher workloads for

developers and managers. Thus, it is wise to provide a com-

mon middleware framework that collectively provides sensing

functionality along with the desired level of dependability and

failure management capabilities.

III. SYSTEM DESIGN

Before we describe details of the system design, we identify

the main design requirements and assumptions made during

the design process.

A. Design Requirements

We identify three main requirements which are basically

described to achieve a balance between applications’ de-

pendability demands and the constraints of underlying IoT

resources.

1) Dependability requirements specification: IoT-aware ap-

plications should be capable to specify what are their

dependability requirements associated with each sensing

task. These requirements must be described in a declar-
ative way so that they can be processed autonomously.

2) Virtual services creation and management: Enable a vir-

tual environment consisting of on-the-fly created virtual

services that fully conform to not only functional but

also dependability requirements specified by the end-

user application. This also implies that existing virtual

services should be re-usable among other applications.

3) Reliable services on top of volatile things: The services,

created as a result of above requirement, should form a

reliable infrastructure on top of error-prone IoT devices

in order to maximize their availability. This requires

an insight into existing redundancy based dependability

patterns and their potential impact on IoT-aware appli-

cations.

We believe that, by fulfilling the above requirements, IoT-

aware applications will become loosely coupled with actual

IoT services and will remain unaffected under continuous

fluctuation of their availability. Below, we first describe the

failure types that we consider in this paper..

B. Failure Types

Within typical IoT environments we consider the sensor

node level crash that causes permanent failure. This may be

either due to hardware or software failure. It is important

to note that we do not consider the failure in intermedi-

ate/receiving node and communication link and assume that

node-level failure is consistent i.e., node’s service failure is

observed by all of its users and is detectable i.e., when node

fails, it changes to a state that allows others to detect its failure

and then stops. Finally, to attain dependability we consider

fault tolerance technique instead of fault prevention, removal,

and forecasting.

C. Assumptions

Due to several dependencies of our proposed solution with

other sub-systems, we consider the following assumptions to

hold when it comes to the integration of our framework with

other components.

• Service discovery: The mechanism to discover target IoT

devices participating in each sensing task is already in

place i.e., for a given task, we already have a list of

devices along with their behavioural description2.

• Service maintenance cost: We do not take into account the

service maintenance cost i.e., failure detection, recovery,

restart, and resume time.

• Redundancy type: In this paper, we only consider active

redundancy in which active components are running in

parallel and do not consider passive redundancy. This

is due to the fact that we do not handle the additional

functionality needed to activate and switch to the standby

components when the primary component fails.

D. Requirements Specifications

We follow a similar domain model as presented in [36] to

formulate the sensing requirements. Below, we first describe

terminologies we use for this purpose.

• Application Domain: refers to a particular business area

to which an IoT-aware application belongs such as Health

care, Logistics, Smart Building, Smart City, and Smart

Traffic.

• Entity of Interest (EoI): The potential physical object

within the real world which needs to be monitored,

controlled, or tracked. For example, patients in healthcare,

trucks or food items in logistics, rooms in a building

application domain, etc.

• Property of Interest (PoI): is the desired monitoring

property associated with an EoI. For example, location

(PoI) can be associated to a vehicle (EoI) to track.

• Observation Rate: A PoI associated with an EoI is moni-

tored through different level of frequencies e.g., periodic

or event based monitoring.

2describe their offered functionality and their exposed interfaces

109

• Dependability Level: represents a certain level of relia-

bility and availability. We define several levels from low

to high depending upon the dependability requirements.

• Virtualization Function: defines the data processing logic

for virtual services. It may be a simple aggregation or a

Boolean function.

Now, let A, D, E, and P represent the set of all possible

applications, application domains, EoIs, and PoIs respectively.

Let, L = {l | l ∈ {low,medium, high}} be the set of possible

dependability levels,

Q = {q | q ∈ {periodic, range, threshold}} is the set of

possible rates of observation, and

F = {f | f a virtualization function} is the set of supported

virtualization functions.

Then the set of sensing requirements R for any application

can be represented as follows:

R = {(d, e, p, l, q, f)
where d ∈ D, e ∈ E, p ∈ P, l ∈ L, q ∈ Q, f ∈ F}
E. Redundancy Models

Our solution is based on the active redundancy (our assump-

tion) in which redundant nodes are continuously functioning

along with the primary node that offers services. Redundancy

is a well known approach to cope with dependability problems.

Despite the fact that this topic is very less explored in the

context of IoT [9], there exist variety of different ways of

implementing it for traditional systems. Following, we discuss

three models of redundancy and will eventually evaluate them

in the context of IoT.

1) Duplex redundancy: The duplex model is used to in-

crease the dependability of the system by providing a repli-

cation of the same component (Modular redundancy) to deal

with the random faults. The idea of providing an additional

component is based on the assumption that it is highly

unlikely for two identical components to suffer a random fault

simultaneously.

2) Triple Modular Redundancy: This model consists of

three identical components which operate in parallel to pro-

duce three results that are compared using a voting system to

produce a common result. This structure allows the system to

operate and provide functionality as long as two components

or more have the same result.

3) M-Out-Of-N Redundancy Model: A M-oo-N model

works with N identical components which operate in parallel.

The M-oo-N redundancy requires that at least M components

succeed out of the total N parallel components for the system

to succeed. A M-out-of-N voting algorithm is used in the voter

component to allow the system operating and providing the

required functionality in the presence of random faults without

losing the input data.

F. Problem Formalization

We capture the overall picture of IoT by considering dif-

ferent application domains. Therefore, we uniquely represent

each domain and allow applications to specify their sensing

requirements from one or multiple domains. Within each

domain, real world entities (EoIs) are associated with different

PoIs along with a specific dependability level, frequency of

observation, and a virtualization function to collect and process

sensed values.

For example, as envisioned in the example of smart home
in Section I, the fire alarm application consumes temperature

and smoke values and invokes a fire event if corresponding

values exceed a particular threshold. This typical functionality

can be achieved by fulfilling the following three requirements.

• r1 - get an average temperature value (out of two devices)

from room#1, every 10 seconds (sec) with a medium level

of dependability.

• r2 - get a maximum smoke value (out of three devices)

from room#1 every 5 sec with a high level of depend-

ability.

• r3 - generate a fire alarm if temperature value exceeds

40◦ and smoke value exceeds 30 with a high level of

dependability.

From the above illustration, we see that r1 and r2 are

similar in a way that they need to directly fetch data from

physical devices. Whereas, r3 requires only to process sensor

data gathered as a result of fulfilling r1, and r2. Thus the above

requirements can be collectively represented as a set of three

sub-requirements:

RA = {r1,r2,r3}
where,
r1 = {Smart Home,Room1,Temperature,Medium,10 sec,Average(2)}
r2 = {Smart Home,Room1,Smoke,High,5 sec,Maximum(3)}
r3 = {Smart Home,Room1,Fire-Alarm,High,φ,f(r1,r2)}

where f(r1, r2) = (|r1|3 >= 40◦ && |r2| >= 30) is a

Boolean function that specifies when a fire alarm should be

activated. Note that the φ value in r3 points out that r3 does

not have any frequency of observation since it only needs to

process data obtained through other requirements. Despite this

fact, the high level information generated by it may have its

own dependability requirement.

Now, let M represent the supported redundancy models

(described previously) and S be the set of physical devices.

Then our virtualization problem can be described as follows:

“Create a set of virtual service(s) V = {(r, s,m) | r ∈
R, s ∈ S,m ∈ M} where each v = (r, s,m) conforms to the

virtualization requirement r by using a suitable redundancy

model m that manipulates a set of physical devices s.”

By following this, we now describe the detailed system

description followed by an algorithm to create virtual services

within our system.

G. System Description

A conceptual diagram of our proposed virtualization frame-

work is shown in Figure 3. It mediates between IoT applica-

tions and devices belonging to different IoT domains. Each

3|ri| denotes an accumulated result obtained from ri

110

IoT-aware
Applications

maintains

access

write

creates

requirements

Virtual Services
Manager

Tuple
Space

Service
Repository

access

EoIs
observe

IoT
domains

belong

recognized
through

use

contains

PoIs

IoT devices

monitored
through

Redundancy
Models

Virtual
Services

Fig. 3. The conceptual diagram of the proposed virtualization framework.

IoT device monitors a set of PoIs associated with EoIs and

exposes its functionality through a behavioural description rep-

resented by a unique document (e.g., Web Service Description

Language)4 WSDL version 2.0. We describe this device level

representation in our previous work [35] in which the service

on each device is treated as a REST-endpoint5 and is exposed

as a RESTful service. It is worth noting that, in order to invoke

services hosted by IoT devices, the same framework [35] is

used that offers high-level APIs to invoke IoT services using

IP-based communication. We assume that the list of potential

devices will be available to the Virtual Services Manager
(VSM) through an external discovery mechanism along with

their WSDL files.

On the other hand, the application developer can specify

the application requirements as described in the previous

section. Algorithm 1 describes how the VSM sequentially

processes these requirements in order to ensure that for each

requirement there is at least one virtual service in the system.

For this purpose, the VSM first ensures if there already exists

a virtual service in the Service Repository that fulfils the same

requirement - both functional (sensing) and non-functional

(dependability). The Service Repository provides a catalogue

of currently running virtual services within our framework.

Each virtual service is recognised through a globally unique

identity generated from its associated requirement. Therefore,

the VSM performs a local identity-based search operation

to ensure de-duplication of the virtual services. In case, a

service already exists, the VSM simply adds this to the target

service set V . Otherwise, it creates a new virtual service as

explained in the Algorithm 1 and creates its entry in the

Service Repository.

In addition, the class diagram in Figure 4 shows how dif-

ferent functionalities regarding the implementation of relevant

redundancy model and virtualization function are encapsulated

in different classes. The Requirement class aggregates both

4http://www.w3.org/TR/wsdl20-primer/
5http://rest.elkstein.org/

sensing and data processing logic of the application. The

required dependability model is then implemented using the

right class derived from the DependModel abstract class.

Finally, an object of VirtualService class is instantiated which

uses both the Requirement and relevant DependModel special

classes to enact a virtual service.

It is worth noting that within our framework, there are two

types of services created by the VSM: periodic and event-
based. The former periodically fetches data from IoT devices

and populate the tuple space that is accessible by applications

through APIs provided by the VSM. The event-based services

follow the push model by monitoring an event. For example,

for r1 and r2, from the previous section, the VSM will create

a periodic service for each to monitor temperature and smoke

values, however, for r3, it will create an event-based service

that will report only when a fire event is detected. This is

typically implemented using a callback function.

However, once the virtual service is enacted, it will fetch

data from the target IoT services and will populate the tuple
space according to the assigned observation rate. Currently,

the framework only supports pulling data from the devices,

however, a device push model will also be implemented in

the future.

Having such virtualizion framework will have a number of

advantages when it comes to services reusablity and mainte-

nance. The services are easily reused among other applications

if they need similar functionality with the same level of

dependability. Further, in case a service needs to be replaced

with a better alternative, its related old data will be still

available from the tuple space during the service maintenance

task.

Fig. 4. Class diagram of the virtualization framework.

IV. IMPLEMENTATION

We implemented the virtualization framework in Java using

template and factory design patterns. The former is used to

implement different redundancy models and instantiate one of

them depending on the scenario while the latter is used to

111

Algorithm 1 Creation of Virtual Services

Require:
1: Set of pairs (r, s) where r ⊆ R and s ⊆ S
2: Sets of M and F mentioned in Section III-D

Ensure:
3: Set of V
4: procedure BUILD–VS

5: for each r ∈ R do
6: v ← EXIST-VS(r)
7: if v �= φ then
8: V ← v
9: else

10: � Create a new service from given r and s
11: V ← CREATE-VS(r, s)
12: end if
13: end for
14: function CREATE-VS(r, s)

15: � Implement required Redundancy Model (RM)

16: for each m ∈ M do
17: if r.l = m then
18: v ← IMPLEMENT-RM(m, s)
19: BREAK

20: end if
21: end for
22: � Implement the Virtualization Function (VF)

23: for each f ∈ F do
24: if r.f = f then
25: v ← IMPLEMENT-VF(f)
26: BREAK

27: end if
28: end for
29: � Get a service type by checking frequency (q)

30: if r.q �= φ then
31: v ← GET-TYPE(periodic)
32: v ← SET-PERIOD(r.q)
33: else
34: v ← GET-TYPE(eventing)
35: � Implement call back function for V F (r.f)

36: v ← IMPLEMENT-CALLBACK(r.f)
37: end if
38: return v
39: end function
40: function EXISTS-VS(r)

41: for each service v ∈ V do
42: if v.r = r then � Find service with similar r.

43: return v
44: end if
45: end for
46: return φ
47: end function
48: end procedure

create different types of virtual services implementing their

own virtualization functions and redundancy models.

To implement a real test-bed, we deploy a small network of

Contiki6-based Tmote Sky7 nodes along with a private instance

of SicsthSense8—a Java-based open cloud platform for the

IoT. We chose SicsthSense as our cloud platform because it is

compatible and convenient to deploy along with our previously

built framework [35] that we used to invoke services hosted

by IoT devices. Both of them are implemented in Java and

offer REST-based communication.

The Tmote Sky node that we used contains an 8 MHz

MSP430 microcontroller, a CC2420 radio chip, 48 KB of

programmable flash, 10 KB of RAM, and light, temperature,

and humidity sensors. We use a small single-hop network

of 6 nodes with static routes. Among these nodes, one node

implements the 6LoWPAN9 border router connected via USB

to a Ubuntu computer. For the rest of the nodes, each node im-

plements a single service that provides the current temperature

value in the external environment.

SicsthSense enables low power devices to easily store their

generated data streams in the cloud. This allows the data

streams to be made permanently and globally available to users

for visualisation, processing and sharing. These streams are a

sequence of scalar numeric values arranged through time. Each

stream is a logical grouping of some data point measurements

that users are interested in (such as temperature). SicsthSense

can be configured to populate these streams by its interaction

with external Resources. A resource is a single source/device

that provides information, such as a Tmote Sky node. Each

resource may provide multiple different data points upon

each interaction with it. For example, a Tmote Sky resource

may provide a data payload containing the temperature and

light. This payload then has to be processed and split into

two different streams for storage. This splitting procedure is

performed by Parsers that specify which bits of data in a

payload are of interest to the user. In short, users have many

resources containing parsers and time series of streams.

Figure 5 shows our implemented test-bed. Consider a typical

application specifies a sensing requirement to the Virtualiza-

tion Framework that requires to create a periodic-based virtual

service. The VSM processes the requirement and creates a

virtual service as explained in the previous section. This virtual

service then creates a unique resource into the SicsthSense

server and creates one or more data streams associated with

that resource. The resource is exposed by SicsthSense through

HTTP-based API (Constrained Application Protocol10 (CoAP)

is not supported in its current version). These data streams

then act as a tuple space from where data can be accessed

by simply making a HTTP GET request. To make these

streams persistent, the SicsthSense server stores them into a

relational database – MySQL in our case. On the other hand, if

6http://www.contiki-os.org/
7http://tmote-sky.blogspot.no/
8http://presense.sics.se/
9http://6lowpan.net/about/
10https://tools.ietf.org/html/rfc7252.

112

Applications

Virtulaization
Framework

MySQL
SicsthSense

Server HTTP GET

CoAP GET

HTTP
POST

Request for
sensing

Store data
streams

IoT devices

Fig. 5. Real implementation test-bed.

VSM needs to create an event-based virtual service, it follows

the aforementioned procedure in addition to implementing

a separate call-back function for pushing data to relevant

application(s).

After successfully implementing the above test-bed, we

calculated both the build time—time taken to transform an

application requirement into an enactable service, and commu-
nication delay—time taken to make a CoAP request to fetch

data from sensors. We noticed that the average build time

is 9 millisecond (ms), whereas the average communication

delay is 346 ms – average of 10 values. By these values,

we observe that the build time is negligible compared to

the communication cost and therefore it will not impose

any considerable overhead in term of processing time when

our framework is used. However, it should be noted that

we do not consider further processing delay, i.e., making

HTTP GET/POST requests to SicsthSense as, unlike our single

machine based implementation, it may vary depending upon

the actual scenario implementation.

V. EVALUATION

Dependability of a software-based system is hard to mea-

sure and even sometimes difficult to define. To quantitatively

express the dependability of a software product, the choice of

metrics depends upon the type of system to which it applies

and the requirements of the application domain. Therefore, we

will use following metrics to evaluate our results:

• Failure Intensity: describes the percentage of failed nodes

out of total number of nodes in the network. A failure

intensity of 2% means that 2% nodes of the whole

network are dis-functional.

• Probability of Failure on Demand (PFD): is defined as

the probability that a system will fail when a particular

service is requested. It is the number of service failures

given the total number of service calls. A PFD of 0.1

means that one out of ten service requests may result in

failure.

• Producibility: is defined as the ability of a system to

produce the desired result, both accurate (ideal value) or

near-accurate (acceptable value). For example, the user

TABLE I
SIMULATION TEST-BED CONFIGURATION.

Parameter Value
Total number of nodes 20000
Network Arrangement A 40× 500 matrix of mesh network
Total number of operations 50000
Redundancy models distribution Random among all operations
Failure intensity Up to 100% with 0.5% increase rate
Failure patterns Random and systematic

may specify to accept an old value (which is not expired

yet) in case fresh data is not available due to any failure.

Thus, producibility is quantified as the probability of

system being able to produce the desired result.

• Availability (AVAIL): is the probability a system is avail-

able for use at a given time. It takes into account the repair

time and the restart time for the system. Therefore, it is

the percentage of time that a system is available for use,

taking into account planned and unplanned downtime. If

a system is down for an average of four hours out of 100

hours of operation, its AVAIL is 96%.

Below we describe our simulation-based test-bed descrip-

tion to calculate the above metrics.

A. Test-bed Description

Table I describes our Java-based simulation test-bed that

we used in all our experiments. The scale of network size

is carefully chosen by studying the existing large-scale IoT

applications, e.g., [37] that uses a well estimated number

of sensor devices for a smart city application. This project

rolled out over 20000 devices (such as sensors, repeaters,

gateways and mobile handsets) in Santander and the surround-

ing area enabling various applications in areas such as public

transport and mobility, traffic, pollution, waste management,

noise control, etc. However, the choice of total number of

operations to be performed on a given network varies from

one application scenario to another. Therefore, we selected

a reasonable amount of operations so that we can at least

access each node in the selected network. Finally, we used

both random and systematic (common cause) failure patterns.

B. Random Failures

We injected random failures in the network right from 0.5%

to 100% failed nodes with the increase rate of 0.5% and

used the redundancy models described in Section III-E (3-oo-

5 in the MooN case) and randomly distributed them among

all operations. Figure 6 shows the simulated network and

illustrates how different types of operations are executed by the

virtual services created within the Virtualization Framework.

With this set-up, we calculate the overall availability of the

system as follows.
1) Availability: We evaluated the number of recovered

operations out of total number of operations performed at

a given time with a given failure intensity. We define an

operation as a single sensing request e.g., getting value of

current temperature. Within our experiments, we define the

following operations.

113

Operation

Triple

3-oo-5

Virtualization Framework

Operation ?

Redundancy
Model

Duplex

Triple

3-oo-5

Duplex

IoT Network

Failed IoT Device

Operations

Fig. 6. Test-bed scenario for random and systematic failures.

• Fail Safe: yields desired result without facing any failure

in primary nodes. The number of fail safe operations

remains same with or without using our framework.

• Recovered: Despite failure in primary nodes, it yields the

desired result due to recovery performed by redundant

nodes. This metric is useful to calculate the effectiveness

of our approach.

• Successful: represents the total number of operations

which are fail safe and recovered. This metric is useful

to calculate the overall availability of the system.

• Fail: represents the number of operations that were failed

to produce the desired results despite the use of our

approach.

As shown in Figure 7, initially the recovery of operations

grows linearly as more failures are injected in the network with

maximum of 99.32% successful operations, however, after

reaching a certain threshold, which we achieved at 40%, it

starts decreasing, mainly due to shortage of redundant nodes,

and reaching to zero% of successful operations when 100%

nodes are dis-functional.

Fig. 7. Recovered operations in random failures.

With this test data, we finally calculated overall availabil-

ity of the system (only up to the maximum performance)

which is 98.57% (percentage of time the system was able

to successfully perform the requested operations) since it

goes through cycles of successful and un-successful operations

during its whole execution time. However, we did not consider

failure detection, recovery, and restart times since we did not

implement any recovery mechanism.

2) Failure on demand: We calculate the probability of

failure on demand (PFD) by calling a particular service at

a given failure intensity with maximum of 10% of network

failure. For this purpose, we use the same test-bed described

above with the same configuration except, we reduce the total

number of operations to 200 because we only want to check

the system behaviour under on-demand service invocation. For

each operation, we invoke a particular service instead of a

random operation. Figure 8 shows that 99.55% of operations

were successful (hence PFD = 0.45%). We observed that

number of recovered operations also grows linearly, like the

previous experiment, but in a more zigzag fashion. This is

particularly due to the nature of operation performed, i.e.,

which part of the network is being accessed by the on-demand

operation, accessing part of the network with majority of failed

nodes means that the operation is likely to be un-successful.

Fig. 8. Recovered operations in on-demand service invocation.

C. Systematic Failures

We consider systematic failure mainly by introducing: i)
partial network failure, and ii) injecting failure to most critical

nodes. In the following, we describe each:

1) Partial Network failures: In this category, a sub-network

consisting of a set of nodes becomes inaccessible due to the

common cause failure. We used the same network layout

as described previously and injected partial network failure

of size 10% of the whole network right in the middle. We

then, performed specified number of operations with: i) all

redundancy models (randomly distributed), and ii) using only

MooN (3oo5). In both cases, we observed almost constant

number of recovered operations (the former with 10% and the

latter with slightly increased value of 12.5%). The reason of

this slight increase is that the latter contains more redundant

nodes with increased fault tolerance capability. With only

MooN redundancy, we further evaluated our test-bed with

114

TABLE II
PERCENTAGE OF DIFFERENT OPERATIONS IN CRITICAL NODES’ FAILURE

WITH NET PRODUCIBILITY = 95.5%

Node Degree Fail Safe Recovered (R) Recovered (T) Failed
2 79% 17% 2.5% 1.5%
3 74% 19% 4% 3%
4 70% 20% 5% 5.5%
5 67% 19.5% 5% 8.5%

increasing value of m (i.e., decreasing service accessibility

with increased accuracy level) and found that higher the value

of m, we are able to save fewer number of operations.

2) Failures in most critical nodes: We define the criticality

of a sensor node by its degree of being shared among appli-

cations. For example, a node with degree 2 is shared between

two different applications. Hence, a greater degree of node

will represent its higher criticality.

We run our experiment with 100 applications with random

access (can access any number of nodes) to the same network

resources as described in the previous section. We first equally

divide all the operations among applications and allocate them

a fix number of nodes. By this, we calculate the degree of

each node. We now repeat the experiment by performing

operations with failures injected to nodes with degree from

1 to 5 (maximum) and compute the percentage of different

types of operation (shown in Table II) with two additional

types of operations defined as follows:

• Recovered through Redundancy (Recovered (R)): oper-

ations which face partial failures in primary nodes but

yielded desired result due to standby nodes replacing

them.

• Recovered through Tuple space (Recovered (T)): are

those operations which, despite being failed, yielded near

accurate result by fetching an old copy of data from the

tuple space.

Table II shows the efficiency of the use of our framework.

As the percentage of fail safe operations decreases due to

failures injected in nodes with higher degrees, the number of

recovered operations increases linearly. However, we see the

slight decrease in the number of operations recovered when

failure is injected to nodes with degree 5. This is mainly due

to the fact that nodes with a higher degree will have more

reusability and more applications will experience the same

failure. However, the percentage of operations recovered

due to the tuple space data is not affected and remains

constant because there will be no failures on this level. In the

end, we calculate the net producibility of the framework by

averaging the number of successful operations which is 95.5%.

VI. DISCUSSION AND CONCLUSIONS

Exposing smart IoT devices as cloud services enhances

complexities in building more robust IoT systems at scale.

This work targets to deliver reliable IoT services at the cloud

level. We propose a framework that assists IoT applications to

specify their sensing requirements along with the expected de-

pendability demands in term of components redundancy. The

framework is based on a generic model that can include differ-

ent redundancy patterns and use the virtualization technique to

deploy those patterns at runtime in the form of virtual services.

A virtual service within the framework also encapsulates the

sensor data processing logic (by implementing application-

specified virtualization functions) and sensing functionality to

invoke IoT services (using our previously built communication

framework). In this way, matching functional requirements

with the expected level of dependability decreases the ser-

vice maintenance cost and prevents potential ripple effects

from the services dis-continuity later in the actual execution

environment. In addition, the use of tuple space as sensor

data buffer further adds value to the data dependability while

compromising a little on data freshness.
To demonstrate the feasibility of cloud-based IoT services,

we implemented a Contiki-based network of real Tmote Sky

nodes within the SicsthSense cloud platform. From this real

implementation, we observed that our framework has negligi-

ble processing overhead as compared to the overall processing

and communication delay (using CoAP) for accessing sensor

data.
We further performed extensive simulation tests to measure

the performance of our framework under different types of

failures and reported the relevant dependability metrics. For

example, the maximum availability of the system is 98.57%,

under 40% of random nodes failure in the network. Similarly,

within the same network, the probability of failure on demand

is calculated as 0.45% given a maximum of 10% nodes failure.

Under the systematic failure category, we observed the net

producibility of the system is 95.5% when a partial network

of size 10% of the whole network becomes isolated or dis-

functional.
Beside above results, our framework is highly tunable in

terms of introducing more redundancy patterns and depend-

ability levels. By considering the dependability by design
principle, cloud-based IoT applications can find a good match

of their dependability demands and available resources through

the use of our framework. Despite the fact that we do not

provide a recovery mechanism for failed operations (that we

think is potential future work), the design of such recovery

mechanism is easier with our approach since failure handling

can be performed by only fixing the related virtual services

(once recovered, we only need to re-deploy them). Moreover,

this avoids the cascading effect of service failure prorogation.

VII. ACKNOWLEDGEMENTS

We gratefully acknowledge the guidelines and feedback

provided by Professor Roman Vitenberg to improve the final

version of this paper. We are also thankful to the anonymous

reviewers for their careful reading of our paper and their many

insightful comments and suggestions.

REFERENCES

[1] C. Boano, J. Brown, Z. He, U. Roedig, and T. Voigt, “Low-power
radio communication in industrial outdoor deployments: The impact

115

of weather conditions and atex-compliance,” in Sensor Applications,
Experimentation, and Logistics, ser. Lecture Notes of the Institute
for Computer Sciences, Social Informatics and Telecommunications
Engineering. Springer Berlin Heidelberg, 2010, vol. 29.

[2] Francoise Sailhan, Thierry Delot, Animesh Pathak, Aymeric Puech, and
Matthieu Roy, “Dependable wireless sensor networks,” 2009. [Online].
Available: http://cedric.cnam.fr/ sailhanf/publications/gedsip.pdf

[3] C. Jaggle, J. Neidig, T. Grosch, F. Dressler, “Introduction to model-
based reliability evaluation of wireless sensor networks,” in 2nd IFAC
Workshop on Dependable Control of Discrete Systems, 2009.

[4] S. Distefano, “Evaluating reliability of wsn with sleep/wake-up interfer-
ing nodes,” International Journal of Systems Science, vol. 44, no. 10,
pp. 1793–1806, 2013.

[5] I. Silva, R. Leandro, D. Macedo, and L. A. Guedes, “A dependability
evaluation tool for the internet of things,” Comput. Electr. Eng., vol. 39,
no. 7, pp. 2005–2018, Oct. 2013.

[6] S. Distefano, G. Merlino, and A. Puliafito, “Sensing and actuation as
a service: A new development for clouds,” in Network Computing and
Applications (NCA), 2012 11th IEEE International Symposium on, Aug
2012, pp. 272–275.

[7] Carlo Alberto Boano, Kay Rmer and Thiemo Voigt, “RELYonIT: De-
pendability for the Internet of Things,” IEEE IoT Newsletter Januray
13, 2015.

[8] N. Raveendranathan, S. Galzarano, V. Loseu, R. Gravina, R. Gian-
nantonio, M. Sgroi, R. Jafari, and G. Fortino, “From modeling to
implementation of virtual sensors in body sensor networks,” Sensors
Journal, IEEE, vol. 12, no. 3, pp. 583–593, March 2012.

[9] D. Macedo, L. Guedes, and I. Silva, “A dependability evaluation for
internet of things incorporating redundancy aspects,” in Networking,
Sensing and Control (ICNSC), 2014 IEEE 11th International Conference
on, April 2014, pp. 417–422.

[10] James Kempf, Jari Arkko, Neda Beheshti, Kiran Yedavalli, “Thoughts
on reliability in the internet of things,” in Interconnecting Smart Objects
with the Internet Workshop, Prague, 2011.

[11] H. Pohls, V. Angelakis, S. Suppan, K. Fischer, G. Oikonomou, E. Tragos,
R. Diaz Rodriguez, and T. Mouroutis, “Rerum: Building a reliable
iot upon privacy- and security- enabled smart objects,” in Wireless
Communications and Networking Conference Workshops (WCNCW),
2014 IEEE, April 2014, pp. 122–127.

[12] F. J. Oppermann, C. A. Boano, M. A. Zúñiga, and K. Römer, “Automatic
protocol configuration for dependable internet of things applications,” in
Proceedings of the 10th International Workshop on Practical Issues in
Building Sensor Network Applications (SenseApp). IEEE, Oct. 2015.

[13] L. Venkatesan, S. Shanmugavel and C. Subramaniam, “A survey on
modeling and enhancing reliability of wireless sensor network,” Wireless
Sensor Network, vol. 5, no. 3, pp. 41–51, 2013.

[14] Ting-Ge Li and Chih-Cheng Hsu and Cheng-Fu Chou, “On reliable
transmission by adaptive network coding in wireless sensor networks,”
in IEEE International Conference on Communications, 2009. ICC ’09.,
June 2009, pp. 1–5.

[15] M. R. S. Saqaeeyan, “Improved multi-path and multi-speed routing
protocol in wireless sensor networks,” IJCNIS, vol. 4, no. 2, pp. 8–14,
2012.

[16] Braem, B.; Latre, B.; Blondia, C.; Moerman, I.; Demeester, P.,, “Improv-
ing reliability in multi-hop body sensor networks,” Sensor Technologies
and Applications, International Conference on, vol. 0, pp. 342–347,
2008.

[17] I. Ishaq, J. Hoebeke, I. Moerman, and P. Demeester, “Internet of things
virtual networks: Bringing network virtualization to resource-constrained
devices,” in Green Computing and Communications (GreenCom), 2012
IEEE International Conference on, Nov 2012, pp. 293–300.

[18] Jeroen Hoebeke, Eli De Poorter, Stefan Bouckaert, Ingrid Moerman, Piet
Demeester.

[19] M. Navarro, M. Antonucci, L. Sarakis, and T. Zahariadis, “Vitro ar-
chitecture: Bringing virtualization to wsn world,” in Mobile Adhoc and
Sensor Systems (MASS), 2011 IEEE 8th International Conference on,
Oct 2011, pp. 831–836.

[20] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr, “Basic concepts
and taxonomy of dependable and secure computing,” IEEE Trans.
Dependable Secur. Comput., vol. 1, no. 1, pp. 11–33, Jan. 2004.

[21] A. Armoush, “Design patterns for safety-critical embedded systems,”
Ph.D. dissertation, Aachen, Techn. Hochsch., Diss.,, 2010.

[22] F. Stajano, N. Hoult, I. Wassell, P. Bennett, C. Middleton, and K. Soga,
“Smart bridges, smart tunnels: Transforming wireless sensor networks
from research prototypes into robust engineering infrastructure,” 2009.

[23] S. Mukhopadhyay, C. Schurgers, D. Panigrahi, and S. Dey, “Model-
based techniques for data reliability in wireless sensor networks,” Mobile
Computing, IEEE Transactions on, vol. 8, no. 4, pp. 528–543, April
2009.

[24] R. Tavakkoli-Moghaddam and J. Safari, “A new mathematical model for
a redundancy allocation problem with mixing components redundant and
choice of redundancy strategies,” Applied Mathematical Sciences, vol. 1,
no. 45, pp. 2221–2230, 2007.

[25] W. Yuan, S. Krishnamurthy, and S. Tripathi, “Improving the reliability of
event reports in wireless sensor networks,” in Computers and Communi-
cations, 2004. Proceedings. ISCC 2004. Ninth International Symposium
on, vol. 1, June 2004, pp. 220–225 Vol.1.

[26] James Brown, Utz Roedig, Carlo Alberto Boano, Kay Romer. and Nico-
las Tsiftes, “How temperature affects iot communication,” in the 11th
European Conference on Wireless Sensor Networks (EWSN). IEEE,
2014.

[27] M. Fairbairn, I. Bate, and J. Stankovic, “Improving the dependability
of sensornets,” in Distributed Computing in Sensor Systems (DCOSS),
2013 IEEE International Conference on, May 2013, pp. 274–282.

[28] Wu, Yafeng and Kapitanova, Krasimira and Li, Jingyuan and Stankovic,
John A. and Son, Sang H. and Whitehouse, Kamin, “Run time assurance
of application-level requirements in wireless sensor networks,” in Pro-
ceedings of the 9th ACM/IEEE International Conference on Information
Processing in Sensor Networks, ser. IPSN ’10. New York, NY, USA:
ACM, 2010, pp. 197–208.

[29] I. Leontiadis, C. Efstratiou, C. Mascolo, and J. Crowcroft, “Senshare:
Transforming sensor networks into multi-application sensing infrastruc-
tures,” in Wireless Sensor Networks, ser. Lecture Notes in Computer
Science, G. Picco and W. Heinzelman, Eds. Springer Berlin Heidelberg,
2012, vol. 7158, pp. 65–81.

[30] S. Kabadayi, A. Pridgen, and C. Julien, “Virtual sensors: Abstracting
data from physical sensors,” in Proceedings of the 2006 International
Symposium on on World of Wireless, Mobile and Multimedia Networks,
ser. WOWMOM ’06. Washington, DC, USA: IEEE Computer Society,
2006, pp. 587–592.

[31] N. Raveendranathan, S. Galzarano, V. Loseu, R. Gravina, R. Gian-
nantonio, M. Sgroi, R. Jafari, and G. Fortino, “From modeling to
implementation of virtual sensors in body sensor networks,” Sensors
Journal, IEEE, vol. 12, no. 3, pp. 583–593, March 2012.

[32] D. Bruneo, A. Puliafito, and M. Scarpa, “Dependability analysis of
wireless sensor networks with active-sleep cycles and redundant nodes,”
in Proceedings of the First Workshop on DYnamic Aspects in DEpend-
ability Models for Fault-Tolerant Systems, ser. DYADEM-FTS ’10. New
York, NY, USA: ACM, 2010, pp. 25–30.

[33] H. Kwon, T. H. Kim, S. Choi, and B. G. Lee, “A cross-layer strategy for
energy-efficient reliable delivery in wireless sensor networks,” Wireless
Communications, IEEE Transactions on, vol. 5, no. 12, pp. 3689–3699,
December 2006.

[34] N. Shrivastava, C. Buragohain, D. Agrawal, and S. Suri, “Medians
and beyond: New aggregation techniques for sensor networks,” in Pro-
ceedings of the 2Nd International Conference on Embedded Networked
Sensor Systems, ser. SenSys ’04. New York, NY, USA: ACM, 2004,
pp. 239–249.

[35] K. Dar, A. Taherkordi, H. Baraki, F. Eliassen, and K. Geihs, “A resource
oriented integration architecture for the internet of things: A business
process perspective,” Pervasive and Mobile Computing, vol. 20, pp. 145
– 159, 2015.

[36] S. Haller, A. Serbanati, M. Bauer, and F. Carrez, “A domain model
for the internet of things,” in IEEE International Conference on Cyber,
Physical and Social Computing, Aug 2013, pp. 411–417.

[37] Luis Sanchez , Veronica Gutierrez,Jose A Galache, Pablo Sotres, Juan
Ramn Santana,Javier Casanueva , Luis Muoz, “Smartsantander: Exper-
imentation and service provision in the smart city,” in Global Wireless
Summit, 2013.

116

