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Abstract—The indoor localisation problem is more complex
than just finding whereabouts of users. Finding positions of users
relative to the devices of a smart space is even more important.
Unfortunately, configuring such systems manually is a tedious
process, requires expert knowledge, and is sensitive to changes
in the environment. Moreover, many existing solutions do not
take user privacy into account.

We propose a new system, called Simultaneous Localisation and
Configuration (SLAC), to address the problem of locating devices
and users relative to those devices, and combine this problem
into a single estimation problem. The SLAC algorithm, based
on FastSLAM, is able to locate devices using the received signal
strength indicator (RSSI) of devices and motion data from users.

Simulations have been used to show the performance in a
controlled environment and the effect of the amount of RSSI
updates on the localisation error. Live tests in non-trivial envi-
ronments showed that we can achieve room level accuracy and
that the localisation can be performed in real time. This is all done
locally, i.e. running on a user’s device, with respect for privacy
and without using any prior information of the environment or
device locations.

Although promising, more work is required to increase accu-
racy in larger environments and to make the algorithm more
robust for environment noise caused by walls and other objects.
Existing techniques, e.g. map fusing, can alleviate these problems.

Index Terms—Smart Homes; Ubiquitous computing; Simul-
taneous localization and mapping; Wireless sensor networks;
Privacy

I. INTRODUCTION

With advances in electronics and computer science, tech-

nology has become an indispensable part of our daily lives. A

new field, where intelligent systems have not (yet) been fully

integrated, is the work and living environment: our homes and

offices. Although these spaces are full of intelligent devices,

there is often no link or collaboration between intelligent de-

vices and the environment we live in. The current development

of the Internet of Things (IoT) [1], which attempts to connect

devices and, by doing so, creating smart spaces, is about to

change that.
A key problem (or challenge) within these spaces is indoor

localisation: making estimates of users’ whereabouts. Without

such information, systems are unable to react on the presence

of users. This can range from simply turning the lights on

when someone enters a room to customising the way devices

interact with a specific user.

(1) (2) (3)

Fig. 1. In a building (1) a set of devices (grey dots) is installed (2) with
a user (red dot) that walks around (dashed line). Based on measured RSSI
values and motion data from the user we locate devices in the building (3).

Even more important for a system to know exactly where

users are, is to know where users are relative to the devices

the system can control or use to sense the environment. This

relation between user and device location is an essential input

to these systems. For this we first need a way to find device

locations and then locate users relative to those.

By connecting individual devices and sensors we can build

systems that, as a whole, interact with a user. For this we

require a system that is able to locate users and devices

simultaneously. In this paper we propose a new system, called

SLAC: Simultaneous Localisation and Configuration, based on

FastSLAM [2], to address these two challenges and combine

them into a single estimation problem. With SLAC we aim to

simultaneously locate the user and configure a smart space

system by finding locations of devices installed inside an

indoor environment (see also Figure 1 for an overview).

We will show that this is indeed possible and that locali-

sation of devices can be done very fast while respecting user

privacy and using no additional hardware.

A. Potential & Challenges of Smart Spaces

Smart spaces become more effective when there is a smooth

interaction between users and devices in a well-mapped envi-

ronment. For homes, these systems can result in more comfort

for residents and increase energy efficiency [3], [4]. For health

care it can result in more tailored care, an increase in self-

reliance and a decrease in social isolation for patients and

elderly [5]–[7]. In a work environment, a smart office can

improve work efficiency and job satisfaction [8] and reduce

energy consumption [9]. In other words, in the full spectrum

of our environment, these smart spaces can have great benefits.
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Not only end users (residents, patients, etc.) but also organ-

isations and other owners of smart spaces can benefit from

making their buildings ‘smart’. Especially in times where

health care costs continue to rise and energy consumption

should be minimised, these systems can offer a (partial)

solution to these problems.

Regardless of this potential, many challenges still exist

which can slow down the adoption of these systems in our

environments. Users of smart spaces will, in general, be non-

experts that lack the technical skill to install and connect

these complex systems. This is not a great problem for large

scale applications where specialists can install and maintain

systems. However, to make these systems available to general

consumers the installation, configuration and management of

such systems should be easy. This is one of the main issues

that prevents our homes from becoming intelligent: it is too

difficult to set up and connect devices to create a collaborative

system. Moreover, after these systems have been set up the

work is not done. Devices, including sensors, can be moved

by users to accommodate for changes in the environment or

their condition. And even if installation is carried out by

specialists, due to this dynamic nature of our environments,

systems should adapt to changes themselves to prevent tedious

(re)configuration steps and prevent faults. Direct and explicit

interactions with the smart space should be minimised to

reduce cognitive load.

B. Indoor Localisation of Devices and Users

In outdoor environments localisation of users is straight-

forward. Systems such as GPS result in an absolute position

of a user: each GPS device can compute its location on

a globally consistent coordinate system (e.g. using latitude,

longitude and elevation). In indoor environments such methods

are often inaccurate or not feasible as signals have difficulties

penetrating walls of buildings.

For most systems in smart spaces, an absolute and global

coordinate system is not required. The position of a user

expressed in latitude and longitude is not particular useful,

more interesting is the room or section of a building a user is

in. In other words, a system needs to know what the location

of a user is relative to the environment and the devices therein.

By estimating both the locations of the devices of a system

and its users we can compute distances, determine whether

two ‘things’ are close, and track paths of users. This implies

more than just the distance between a user and a single device.

Relative to the building we want to derive a map on which we

can locate users and devices simultaneously. A simple scenario

highlights this difference. Consider a user entering a hallway:

here we want to turn all the lights in the hallway and not only

the lights close to the user.

C. The Need For Privacy-Safe Localisation

Most IoT applications, especially in smart spaces, collect

data from users. While this data can be used to solely react

instantaneous on user’s actions, most practical applications

will store data. Storing data makes it possible to perform

inference, improve the usability of systems, or give system

owners more insights in the use of their system. In such

systems, even when data from users is only processed and

not stored, we need to tread carefully so as not to infringe

on users’ privacy. Data collection is often not directly visible

for users as it is mostly performed autonomously and in the

background.

When movement patterns of users are recorded, a common

scenario in indoor localisation, we must protect individual

user’s privacy or it could potentially hinder the adoption of

systems. For end-users it is undesirable that their whereabouts

need to be stored remotely in order to use a smart space.

Particularly when these systems are deployed in public spaces

we must find an equilibrium between storing data and privacy

concerns.

Privacy can be improved when the localisation of users and

devices is performed locally, on users’ devices. This decen-

tralised approach makes it possible to process localisation data

without sharing it with a central system. The ownership of

location data can then remain in the hands of users.

To perform this local computation we use characteristics

that are already available in many smart spaces: signal strength

measurements (or RSSI) from devices and motion data from

smart phones and other portable devices. We combine these

two inputs in a system that can locate users and devices,

respect individual users’ privacy by running locally on a user’s

device and perform all estimations in real time.

II. RELATED WORK

The vast majority of indoor localisation research focuses

on locating a single group of entities: users, robots or devices

but not simultaneously. In the case of robots [10] and users

[11], Gaussian Process Latent Variable Models (GP-LVM)

have been used as a offline localisation method by creating a

signal strength map of WiFi access points. Another common

method is fingerprinting where user data is usually sent to

a remote server to build a fingerpint database, the latter can

be crowdsourced to reduce configuration time [12]. Both these

methods usually do not result in very precise estimations, with

average localisation errors ranging from 3.79mfor the WiFi

GP-LVM approach [11] to 5.88m using fingerprint methods

[12] . Nonetheless, these results are achieved without prior

information of the environment. GP-LVM can also be used

for locating devices [10].

Locating devices, in the context of wireless sensor networks,

is often done using anchors: devices which have a known

position and which can be used to locate the rest of the

network. Solutions can assume fully static networks [13]–[15]

in which all devices have a fixed position. By moving an

anchor the number of devices required for localisation can be

reduced [16]. Methods also exist for fully mobile networks,

that often focuses on locating swarms of robots [17], [18].

Mobility of devices in these networks can improve localisation

performance [19].

A field where localisation is an active topic of research

is that of robotics. Robots that are deployed in unknown
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environments have to simultaneously locate themselves, and

map the environment in which they move. This is called the

Simultaneous Localisation and Mapping problem (or in short

SLAM).

The estimation of the map and robot position is based

on sensor readings and the controls (i.e. actions) the robot

performed. The combination of both sensor readings and

controls is important as the world is nondeterministic and the

same control can result in a different outcome. The difficulty

of SLAM is mainly caused by a problem which, at first sight,

looks like a chicken-and-egg problem: a map is required for

estimating a position, but for the mapping an estimate of the

robot position is required. SLAM overcomes this problem by

estimating both at the same time.

SLAM is often centred around the observation of land-
marks: distinguishable objects or markers in an environment

that a robot can observe. These landmarks can be implicit,

like walls, or more explicit such as (sensor) nodes and devices.

WiFi access points have, for example, been used as landmarks

[20]. When signal strength measurements are used as input it

is often required to use a range-only algorithm [21]. Locali-

sation errors for these algorithms in robot applications, due to

accurate control data, are often very low, ranging from 2.18m
using GraphSLAM [20] to 0.46m when additional sensors

such as camera’s are used [22]. Even lower localisation errors

can be achieved using inter-device measurements and Sparse

Extended Information Filters [23].

III. FASTSLAM

Our research builds upon FastSLAM [2] which is an online

SLAM algorithm that uses particle filters to do the state esti-

mation. Individual devices, i.e. the landmarks, are represented

by extended Kalman filters (EKF).

Initially, FastSLAM is defined to solve the full SLAM

problem: given all sensor readings and robot controls (from

1 : t), what is the full path and map of the environment? A

robot’s control is usually its measured movement or the motor

commands. The map is represented by a set of landmarks.

These landmarks can be anything; in our case they are devices.

The full SLAM problem introduces a conditional inde-

pendence that the FastSLAM algorithm utilises, using Rao-
Blackwellised Particle filters, to increase performance: given

the robot path, the location of the landmarks are independent

of each other and can be estimated separately. See Figure 2

for a visualisation. In order to do this the full SLAM posterior

is factorised [24]:

p(x0:t,m1:M |z1:t, u1:t) = path posterior×map posterior

= p(x0:t|z1:t, u1:t) p(m1:M |x0:t, z1:t, u1:t) (1)

= p(x0:t|z1:t, u1:t) p(m1:M |x0:t, z1:t) (2)

= p(x0:t|z1:t, u1:t)
M∏
i=1

p(mi|x0:t, z1:t), (3)

with x0:t the robot’s path, m1:M the landmarks, z1:t the sensor

measurements and u1:t the controls. Note that the controls u1:t

���������	�	�
�

� ��� � �

��

����

� ���

��

� ���

���� ����

���� ���� ����

�� �� �� ��

Fig. 2. Bayesian network representation of the FastSLAM algorithm. Grey
nodes are observed variables, white nodes are latent. Given the robot path
there is no other path between landmarks; i.e. given the path the landmark
locations are independent. This independence enables us to estimate each
landmark separately.

are omitted in the estimation of the map (Equation 2); given

the robot’s path the location of the landmarks are independent

of the controls. This definition does not incorporate the corre-

spondence (i.e. linking a measurement to a specific landmark)

[24]. We assume, for this particular research, that there is no

data association problem so the correspondence is not part of

the posterior.

By factorising we transform a highly dimensional problem

into two separate problems: estimating the path and the

landmarks. FastSLAM uses a particle filter to estimate the

robot path. The mapping problem, which is easily computable

given the robot’s path, is factored in to separate problems: one

for each landmark. The individual landmark locations can be

estimated using a low-dimensional EKF. This is in contrast to

other SLAM methods who usually have a joint estimate of all

landmarks.

Even though we make an estimate about the whole path of

the robot in Equation 3, FastSLAM is primarily used for online
SLAM: instead of estimating the whole path we only estimate

the current position. The definition of the particle filter makes

this feasible: the estimate is only dependent on the previous

estimate and the whole path is not required.

At time t, a single particle in the FastSLAM algorithm can

be described as:

Y
[m]
t =

〈
x
[m]
t , 〈μ[m]

1,t ,Σ
[m]
1,t 〉, . . . , 〈μ[m]

N,t,Σ
[m]
N,t〉

〉
, (4)

with m ∈M describing the particle index, M the total amount

of particles and N the amount of landmarks. x
[m]
t describes the

estimated robot position and rotation (x, y, θ). Each μ
[m]
j,t ,Σ

[m]
j,t

pair describes the mean and variance of a Gaussian estimate

of a single landmark l with j ∈ N .

Calculating the posterior at time t boils down to generating

a new particle set Yt from the previous one Yt−1 by executing
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the three main steps of the FastSLAM algorithm:

1) Sample (or prediction) step: Using the robot control ut

a new pose is sampled according to the motion model:

x
[m]
t ∼ p(xt|x[m]

t−1, ut). (5)

The new pose is always computed using the previous

estimate from the same particle, x
[m]
t−1.

2) Landmark update step: For each observed landmark

we update the estimate by updating the mean μ
[m]
j,t−1

and covariance Σ
[m]
j,t−1 using the EKF update function.

If an landmark is not observed the estimated position

remains unchanged. When a new (previously unseen)

landmark is observed we initialise the EKF with the

current measurement.

3) Resampling (or correction) step: Draw a new set of par-

ticles with probabilities proportional to the importance

weights. This resampling is required as the measure-

ments are not embedded in the distribution sampled in

the sample step. From the sample step, we obtain a

distribution given only our motion model. This is not

equal to our target distribution which favours positions

based on the measurements. By sampling particles based

on the weight, which is based on the measurements, we

correct for this mismatch.

IV. SIGNAL STRENGTH (RSSI)

Most components in an IoT context communicate through

some wireless system such as ZigBee, Bluetooth or WiFi.
These communication layers come with a ‘free’ measure that

can be used in localisation: the Received Signal Strength
Indicator (RSSI). The RSSI value resembles the power of a

received radio signal (measured in dBm). The higher the RSSI

value, the higher the signal strength.

The SLAM approach requires two types of input: measure-

ments or predictions of motion (i.e. the control) to make pose

estimations and environment data to resample particles and to

build the map (in our case, finding locations of devices). In

our application, signal strength (RSSI) measurements are used

for the latter.

The rationale behind using RSSI values is that almost all

wireless systems report and use this value natively; i.e. no

additional sensors are required to measure RSSI values. It can

therefore be considered as a free input to a system. Moreover,

and this is specifically interesting for localisation, there is a

relation between RSSI and distance which can be roughly

described using the Log-distance path loss model (6) [25],

[26].

RSSI = −10n log10(
d

d0
) +A0, (6)

where d describes the relative distance between transceiver

and recipient, n the signal propagation exponent and A0 a

referenced RSSI value at d0. Usually d0 is taken to be 1 such

that A0 becomes the single strength measured at a distance of

1 meter of the node.

Fig. 3. The received signal strength (RSSI) of a device is influenced by
distance, but the amount of noise is substantial. For this figure, a Bluetooth
device was set up as a beacon to continuously broadcast its unique identifier.
Another device was placed at various distances and acted as a recording
device. With a 1 Hz sample rate RSSI values were sampled. For the ‘room’
case, the transmitter was placed in an adjacent room to show the effect of
walls.

A. RSSI Filtering

In an ideal world, the RSSI value is only dependent on

the distance between the two devices. In reality, however,

RSSI values are heavily influenced by the environment and

have, consequently, high levels of noise. It has even been

suggested that these noise levels are unacceptable for practical

applications [27]. Noise is among others caused by multi-path

reflections: signals reflect against objects in the environment

(see Figure 3). While the precision of RSSI is limited, and

other methods such as sonar are more accurate, we still opted

for this method given its availability in consumer devices.

To address the noise problem a (regular) Kalman Filter is

applied to filter signal strength measurements. Devices are

assumed to be fairly static to simplify the filter; this does

not restrict us to devices that not move. The true RSSI value

(without noise) is defined as the estimated state. The transition

and observation model can then be reduced to

xt = Atxt−1 +Btut + εt = xt−1 + εt, (7)

zt = Ctxt + δt = xt + δt, (8)

where εt and δt describe Gaussian noise and At, Bt and Ct

the transition models. At and Ct are set to identity matrices

as we assume the state is static (i.e. xt = xt−1) and the state

is modelled directly (i.e. we assume xt = zt). Because there

is no control, Bt is set to zero. The prediction step of the

Kalman filter then becomes:

μ̄t = μt−1, (9)

Σ̄t = Σt−1 +Rt, (10)

with Rt as the process noise which is typically set to a small

value (e.g. 0.008). The measurement vector is a scalar value

set to 1, this gives us the following reduced Kalman gain:

Kt = Σ̄t(Σ̄tQt)
−1. (11)
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Fig. 4. The effect of a Kalman filter on raw RSSI data sampled from a static
device (i.e. no movement on both the receiver or transmitter end). The Kalman
filter removes a large part of the noise from the signal.

The measurement noise, Qt, is set to the variance of the

RSSI measurements. The state can then be updated given each

new measurement:

μt = μ̄t +Kt(zt − μ̄t), (12)

Σt = Σ̄t − (KtΣ̄t). (13)

The result of the Kalman filter on a sample of raw RSSI data

can be seen in Figure 4. The Kalman filter is able to remove

a large part of the noise from the data, but as a tradeoff, has

to give up a bit of the responsiveness.

V. MOTION MEASUREMENTS

RSSI measurements only give estimates of distance. To

perform efficient localisation and creating consistent maps

of the environment we need some notion of where these

measurements took place. In a general SLAM application this

is covered by the robot’s control: usually its motor commands.

In situations with humans we do not have this kind of data.

We therefore need to estimate (as opposed to directly derive)

motion. For this we use inertial measurement unit (IMU) data.

A compass and accelerometer are used to measure user

motion. We have to note that these type of sensors don’t give

the most reliable measurements. Especially compass readings

are influenced by indoor magnetic fluctuations. Though, these

sensors are present in almost any modern mobile device

(including phones, tablets and wearables) and by using them

we remove the need for additional and external sensors. This

is a trade-off between performance and implementation cost

where we favour the latter.

A compass returns the current rotation or heading relative

to the global north. Compass data does not require any

processing, but additional filtering and smoothing is advised

for real world applications. Accelerometers return acceleration

in three axes, x, y, z, and need to be processed to make

estimations about the distance that is travelled.

Measured acceleration is used as input for a pedometer.

The pedometer counts steps which can then be converted to

distance. Our pedometer is based on an existing design by

Fig. 5. Visualisation of a single step of the SLAC algorithm. The diagram
shows the update step of a single device based on a single observations. In
reality, multiple observations and devices can be updated between the sample
and resample step.

[28], [29] and uses a sliding window of the acceleration data

to determine whether a step has been made.

VI. SIMULTANEOUS LOCALISATION AND CONFIGURATION

(SLAC)

With our input defined (the RSSI measurements and motion

estimates) we map the SLAM problem to the domain of indoor

localisation:

• Control → motion estimates: The robot’s controls, which

are used for pose sampling, are replaced by motion

estimates of user movement.

• Landmark → device: As landmarks we use the devices

which we try to locate. To be coherent with the SLAM

literature we will continue to call them landmarks.

• 2D observations → 1D RSSI measurements: The obser-

vations, which are often 2D measurements1, are replaced

by 1D RSSI measurements resulting in a 1D range-only

version of FastSLAM [21].

Figure 5 shows an overview of the algorithm.

A. Pose Sampling

The flow and update rate of the SLAC algorithm is con-

trolled by the pedometer: the algorithm is run after a new step

has been detected. The step size (the distance a user moves

after taking a single step) can be taken as a fixed value or

derived from the human’s body height. Usually a factor of 0.3

to 0.5 times the body height is used.

1When directional range sensors are used angle information of the obser-
vations can be derived.
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Given the step count2, the prediction of the step size (r)

and the current heading (θ) (taken from the compass) a new

pose is sampled for each particle m:

θ̄ = N (θ, σθ),

r̄ = N (r, σr),

x
[m]
t = x

[m]
t−1 + [r̄ cos(θ̄), r̄ sin(θ̄)], (14)

where σθ describes the variance or noise of the compass

readings and σr the variance of the estimated walking distance.

B. Initialisation Using Particle Filters

Given the sampled pose of each particle we estimate the

locations of each landmark (i.e. device) individually. As land-

mark observations are 1D and signals propagate spherical it

is impossible, given a single measurement, to determine the

bearing of an observation. This can, for example, lead to

mirroring errors. We therefore must make an initial estimate of

a landmark location before we can refine it using the default

method of FastSLAM.

An often used approach to overcome this initialisation

problem is to divide the environment into a grid and use a

voting scheme to find the most probable cell in this grid [21],

[30]. Applications of this approach usually focus on robots

(which have better motion modelling) or on relative small

environments. For our indoor localisation we did not want to

rasterise the environment so we opted for a different approach

using a separate particle filter.

Given a range measurement z with variance σz we know

that our landmark is somewhere on a circle with a radius equal

to this measurement and a bandwidth proportional to σz . We

then create a new particle filter with N particles which reside

on this circle, with our current estimate of the user’s position

as its centre. The distance and angle (relative to the user) for

each particle i ∈ N are defined by:

di = N (z, σz), (15)

θi =
2πi

N
. (16)

Distance (di) and angle (θi) are then converted to Cartesian

coordinates.

Given enough new measurements this filter can now roughly

estimate the device’s location. After each new measurement

we update our filter by computing the importance weight and

subsequently resampling the filter (using low variance resam-

pling). A particle’s weight is updated using the probability

density function (f ) of the normal distribution:

wi,t = wi,t−1f(z|di,u, σz), (17)

2In our simulations and live tests, the algorithm runs faster than the average
time between steps. We can therefore compute a whole update after each
step which results in a constant step count of one. However, this is not a
requirement and multiple steps can be taken into account, but this can lower
the accuracy of the motion sampling.

where di,u is the distance between the user and the particle’s

estimate of the landmark (i.e. the expected measurement). How

the particle filter converges to a landmark’s location is depicted

in Figure 6. When the variance between particles is low

enough (given some threshold), we assume that a landmark’s

location has been found.

C. Refining Using Extended Kalman Filters

After the initialisation filter has converged, we want to

further refine the estimate. Our initialisation filter is a separate

component that uses the current best user estimate as input.

So, to improve the rough initial estimate the estimation must

be moved from the global initialisation filter to each individual

particle. As it is impractical to update M ×N particle filters

(one particle filter per landmark per particle) we use an EKF

to estimate a landmark’s location (analogous to the original

FastSLAM implementation).

The state that our EKF tries to estimate is a 2D position

vector; i.e. the x and y coordinates of the landmark. Our

observations are however range-only and 1D which results in

a slightly different EKF implementation. This particular EKF

implementation is based on the implementation of a range-

only robot navigation problem [21].

To initialise the EKF we use the estimate from the initial-

isation filter. The initial covariance matrix of the EKF of a

landmark j is defined by the variance of the estimate:

Σ
[m]
j,0 =

[
σ2
x 0
0 σ2

y

]
. (18)

Given a new measurement z we can update the EKF

as follows. For each particle m we start with defining the

transition between our state and our expected observation: this

is the Euclidean distance between our estimate of the user and

our estimate of the landmark:

hm(x
[m]
b , y

[m]
b ) =

√
(x

[m]
u,t − x

[m]
b )2 + (y

[m]
t,u − y

[m]
b )2. (19)

In other words, for any landmark b, the function

hm(x
[m]
b , y

[m]
b ) defines the distance between that landmark and

the user estimate [x
[m]
u,t , y

[m]
u,t ]

T of particle m where u resembles

the user and t the current time step. As the user estimate is

constant, given a specific particle, only the landmark’s location

is a variable in this function.

We then calculate the innovation which resembles the error

from our state to the observation:

v = z − hm. (20)

As the transition from our state to observation is nonlinear

we have to linearise. We define the Jacobian by computing the

partial derivatives of our transition function hm in both x and

y:

H =
∂hm

∂[x
[m]
b y

[m]
b ]

= [
x
[m]
u,t − x

[m]
b

hm
,
y
[m]
u,t − y

[m]
b

hm
]T . (21)
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(a) At start no information is known and
the particle set is empty.

(b) After the user has taken a step, us-
ing the last range measurement, a particle
cloud is initialised.

(c) On each step, new range measurements
are incorporated in the filter by updating
particle weights.

(d) As RSSI measurements do not contain
angle information, multiple solutions can
arise when walking in straight lines. This
can result in mirroring problems (i.e. two
probable solutions).

(e) After a user makes a turn, the particle
filter contains enough information to dis-
card one of the solutions.

(f) Given enough movement, the filter
eventually converges to a good estimate of
the landmark location.

Fig. 6. Initialisation of a new landmark (blue square) is done using a separate particle filter. Given range measurements and movement of a user the initial
position of a landmark is estimated. Note that in these visualisations user positions are assumed to be known.

Based on the Jacobian we calculate the Kalman gain. Note

that, due to our static motion model for the landmarks, the

covariance matrix estimate is not updated (i.e. Σ̄
[m]
b,t = Σ

[m]
b,t ).

σv = HΣ
[m]
b,t H

T +Qt (22)

K = Σ
[m]
b,t H

Tσ−1
v (23)

Given the innovation and the Kalman gain we can update

our state and covariance. As our transition model assumes

static landmarks we directly update the previous state. The

Kalman gain is used as a weighting mechanism.

[x
[m]
t+1, y

[m]
t+1]

T = [x
[m]
t , y

[m]
t ]T +Kv (24)

Σ
[m]
t+1 = Σ

[m]
t −KσvK

T (25)

The last step is updating the importance weight of the

particle:

w
[m]
t = w

[m]
t−1f(z|hm, σz). (26)

Updating the previous state and computing the weight com-

pletes processing the measurement. This process is performed

for each landmark and for each particle.

D. Resampling

After the observation is processed all particles have been

updated and contain new importance weights. We can now

perform resampling. We utilise Sequential Importance Re-
sampling (SIR) to prevent resampling on each step and only

perform resampling when there is enough information in the

particles. The importance weights are computed and nor-

malised, which are used to calculate the effective number

of particles (N̂eff). If the effective number of particles drops

below a given threshold we resample.

N̂eff =
1∑N

i=1

(
w

[i]
k

)2 (27)

Low variance sampling is used to sample new particles.

This type of sampler only requires a single random number

217



Fig. 7. SLAC application running on both an iOS tablet and an Android
phone.

to make the selection3. The most important advantage of the

low variance sampler is its time complexity: O(M) with M
the amount of selected particles. In comparison, roulette wheel

selection has a complexity of O(MlogM)4.

E. Implementation Details

SLAC has been fully implemented in Javascript (EC-
MAScript 2015). Javascript was chosen to support a large range

of devices on which the algorithm can run; including web

browsers and mobile phones. The only requirement, for the

current implementation, is access to a radio and IMU data.

We chose Bluetooth LE as the communication method for

the devices. Landmarks were iBeacon compatible Bluetooth

radio’s. Distance and motion estimates can also be replaced

with other methods (e.g. sonar sensors that report distances).

The Apache Cordova platform5 was used to access native

APIs of mobile devices. This link between native components

and the Javascript implementation is show in Figure 8. Figure

7 shows an example of the application running on both a tablet

and a mobile phone. The full source code is available online6

and is licensed under the GNU Lesser General Public License
v3.

The SLAC algorithm is an event-based system where the

motion data controls the flow. Every time the pedometer

detects a new step a single run of the algorithm is performed.

All RSSI measurements that were recorded since the last step

are used in the update.

VII. EVALUATION

Evaluation of the SLAC system started with simulations;

this provided the opportunity to repeat the experiment and

control the environment. A simulated environment was cre-

ated with similar dimensions as our real world test bed.

The environment was intentionally left empty to asses the

performance of the algorithm in an open space environment.

On the same coordinates as in the real world, simulated devices

3Roulette wheel selection, for example, chooses a set of random numbers
equal to the amount of particles that needs to be selected.

4M random numbers have to be drawn and for each random number a
particle has to be selected from the list.

5https://cordova.apache.org/
6https://github.com/wouterbulten/slacjs

Fig. 8. Visualisation of the Javascript implementation. The Cordova API links
the native Bluetooth and motion modules (left) to the Javascript components
(right). The data flow is left to right: sensor data flows from the phone, through
the API to the particle filter.

were placed. Each device broadcasts messages with signal

strengths following the path loss model (with added noise).

A simulated user walked around in the environment follow-

ing a fixed path. After each step the algorithm was run. The

path is shown in Figure 9. We used a fixed step size of 0.5m
and always perform 66 steps7. Gaussian noise was added to

both the step size and the heading.

The frequency of the RSSI updates of each device was var-

ied. As the signal strength is used to make range estimates, the

number of received messages can have an effect on the overall

performance. The different settings are: 1, 2, 5, 10, 25, 50 and

100 updates per step. The update frequency is per device. Each

setting is simulated 500 times.

The main quantitative measure of performance is the aver-

age localisation error: the average distance (in meters) between

the device location estimates and their true locations.

A. Online Recordings, Offline Evaluation

Simulating RSSI values and movement has its drawbacks:

noise is predictable and there is less interference from the

environment. In general it is hard to fully simulate a real en-

vironment. In order to asses the performance of the algorithm

outside a simulated world, we tested the algorithm inside a

real building. Currently our test setup was limited to a single

environment.

While SLAC runs online and in real time the data at

this location has been recorded and analysed offline at a

later stage. The algorithm did however run during the data

collection to give feedback about the process. Each recorded

data set consists of the raw unprocessed and unfiltered motion

data (i.e. acceleration and heading) and RSSI measurements.

Each data point has a timestamp which is used to play back

measurements in the correct order. This process was repeated

several times to get an average performance; this is particular

important as the algorithm is a random process: using the same

input data twice will result in different outcomes.

766 steps is the average from the live tests.
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Fig. 9. Examples of a SLAC simulation at various stages. Blue lines shows the ground truth of the user. Each grey line represents a particle’s estimate of
the user’s path. The green line is the current best estimate. Black squares show the ground truth of landmark locations, red squares represent the current best
estimate. Coloured small squares at screen one and two represent individual initialisation filters.

Data was collected by a single person, walking roughly the

same pattern, carrying an iPad on which the algorithm ran.

No additional sensors were used, only the ones present in the

device. The recorded step count was between 50 and 70 steps.

Each data collection run consisted of roughly two minutes of

walking.

VIII. SIMULATION RESULTS

Seven distinct groups of simulations have been run with

different number of RSSI updates per step. Overall, the best

result were obtained in the simulations with the highest

number of RSSI updates per step. This resulted in an average

localisation error of .46m; i.e. the estimation of landmark

positions differed, on average, 46 centimetres from the ground

truth. Table I contains an overview of all the simulation runs.

An inverse curve estimation model was used to predict

the average localisation error, given noisy movement mea-

surements, based on the number of RSSI updates per step.

A significant regression equation was found (F (1, 3498) =
33868.750, p < .000), with an R2 of .906. The average

localisation error is equal to .431 + 4.390
RSSI

meters with RSSI

the number of updates per step.

In the simulations the only difference between devices is

their location which has an effect on how the simulated user

interacts with it (see Figure 6 for an example of how this

can influence the localisation). For each condition a repeated-

measure-ANOVA was conducted on the average localisation

error using landmark position as the within-subject factor.

Values have been converted using a log10 transition as for

some conditions the localisation error is not normally dis-

tributed8. Mauchly’s Test of Sphericity has been used to detect

violations of the sphericity assumption and the Greenhouse-

Geisser correction was applied.

For each condition there was a significant effect of landmark

position on the average localisation error, see Table II. The size

of the effect ranged from very large (eta2 > .2) for conditions

8Due to low localisation errors the distribution is right skewed.

Fig. 10. Showing the average localisation error of the four live test runs (first
four) in comparison to the simulations (last two).

with only few RSSI updates to small (eta2 < .1) for conditions

with many RSSI updates. In other words, there is a significant

effect of landmark position but this effect declines with an

increasing number of RSSI updates per step.

IX. LIVE TEST RESULTS

The four live tests resulted in 2000 data points (500 per test).

Of these 2000 runs, 108 did not find locations for all devices

but had only rough estimates. Based on the step count and the

number of RSSI updates we derived that the average number

of RSSI updates per algorithm step lays between 7 and 10.

The results of the live runs will therefore be compared with

the 5 and 10 RSSI updates simulations. An overview of the

individual runs is shown in Figure 10.

An independent-samples t-test was conducted to compare

the average localisation error in the live tests with the 5
RSSI updates simulations. There was a significant difference
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TABLE I
TEST RESULTS. THE ‘COMPLETE’ COLUMN OF THE TABLE DESCRIBES THE

PERCENTAGE OF RUNS THAT FOUND AN ESTIMATE FOR ALL DEVICES.

Run localisation error (m) sd of error Complete (%)

Sim., 1 RSSI 4.49 .57 75

Sim., 2 RSSI 3.35 .54 99

Sim., 5 RSSI 1.25 .34 100

Sim., 10 RSSI .69 .25 100

Sim., 25 RSSI .50 .20 100

Sim., 50 RSSI .48 .18 100

Sim., 100 RSSI .46 .19 100

Live A 1 2.10 .31 95

Live A 2 2.20 .30 100

Live A 3 2.84 .36 92

Live A 4 2.04 .25 100

TABLE II
REPEATED-MEASURE-ANOVAS USING LANDMARK POSITION AS THE

WITHIN-SUBJECT FACTOR.

RSSI Effect Partial eta2

1 F (3.584, 1369.246) = 386.167 p = .000 .503
2 F (4.473, 2227.97) = 1152.524 p = .000 .698
5 F (5.475, 2227.97) = 198.102 p = .000 .284
10 F (5.529, 2758.900) = 33.274 p = .000 .063
25 F (5.060, 2525.068) = 27.325 p = .000 .052
50 F (5.087, 2538.630) = 34.545 p = .000 .065
100 F (5.170, 2580.006) = 34.544 p = .000 .065

(t(2498) = −59.527, p = .000) in average localisation error

for the live runs (M = 2.29, sd = .44) and simulations

(M = 1.25, sd = .34).

A second independent-samples t-test was conducted to com-

pare the average localisation error in the live tests with the 10
RSSI updates simulations. There was a significant difference

(t(2498) = −78.524, p = .000) in average localisation error

for the live runs (M = 2.29, sd = .44) and simulations

(M = .69, sd = .25).

On average the localisation error is 2.3 m. The real life

conditions add between 1.04 and 1.6m to the localisation error

when comparing with the simulations.

X. DISCUSSION

In this research we set out to explore the possibility of

designing a fully autonomous self-localisation system for a

network of devices by utilising the users of the space that the

network is deployed in. Our main goal was to perform this lo-

calisation without any prior information about the environment

or the devices therein while retaining user privacy.

We have shown, through simulations, that within controlled

environments (i.e. Gaussian noise, no obstacles), we can

achieve an average localisation error below half a meter. This

means that, after running the algorithm, the estimate of a

device’s location will, on average, be within 50 cm from its

actual position. Estimates are relative to the user’s starting

orientation, but are correctly scaled. The only input that is

used are signal strength measurements from the devices and

Fig. 11. Localisation error for individual devices (landmarks) for simulations
with different RSSI frequencies. Both the position and the number of updates
have an effect on the error.

motion data from a user. No information about the structure

of the room or the position of the device is required.

These simulations show the maximum attainable perfor-

mance; they were conducted in controlled environments using

Gaussian noise and a high update frequency of the devices.

When the update frequency of devices is lowered, to a level

similar to our live tests, the average localisation error increased

and resulted in an average error of .69 to 1.25 m.

After simulations the algorithm was tested in a real world

environment of similar dimensions with the same number of

devices. Our environment was, however, not a clear open space

as our simulation environment, but contained many sources

of noise, including objects, walls and people walking around.

This was deliberate as these noisy environments are exactly

the target platform for this technique. All combined, our live

tests showed a localisation error of 2.3 m, averaged over all

devices, after letting a single user walk around a fixed route

(roughly 60 steps). These results suggest that we can achieve

room level accuracy; i.e. detecting in which room a user or

device is, and roughly know where in the room. We expect

that longer traces result in lower localisation errors.

Our simulations suggest that the number of RSSI updates

is the largest contributor to the localisation performance. This

follows directly from our system: given more information the

Kalman filter, responsible for filtering the raw RSSI signal,

will be able to give a less noisy estimate. These distance

estimates are vital in updating device positions and weighing

particles.

The number of RSSI updates is, however, not the only

factor. The live test environment contained objects, walls and

humans who walked around. Each of these add a factor of

unpredictable noise to the RSSI measurements. The path loss

model does not account for these obstructions which can

result in incorrect distance estimates. Improving these distance

estimates seems to be the most promising method of lowering

localisation errors.
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Fig. 12. Pictures of our live testbed. Seven landmarks were placed in wall sockets around the room. None of the furniture or objects were removed before
testing. The room’s dimensions are around 10× 10m.

A. Privacy, Online & No Prior Information

While localisation performance on its own is an important

metric it was not the motivation behind this project. Three

additional qualitative requirements guided many of the design

choices: the localisation should be online, privacy must be

assured and no prior information should be used.

Rao-Blackwellized filters and an efficient implementation of

the algorithm enable us to predict a new state based only on

the previous one. This results in an very efficient method that

can do estimation in real time; in contrast to offline methods

which only give these estimates after processing all data. As

a tradeoff we lose a bit of localisation accuracy; the online

algorithm will never be able to outperform offline methods

who use the full trace.

By running the full algorithm locally on a user’s device,

and without communicating with the devices it tries to locate,

we improve user privacy. The only input, from sources outside

the user’s own device, are RSSI measurements. No information

about the user is sent to external devices. We have to note that

by using a wireless device inside a building a user can still be

tracked by external measures. Nonetheless, for the localisation

itself, no outgoing communication is required.

No additional hardware or information about the environ-

ment is required due to the combination of device data and

user motion. The only prior information the SLAC algorithm

needs is an estimate of the step size of the user (although a

general average could be used for this) and the signal strength

of devices at a 1 meter distance. This last value is often part

of the broadcast message.

B. Improving Performance With Map Fusing

The system, as proposed in this research, runs completely on

a user’s device with the practical side effect of being privacy

friendly. In large environments users will however not always

traverse through the full building. Moreover, using the trace

of a single user it can be hard to get good estimates of device

locations. Assuming we do not want to force a single user to

walk around the whole building for a longer period of time

we need to add additional measures.

Fig. 13. Overview of the idea of map fusing. Three different users (top, red
dots) walk around (dashed lines) inside the same building but their individual
runs only result in partial estimates of the environment (devices are depicted
as grey dots, walls are black lines). By fusing these estimates together a more
complete map of the environment can be created (bottom).

This can be remedied by combining data from multiple

users: the process of map fusing. With map fusing we attempt

to combine individual user’s maps into a single globally

consistent map. See Figure 13 for an overview. Individual

errors, such as mirroring errors, can potentially be removed

using these kinds of methods.

When individual user’s maps are collected, in order to fuse

them together later, there is a risk of lowering user privacy

when their path is required to construct the map. As we are

primarily interested in device positions, the specific path a user

took is less relevant. The factorised approach we used in this

research allows us to only share predicted device locations and

facilitates privacy-aware map fusing.

The individual device estimates are independent of each

other and also independent of the user’s path given we can

‘ground’ the user’s individual map to some global frame. The

pedometer and our path loss model give ‘real world’ distances,

thus we only need to rotate maps and find the starting positions

of the users to align them. A user’s initial position, which can

for example be an entrance to a building, and the individual

EKFs (for each device) are enough to perform the map fusing.

Thus, we do not share when or where the user has seen the
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devices, only their estimates. It remains a task to find a correct

estimate of a user’s initial position.

Map fusing offers an interesting follow-up research to the

SLAC algorithm; it offers the possibility to distribute the

mapping of the environment to multiple users while still

maintaining user’s privacy. Moreover, by fusing individual

EKF’s the localisation error can be decreased.

C. Conclusion

In this research the simultaneous localisation and mapping

problem from robotics was translated to indoor localisation

of smart spaces with a focus on locating (smart) devices.

The traditional SLAM approach was adapted to use 1D

signal strength measurements as input. A motion model, using

accelerometer and compass data as input, was used to make

estimations of user movement. The full algorithm runs online,

with the full update function computed in real time and does

not require historical data to run.

Live tests, in a non-trivial environment and with consumer

devices, showed that room level accuracy is possible and

that localisation of devices can be done very fast. This is

all done locally, i.e. running on users’ devices, with respect

for user privacy and without using prior information of the

environment.

More work is required to increase accuracy in large environ-

ments and to make the algorithm more robust to environment

noise. Existing techniques can alleviate these problems, e.g.

by implementing map fusing and letting users work together.
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