
Unified Service-oriented Access for WSNs and                                                
Dynamically Deployed Application Tasks 

Theodoros Fronimos1, Spyros Lalis1,2, Manos Koutsoubelias1,2, Thomas Bartzanas1

1Institute for Research and Technology Thessaly 

Centre for Research and Technology Hellas (CERTH) 

Volos, Greece 

{frontheo,bartzanas}@mail.ireteth.certh.gr 

2Electrical and Computer Engineering Department 

University of Thessaly 

Volos, Greece 

{emkouts,lalis}@uth.gr

 

 
Abstract—For good reasons of interoperability and flexibility, 
wireless sensor networks (WSNs) are accessed by remote 
clients via service-oriented interfaces. At the same time, it can 
be useful to let clients deploy custom sensing and processing 
tasks directly on the sensor nodes. However, this raises the 
issue of how the remote client application can interact with 
such a task, in parallel to conventional access of the WSN. We 
propose an approach for adopting a unified web-based 
interface for both information flows. This way, WSN clients do 
not have to deal with different interface technologies. 
Moreover, the gateway of the WSN can handle both flows 
using the same protocol translation engine. The paper presents 
our design, briefly discusses a first prototype implementation, 
and shows an indicative usage example. 

Keywords—wireless sensor networks; middleware; service-
oriented access; integration; Internet of Things 

I.  INTRODUCTION 

Wireless sensor networks (WSNs) are a key component 
of the so-called Internet of Things (IoT), as they can support 
a broad range of monitoring and control applications. The 
integration of WSNs into the wider Internet-based landscape 
emerges as a challenging issue. To this end, suitable open 
interfaces are required, which will allow WSNs to be 
accessed from different external systems in a flexible way. 

At the same time, a large body of work proposes WSNs 
that can be programmed in a dynamic way, by injecting 
application-specific code that runs directly on the nodes of 
the WSN. Such code can access the onboard sensors, process 
the measurements locally, and send data to external systems 
only when this is actually useful for the application. This 
approach can greatly reduce traffic in the WSN. Given that 
computing is much cheaper than communication, this can 
also prolong the lifetime of battery-powered nodes. 

The ability to program a WSN introduces a second 
dimension to the aforementioned challenge of WSN access. 
On the one hand, several remote application clients may 
issue queries to the WSN, and receive the data that is 
produced by the sensor nodes, through a well-defined 
interface. The different types and semantics for the data that 
can be produced as a response to such queries are known in 
advance, and are part of the WSN interface. On the other 
hand, certain application clients may wish to inject their own 
sensing and processing code into the WSN, and receive the 
data that is produced by it. However, this code may have to 

be controlled via custom commands and can produce custom 
data, which in the general case are known only to the 
application. The question is how to support both “worlds” at 
the same time. 

In this paper, we present an end-to-end solution to this 
problem. At the WSN nodes, we use a middleware layer, 
which supports conventional sensor queries as well as the 
dynamic installation and execution of application tasks on 
the node. At the WSN gateway, a mediator engine supports a 
service-oriented access of the WSN, but also the installation 
of and interaction with application-specific tasks. Based on 
appropriate XML descriptions, the mediator engine can 
handle, in a uniform way, both conventional queries and 
task-specific commands, and return the data that is produced 
in each case to the respective clients. Notably, it is possible 
to have several outstanding queries and tasks running in the 
WSN concurrently to each other.   

The rest of the paper is structured as follows. Section II 
gives an overview of related work. Section III describes the 
high-level architecture of our approach. Section IV presents 
the interface of the WSN towards external clients. Section V 
describes the programming model supported by the WSN 
node middleware. Section VI provides some details about 
our current implementation, and Section VII gives a concrete 
application example. Section VIII concludes the paper. 

II. RELATED WORK 

Numerous publications address the issue of creating 
high-level abstractions for sensor networks from different 
points of view. Proposals such as TinyDB [1] and Cougar [2] 
follow a macro-programming approach by abstracting the 
whole network as a single database on which the user can 
perform complex queries. The main drawback is that the user 
has no control over in-network operations, as their 
optimization relies solely on the underlying middleware. 

Contrary to macro-programming, virtual machine based 
approaches allow users to distribute processing among 
network nodes, in the form of mobile code. In middleware 
systems like Agilla [3] and Maté [4], mobile agents carrying 
user defined programs are injected or flooded throughout the 
sensor network. Programs are composed of special, low-level 
instructions (opcodes) following an assembly-like style. The 
overhead for performing application updates is much lower 
compared to methods that substitute the whole firmware 
image. However, application programming tends to be 
tedious and error prone.  
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To simplify WSN programming, TENET [5] introduces a 
set of predefined high-level operations, called tasklets, which 
are supported by the nodes of the WSN and can be executed 
on demand. The programmer can then compose application-
specific tasks in a very simple way, as a sequence of such 
operations. A task is encoded as a character string, sent to the 
sensor nodes for execution. Servilla [6] introduces a C-like 
language for the same purpose. However, in both cases, the 
code of all tasklets must be part of the pre-installed node 
firmware. POBICOS [7] allows application-specific agents 
to be written in C, and supports a fully dynamic placement 
and migration of such agents in the WSN. 

A recent trend are service-oriented architectures based on 
web services for which support is readily available in most 
popular programming languages. In [8], nodes publish their 
basic functionalities as services to a base station, which in 
turn provides the necessary abstractions in order to be easily 
manipulated by a high level programming language of the 
user’s choice. TinyWS [9] allows direct HTTP access on 
implemented node services through a SOAP processing 
engine residing on top of the platform’s OS, while the 
various implementations of the CoAP protocol [10] follow a 
RESTful design. While easy to use, these frameworks do not 
support any intra-network processing. 

Combining elements of the above approaches seems a 
more promising strategy. In [11] authors integrate TENET in 
a WSN-SOA to support task deployment and collaboration 
between nodes as a service. In USEME [12], applications 
can be composed via a declarative language which specifies 
nodes, groups and services; however, service implementation 
depends on the underlying OS. ProFun TG [13] is based on a 
declarative network programming model that utilizes 
abstract task graphs and dataflows. A visual IDE is provided 
for handling tasks, but the user is also given the option of 
programming application-specific tasks in C or SEAL [14]. 
Task allocation and data handling is feasible through JSON 
requests over HTTP. 

While the task-based approaches in [11] [13] and the 
multi-layered software architecture in [15] offer advanced 
programming features, user-defined software must be part of 
the initial firmware. In contrast, our work focuses on 
providing easy to use interfaces that allow flexible data 
manipulation, node reconfiguration and task reprogramming, 
even after deployment. 

III. SYSTEM ARCHITECTURE 

The high-level system architecture of our approach is 
depicted in Fig. 1, highlighting the most important elements. 
The WSN consists of several sensor nodes and a gateway. 
The gateway provides an interface to external clients so that 
they can access/control the WSN sensor nodes and receive 
data from them. In addition, through this interface, clients 
can deploy application-specific tasks and interact with them.  

The WSN gateway acts as a mediator between external 
clients and the WSN. It maps client requests to WSN-level 
command packets that are sent to the sensor nodes. 
Conversely, it maps the WSN-level data packets received 
from sensor nodes to replies for the respective clients. Sensor 
nodes run suitable middleware that handles requests coming 

from the gateway and sends back replies and data. The 
middleware is also responsible for installing and running 
application tasks on the sensor node, as well as for 
facilitating their interaction with the external application 
systems, via the gateway. 

The translation between the client-level protocol and the 
WSN-level protocol is performed based on suitable metadata 
descriptions. This holds both for the standard (fixed) client 
functions, as well as for the (open) interaction between the 
tasks and the client applications that deployed them. The 
former metadata descriptions are part of the gateway 
firmware, whereas the latter are registered with the gateway 
before installing a task. As indicated in Fig. 1, this makes it 
possible for the gateway to use the same mediator engine for 
both cases, and for clients to interact with the WSN in a 
unified way.  

IV. WSN CLIENT INTERFACE 

The interface provided by the WSN gateway to external 
clients follows a web-based design. This way, the WSN can 
be accessed in a platform-neutral way, from any computer 
with a connection to the Internet. The WSN interface 
consists of two parts: the standard interface and the task 
interface. The standard interface allows remote clients to 
control the operation of the sensor nodes, issue sensor 
queries and receive sensor measurements, without using a 
task. The task interface is used by external application 
systems to install tasks into the WSN, control their operation, 
and receive the data produced by them. Below, we discuss 
the most important services in more detail. Note that selected 
services could be enabled on a per-client basis, depending on 
the access rights given to it by the gateway administrator. 

A. Sensor Node Configuration Services 
The ability to fine tune system parameters at a post-

deployment stage can be very important in achieving an 
efficient operation and monitoring of the WSN. For this 
purpose, the gateway provides a set of configuration 
services, e.g., for setting the transmission power of a sensor 
node, or the frequency of liveness messages. The latter 
contain information about the current status of a node, 
including the transmission power, the battery voltage, the 

Figure 1. High-level system architecture. 
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quality of the wireless link with the gateway, the tasks 
installed, and elapsed time since the last node reboot/reset. 
This information is collected at the gateway, to keep an 
updated view of the WSN, which can be retrieved by 
external clients/users via a corresponding request. 

B. Sensor Access Services  
There are two options for obtaining measurements from 

sensor nodes. The first one is by sending a one-off query 
request, to which a reply is produced promptly. An example 
is given in Table I, for a query targeting the temperature and 
humidity sensors of a node (the entire WSN can be 
addressed using a broadcast address in the request).  

TABLE I.  SERVICE REQUESTS/REPLIES FOR SENSOR QUERIES 

one-off 
query 

query?addr0=12&addr1=25&sensors=temp,hum  

{addr:[12,25],rssi:60,lqi:107,deluge:’off’,version:0, 
tx_power:31,time:’2015:09:18:23:36:58’, 

vals:{bat:3.1, temp:24.35,hum:56.267}} 

periodi
c query 

{addr:[12,25],request:’subscribe’, service:’periodic’ 
rates:{temp:60,hum:120}} 

{addr:[12,25], …, vals:{bat:3.1, temp:24.35,hum: 56.267}} 

{addr:[12,25], …, vals:{bat:3.1, temp:24.35}} 

 
The second option is to submit a long-lived query for 

periodic sensor measurements at a fixed rate. In this case, the 
client opens a web-socket connection and sends a JSON 
object which defines the sensors to be sampled and their 
sampling rate. The client then receives over the same socket 
the data produced, in the form of JSON objects. The gateway 
keeps the query active as long as the respective web-socket 
connection remains open, otherwise the query is cancelled. 
As an example, Table I shows a query request for the 
temperature and humidity sensors, and the data objects that 
will be produced in response. Note that some data objects 
will only contain temperature values, as the temperature is 
sampled two times more frequently than humidity. 

The gateway multiplexes queries issued concurrently by 
different clients. It will forward a new client query to the 
sensor nodes only when the query cannot be satisfied based 
on the queries that are already running. In a similar vein, it 
de-multiplexes the data produced by the sensor nodes to the 
respective clients, ensuring that each client will receive the 
data it requested. Moreover, the gateway caches the values 
recently received from sensor nodes, just in case these can be 
re-used to satisfy new queries. 

C. Task Installation Services 
The gateway offers a set of services so that external 

clients can dynamically deploy application tasks in the WSN. 
This is done following a stepwise process.  

The first step is for the client to upload on the gateway 
the task binary, along with task-specific descriptions for the 
configuration commands that can be handled by the task and 
the data objects that are produced by it – there are XML files 
that must follow a specific format, described in the sequel.  

Next, the client activates the installation mode on the 
target sensor nodes, and then triggers the actual task 
installation process. Finally, when done, the installation 

mode has to be deactivated. Table II shows indicative service 
requests for the last three steps of the process. 

TABLE II.  SERVICE REQUESTS FOR TASK INSTALLATION 

activate startinstall?addr0=12&addr1=25&file=test&size=2048 

install install?file=test&size=2048 

deactivate  stopinstall?addr0=12&addr1=25 

 
Note that code installation must be activated and 

deactivated in an explicit way. This is to avoid any 
background network traffic (and energy cost) that might be 
incurred by the respective WSN-level service, as long as it 
remains active. 

D. Task Configuration and Data Services 
Once an application task is installed on a sensor node, the 

client can interact with it, through the gateway, via the 
corresponding configuration and data services. Note that 
each task can have its own application-specific configuration 
parameters and produce its own application-specific types of 
data. These are not known in advance – contrary to the 
available sensors of the WSN nodes, which do not change in 
time. For this reason, the respective services are left open, 
and their syntax is defined via suitable description files.  

More specifically, the task configuration service takes as 
parameters the node address and the identifier of the 
command, followed by zero or more task-specific 
parameters. The name of the configuration command 
identifier, the number and type of its parameters, and the 
order in which these should appear in the client request, are 
specified via an XML description, formatted according to the 
DTD in Table III. The gateway uses this description to parse 
client requests and verify that they conform to the 
specification, before it maps them to WSN-level packets that 
will be sent to the sensor nodes. 

TABLE III.  DTDS FOR TASK-SPECIFIC XML DESCRIPTION FILES 

Application Task 
Commands 

<!ELEMENT commands (command*)> 

<!ELEMENT command (uname,code,par*)> 

<!ELEMENT uname (#PCDATA)> 
<!ELEMENT code (#PCDATA)> 

<!ELEMENT par (uname,valtype)> 
<!ELEMENT valtype (#PCDATA)> 

Application Task    
Data Objects 

<!ELEMENT datamessages (datamsg*)> 

<!ELEMENT datamsg (uname,code,data*)> 

<!ELEMENT uname (#PCDATA)> 
<!ELEMENT code (#PCDATA)> 

<!ELEMENT data (uname,valtype,size?)> 

<!ELEMENT valtype (#PCDATA)> 

 
Similarly, the data that can be produced by the 

application task comes in the form of JSON objects, whose 
structure is defined via a corresponding XML file, following 
the DTD in Table III. Each datamsg element represents a 
separate data object, which can include one or more data 
elements; optionally, a size element can be used to indicate 
an array of values of the same type and name. Importantly, 
the order of elements inside the data object defines the order 
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in which the application task is expected to serialize the 
respective values in the WSN-level packet sent to the 
gateway, and the naming convention for the data items in the 
JSON object that will be ultimately delivered to the client. 

The client can retrieve the data objects produced by the 
task in two different ways. The first option is to poll the 
gateway to receive a file with the data that was produced by 
the task up to that point. The corresponding service request 
takes as a parameter the node address and a flag indicating 
whether the contents of the file should be erased after the 
transfer completes. The second option is for the client to be 
notified when the task produces new data, via a web-socket, 
in the same way this is done for periodic sensor queries. 

E. Sensor Node Middleware 
The middleware running on the sensor nodes implements 

the access services provided by the WSN gateway to external 
clients, on the node itself. The interaction between the sensor 
nodes and the gateway occurs via a suitable WSN-level 
protocol that uses a binary encoding for compactness.  

One of the main responsibilities of the middleware is to 
enable the dynamic installation and execution of application 
tasks via a suitable runtime environment (see next section). 
Moreover, whenever possible, the middleware bundles 
together data produced from different sensor queries and 
tasks that run locally, in a single packet. This can greatly 
reduce the number of individual packet transmissions in the 
WSN, which in turn increases reliability and saves energy. 

V. TASK PROGRAMMING MODEL 

Application tasks correspond to independent, event-
driven software components – tasks do not have a control 
thread of their own. The task has three event handlers: 
on_init, on_sensordata and on_command (see Table IV). 
The on_init handler is called right after task installation, to 
let the task perform initialization actions. The middleware 
invokes the on_sensordata handler as soon as sensor 
measurements become available, so that the task can process 
them as needed. The sensors for which values are available 
and the corresponding measurements are passed to the task. 
Finally, on_command is called when the external client 
issues a configuration command for the task, passing the 
identifier of the command and a buffer with marshalled 
values for each of the command parameters, as per the 
corresponding XML description. 

It is the responsibility of the application programmer to 
provide these handlers. The middleware offers a set of 
primitives that can be invoked from within the task in order 
to implement the desired functionality, listed in Table IV.  

The set_sensors primitive is used to specify the sensors 
the task wishes to use and the sampling rate for each one of 
them. This is typically done from within the on_init handler. 
Based on this setting, the middleware periodically performs 
the desired low-level sensor access, and up-calls the 
on_sensordata handler to forward the values to the task.  

The task must store the data it wishes to send in a buffer 
which it has to manage itself. This can be a global variable 
that persists across handler invocations, or a temporary 
variable used in the context of a single handler invocation. 

TABLE IV.  EVENT HANDLERS AND API FOR APPLICATION TASKS 

Event handlers 

on_init(void) Initialize task state 

on_sensordata(int mask, float *vals[]) Handle new sensor values   

on_command(char id, char *buf) Handle config. command 

Sensor primitives 

set_sensors(int mask, int rates[]) 
Set the sensors to use and 
their sampling rates 

Outgoing data primitives 

setType(char *buf, int type) Set message buffer type 

writeUInt8(char *buf, int *pos, int v) 
writeUInt16(char *buf, int *pos, int v) 

… 

writeFloat(char *buf, int*pos, float f) 

Data marshalling routines 

send(char *buf, int len) Send message buffer 

Incoming command primitives 
readUInt8(char *buf, int *pos, char *v) 

readUInt16(char *buf, int *pos, int *v) 
… 

readFloat(char *buf, int*pos, float *f) 

Data unmarshalling 
routines 

 
The type of the message buffer is set via setType, to one 

of the data object identifiers defined in the XML description. 
The payload is marshalled into the buffer using the 
corresponding write* primitives. The programmer is 
responsible for writing data in the order specified in the 
XML description, so that data can be properly read/decoded 
by the gateway. To save space in the WSN-level packets, the 
marshalling routines do not add any extra type information. 
The only type information that is available in the packet is 
the data object identifier. Finally, the message buffer is sent 
over the network via the send primitive. 

 A similar approach, in the reverse direction, is followed 
for incoming configuration commands. In this case, the task 
retrieves the corresponding parameter values via the read* 
unmarshalling primitives. Again, this must be done in the 
order given in the corresponding XML description. 

VI. IMPLEMENTATION DETAILS 

We have implemented the node middleware on top of 
Contiki [16], a well-documented open source operating 
system ported to a wide range of hardware platforms. 
Contiki also supports different protocols such as 
ContikiMAC [17] and Rime [18], that are reliable and 
energy efficient. 

Application tasks are written in C, following the model 
described in the previous section. Task execution is based on 
the Contiki programming model [19]. Each task is a Contiki 
process, executed by the kernel along with other system-
level processes, and communicates with them via the Contiki 
IPC mechanisms. However, all Contiki-specific aspects are 
hidden from the programmer, who only needs to write the 
three event handlers using the task API. The code is then 
passed through a pre-processor, which generates the full 
Contiki program.  
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Using the existing Contiki development tool chain, this 
code is converted into a dynamically loadable binary (ELF). 
Contiki provides support for loading ELF code on RAM via 
a procedure known as relocation [20]. The transfer of an ELF 
file from the WSN gateway to one or more sensor nodes is 
done via the Deluge protocol [21]. Finally, the ELF files are 
stored on the flash memory of the sensor node (from where 
they can then be retrieved by the ELF-loader) using the 
Coffee file system [22]. 

As a hardware platform for the sensor nodes we use 
TelosB nodes from AdvanticSYS (Fig. 2a), with 48K of 
ROM and 10K of RAM. The WSN gateway software is 
developed based on the Python CherryPy framework, and 
runs on a mini-PC (Fig. 2b) on top of a Linux environment. 
The interface to the WSN is a sensor node that is connected 
to the mini-PC over serial, which plays the role of the “data 
sink” for the WSN. In turn, the mini-PC can be accessed 
from the Internet over a wireless or wired connection, 
depending on the setup. Our prototype currently supports a 
star network topology, where every sensor node has a direct 
wireless link to the sink node. Given the rich networking 
support of Contiki, it is rather straightforward to extend our 
implementation to support multi-hop topologies. 

VII. APPLICATION EXAMPLE 

We give a concrete example for an application that 
deploys a task into the WSN placed in a greenhouse (Fig. 3), 
to monitor environmental parameters that can affect crop 
health and performance. This information feeds into a model 

that controls the greenhouse environment and watering 
process in order to achieve optimal crop growth conditions. 
One of the parameters of the model is the Vapor Pressure 
Deficit (VPD) value inside a greenhouse. This is calculated 
as a function of temperature (T) and relative humidity (RH): 
(0.611*exp(17.27*T/(T+237)))*RH/100. Let us assume that 
the model does not need to receive updates on this value, as 
long as there is no large deviation compared to the old value.  

The conventional way would be to periodically query the 
sensor nodes for T and RH, in the spirit of the service 
examples given in Table I, and then calculate the VPD on the 
machine that runs the model. But this would be inefficient, 
especially if the VPD value changes rarely.  

Instead, one can use a task that performs this calculation 
locally, and sends updates only when the current VPD differs 
significantly from the last reported value. To increase 
flexibility, the task can have a configurable deviation 
threshold. Listing 1 gives the code for the application task, 
and Table V provides the XML descriptions for the 
configuration command supported by the task and the data 
that is produced by it. 

 
#define SETTHRESHOLD_CMD 1 
#define UPDATE_MSG  1 

#define DEFAULT_DIFF 0.5 

#define TEMP_SENSOR 1 
#define HUM_SENSOR 3 

 

static float diff=DEFAULT_DIFF, tmp,hum,lastvpd; 
static char mbuf[1+sizeof(float)]; 

 

float calcVPD(float t, float rh){ … } 
int getPos(int bit, int mask) { …}  

 

on_init() { 
    setType(mbuf,UPDATE_MSG); 

    int rates[]={60,60}; 

    set_sensors(2, TEMP_SENSOR | HUM_SENSOR,rates); 
} 

 

on_command(int id, char *buf) { 
    int pos=0; 

    if (id == SETTHRESHOLD_CMD) 

         readFloat(buf, &pos, &diff); 
    } 

} 

 
on_sensordata(int mask, float vals[]){ 

    int pos,update=0; float vpd; 

     
    pos = getPos(TEMP_SENSOR,mask); 

    if (pos > 0) { tmp = vals[pos]; update = 1; } 

    pos = getPos(HUM_SENSOR,mask); 
    if (pos > 0) { hum = vals[pos]; update = 1; } 

    if (update) { 

        vpd = calcVPD(tmp,hum); 
        if (abs(vdp – lastvpd) > diff) { 

            pos = 1; 

            writeFloat(mbuf,&pos,vdp); 
            send(buf,pos); 

            lastvdp = vpd; 

        }     
    } 

} 

Listing 1. Code for the VPD task 

Figure 2. Hardware of the system prototype: (a) node; (b) mini PC. 

                  (a)                                                         (b) 

Figure 3. Wireless sensor node in a greenhouse. 
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TABLE V.  XML DESCRITPIONS FOR THE VPD TASK 

Task-specific 
command 

<command> 
    <uname>setthreshold</uname> 

    <code>1</code> 

    <param> 
       <uname>absdiff</uname> 

       <valtype>float</valtype> 

   </param> 
</command> 

Task-specific      
data object 

<datamsg> 

    <uname>update</uname> 
    <code>1</code> 

    <data> 

       <uname>vpd</uname> 
       <valtype>float</valtype> 

    </data> 

</datamsg> 

 

The task code is 42 lines long, and compiles into a binary 

of roughly 2.200 bytes, out of which about 900 is the code of 

the API added by the pre-processor. Assuming the task runs 

on the sensor node with address 12.25, the client can 

set/change the notification threshold via a request 
http://server/taskcmd?adrr0=12&addr1=25&cmd=s
etthreshold&absdiff=0.95, and receive data in the 

form {addr:[12,25],time:'2015:09:18:23:36:58', 
update:{vpd:1.45}}. 

It is easy to imagine different versions of such a task, 
with a more complex application logic and commands for 
setting additional configuration parameters, which can also 
produce more than one types of data objects. Note that it is 
trivial for the external application to replace the task at any 
point in time, e.g., to correct a bug, or to use a more 
advanced version. 

VIII. CONCLUSION 

We presented a unified service-oriented access to a WSN 
for conventional queries as well as for the interaction with 
application-specific tasks deployed in the WSN dynamically. 
This greatly increases flexibility, without introducing extra 
interfacing complexity for the clients of the WSN. 

One of the enhancements we wish to pursue in the future 
is to extend the task programming model to support 
application-specific in-network processing and multi-hop 
data forwarding within the task itself. We also want to 
experiment with mechanisms for adapting the operation of 
the sensor node, in an application-aware manner, to further 
reduce the energy consumption of sensor nodes.  
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