
Unified Service-oriented Access for WSNs and
Dynamically Deployed Application Tasks

Theodoros Fronimos1, Spyros Lalis1,2, Manos Koutsoubelias1,2, Thomas Bartzanas1

1Institute for Research and Technology Thessaly

Centre for Research and Technology Hellas (CERTH)

Volos, Greece

{frontheo,bartzanas}@mail.ireteth.certh.gr

2Electrical and Computer Engineering Department

University of Thessaly

Volos, Greece

{emkouts,lalis}@uth.gr

Abstract—For good reasons of interoperability and flexibility,
wireless sensor networks (WSNs) are accessed by remote
clients via service-oriented interfaces. At the same time, it can
be useful to let clients deploy custom sensing and processing
tasks directly on the sensor nodes. However, this raises the
issue of how the remote client application can interact with
such a task, in parallel to conventional access of the WSN. We
propose an approach for adopting a unified web-based
interface for both information flows. This way, WSN clients do
not have to deal with different interface technologies.
Moreover, the gateway of the WSN can handle both flows
using the same protocol translation engine. The paper presents
our design, briefly discusses a first prototype implementation,
and shows an indicative usage example.

Keywords—wireless sensor networks; middleware; service-
oriented access; integration; Internet of Things

I. INTRODUCTION

Wireless sensor networks (WSNs) are a key component
of the so-called Internet of Things (IoT), as they can support
a broad range of monitoring and control applications. The
integration of WSNs into the wider Internet-based landscape
emerges as a challenging issue. To this end, suitable open
interfaces are required, which will allow WSNs to be
accessed from different external systems in a flexible way.

At the same time, a large body of work proposes WSNs
that can be programmed in a dynamic way, by injecting
application-specific code that runs directly on the nodes of
the WSN. Such code can access the onboard sensors, process
the measurements locally, and send data to external systems
only when this is actually useful for the application. This
approach can greatly reduce traffic in the WSN. Given that
computing is much cheaper than communication, this can
also prolong the lifetime of battery-powered nodes.

The ability to program a WSN introduces a second
dimension to the aforementioned challenge of WSN access.
On the one hand, several remote application clients may
issue queries to the WSN, and receive the data that is
produced by the sensor nodes, through a well-defined
interface. The different types and semantics for the data that
can be produced as a response to such queries are known in
advance, and are part of the WSN interface. On the other
hand, certain application clients may wish to inject their own
sensing and processing code into the WSN, and receive the
data that is produced by it. However, this code may have to

be controlled via custom commands and can produce custom
data, which in the general case are known only to the
application. The question is how to support both “worlds” at
the same time.

In this paper, we present an end-to-end solution to this
problem. At the WSN nodes, we use a middleware layer,
which supports conventional sensor queries as well as the
dynamic installation and execution of application tasks on
the node. At the WSN gateway, a mediator engine supports a
service-oriented access of the WSN, but also the installation
of and interaction with application-specific tasks. Based on
appropriate XML descriptions, the mediator engine can
handle, in a uniform way, both conventional queries and
task-specific commands, and return the data that is produced
in each case to the respective clients. Notably, it is possible
to have several outstanding queries and tasks running in the
WSN concurrently to each other.

The rest of the paper is structured as follows. Section II
gives an overview of related work. Section III describes the
high-level architecture of our approach. Section IV presents
the interface of the WSN towards external clients. Section V
describes the programming model supported by the WSN
node middleware. Section VI provides some details about
our current implementation, and Section VII gives a concrete
application example. Section VIII concludes the paper.

II. RELATED WORK

Numerous publications address the issue of creating
high-level abstractions for sensor networks from different
points of view. Proposals such as TinyDB [1] and Cougar [2]
follow a macro-programming approach by abstracting the
whole network as a single database on which the user can
perform complex queries. The main drawback is that the user
has no control over in-network operations, as their
optimization relies solely on the underlying middleware.

Contrary to macro-programming, virtual machine based
approaches allow users to distribute processing among
network nodes, in the form of mobile code. In middleware
systems like Agilla [3] and Maté [4], mobile agents carrying
user defined programs are injected or flooded throughout the
sensor network. Programs are composed of special, low-level
instructions (opcodes) following an assembly-like style. The
overhead for performing application updates is much lower
compared to methods that substitute the whole firmware
image. However, application programming tends to be
tedious and error prone.

2016 IEEE First International Conference on Internet-of-Things Design and Implementation

978-1-4673-9948-7/16 $31.00 © 2016 IEEE

DOI 10.1109/IoTDI.2015.25

247

To simplify WSN programming, TENET [5] introduces a
set of predefined high-level operations, called tasklets, which
are supported by the nodes of the WSN and can be executed
on demand. The programmer can then compose application-
specific tasks in a very simple way, as a sequence of such
operations. A task is encoded as a character string, sent to the
sensor nodes for execution. Servilla [6] introduces a C-like
language for the same purpose. However, in both cases, the
code of all tasklets must be part of the pre-installed node
firmware. POBICOS [7] allows application-specific agents
to be written in C, and supports a fully dynamic placement
and migration of such agents in the WSN.

A recent trend are service-oriented architectures based on
web services for which support is readily available in most
popular programming languages. In [8], nodes publish their
basic functionalities as services to a base station, which in
turn provides the necessary abstractions in order to be easily
manipulated by a high level programming language of the
user’s choice. TinyWS [9] allows direct HTTP access on
implemented node services through a SOAP processing
engine residing on top of the platform’s OS, while the
various implementations of the CoAP protocol [10] follow a
RESTful design. While easy to use, these frameworks do not
support any intra-network processing.

Combining elements of the above approaches seems a
more promising strategy. In [11] authors integrate TENET in
a WSN-SOA to support task deployment and collaboration
between nodes as a service. In USEME [12], applications
can be composed via a declarative language which specifies
nodes, groups and services; however, service implementation
depends on the underlying OS. ProFun TG [13] is based on a
declarative network programming model that utilizes
abstract task graphs and dataflows. A visual IDE is provided
for handling tasks, but the user is also given the option of
programming application-specific tasks in C or SEAL [14].
Task allocation and data handling is feasible through JSON
requests over HTTP.

While the task-based approaches in [11] [13] and the
multi-layered software architecture in [15] offer advanced
programming features, user-defined software must be part of
the initial firmware. In contrast, our work focuses on
providing easy to use interfaces that allow flexible data
manipulation, node reconfiguration and task reprogramming,
even after deployment.

III. SYSTEM ARCHITECTURE

The high-level system architecture of our approach is
depicted in Fig. 1, highlighting the most important elements.
The WSN consists of several sensor nodes and a gateway.
The gateway provides an interface to external clients so that
they can access/control the WSN sensor nodes and receive
data from them. In addition, through this interface, clients
can deploy application-specific tasks and interact with them.

The WSN gateway acts as a mediator between external
clients and the WSN. It maps client requests to WSN-level
command packets that are sent to the sensor nodes.
Conversely, it maps the WSN-level data packets received
from sensor nodes to replies for the respective clients. Sensor
nodes run suitable middleware that handles requests coming

from the gateway and sends back replies and data. The
middleware is also responsible for installing and running
application tasks on the sensor node, as well as for
facilitating their interaction with the external application
systems, via the gateway.

The translation between the client-level protocol and the
WSN-level protocol is performed based on suitable metadata
descriptions. This holds both for the standard (fixed) client
functions, as well as for the (open) interaction between the
tasks and the client applications that deployed them. The
former metadata descriptions are part of the gateway
firmware, whereas the latter are registered with the gateway
before installing a task. As indicated in Fig. 1, this makes it
possible for the gateway to use the same mediator engine for
both cases, and for clients to interact with the WSN in a
unified way.

IV. WSN CLIENT INTERFACE

The interface provided by the WSN gateway to external
clients follows a web-based design. This way, the WSN can
be accessed in a platform-neutral way, from any computer
with a connection to the Internet. The WSN interface
consists of two parts: the standard interface and the task
interface. The standard interface allows remote clients to
control the operation of the sensor nodes, issue sensor
queries and receive sensor measurements, without using a
task. The task interface is used by external application
systems to install tasks into the WSN, control their operation,
and receive the data produced by them. Below, we discuss
the most important services in more detail. Note that selected
services could be enabled on a per-client basis, depending on
the access rights given to it by the gateway administrator.

A. Sensor Node Configuration Services
The ability to fine tune system parameters at a post-

deployment stage can be very important in achieving an
efficient operation and monitoring of the WSN. For this
purpose, the gateway provides a set of configuration
services, e.g., for setting the transmission power of a sensor
node, or the frequency of liveness messages. The latter
contain information about the current status of a node,
including the transmission power, the battery voltage, the

Figure 1. High-level system architecture.

248

quality of the wireless link with the gateway, the tasks
installed, and elapsed time since the last node reboot/reset.
This information is collected at the gateway, to keep an
updated view of the WSN, which can be retrieved by
external clients/users via a corresponding request.

B. Sensor Access Services
There are two options for obtaining measurements from

sensor nodes. The first one is by sending a one-off query
request, to which a reply is produced promptly. An example
is given in Table I, for a query targeting the temperature and
humidity sensors of a node (the entire WSN can be
addressed using a broadcast address in the request).

TABLE I. SERVICE REQUESTS/REPLIES FOR SENSOR QUERIES

one-off
query

query?addr0=12&addr1=25&sensors=temp,hum

{addr:[12,25],rssi:60,lqi:107,deluge:’off’,version:0,
tx_power:31,time:’2015:09:18:23:36:58’,

vals:{bat:3.1, temp:24.35,hum:56.267}}

periodi
c query

{addr:[12,25],request:’subscribe’, service:’periodic’
rates:{temp:60,hum:120}}

{addr:[12,25], …, vals:{bat:3.1, temp:24.35,hum: 56.267}}

{addr:[12,25], …, vals:{bat:3.1, temp:24.35}}

The second option is to submit a long-lived query for

periodic sensor measurements at a fixed rate. In this case, the
client opens a web-socket connection and sends a JSON
object which defines the sensors to be sampled and their
sampling rate. The client then receives over the same socket
the data produced, in the form of JSON objects. The gateway
keeps the query active as long as the respective web-socket
connection remains open, otherwise the query is cancelled.
As an example, Table I shows a query request for the
temperature and humidity sensors, and the data objects that
will be produced in response. Note that some data objects
will only contain temperature values, as the temperature is
sampled two times more frequently than humidity.

The gateway multiplexes queries issued concurrently by
different clients. It will forward a new client query to the
sensor nodes only when the query cannot be satisfied based
on the queries that are already running. In a similar vein, it
de-multiplexes the data produced by the sensor nodes to the
respective clients, ensuring that each client will receive the
data it requested. Moreover, the gateway caches the values
recently received from sensor nodes, just in case these can be
re-used to satisfy new queries.

C. Task Installation Services
The gateway offers a set of services so that external

clients can dynamically deploy application tasks in the WSN.
This is done following a stepwise process.

The first step is for the client to upload on the gateway
the task binary, along with task-specific descriptions for the
configuration commands that can be handled by the task and
the data objects that are produced by it – there are XML files
that must follow a specific format, described in the sequel.

Next, the client activates the installation mode on the
target sensor nodes, and then triggers the actual task
installation process. Finally, when done, the installation

mode has to be deactivated. Table II shows indicative service
requests for the last three steps of the process.

TABLE II. SERVICE REQUESTS FOR TASK INSTALLATION

activate startinstall?addr0=12&addr1=25&file=test&size=2048

install install?file=test&size=2048

deactivate stopinstall?addr0=12&addr1=25

Note that code installation must be activated and

deactivated in an explicit way. This is to avoid any
background network traffic (and energy cost) that might be
incurred by the respective WSN-level service, as long as it
remains active.

D. Task Configuration and Data Services
Once an application task is installed on a sensor node, the

client can interact with it, through the gateway, via the
corresponding configuration and data services. Note that
each task can have its own application-specific configuration
parameters and produce its own application-specific types of
data. These are not known in advance – contrary to the
available sensors of the WSN nodes, which do not change in
time. For this reason, the respective services are left open,
and their syntax is defined via suitable description files.

More specifically, the task configuration service takes as
parameters the node address and the identifier of the
command, followed by zero or more task-specific
parameters. The name of the configuration command
identifier, the number and type of its parameters, and the
order in which these should appear in the client request, are
specified via an XML description, formatted according to the
DTD in Table III. The gateway uses this description to parse
client requests and verify that they conform to the
specification, before it maps them to WSN-level packets that
will be sent to the sensor nodes.

TABLE III. DTDS FOR TASK-SPECIFIC XML DESCRIPTION FILES

Application Task
Commands

<!ELEMENT commands (command*)>

<!ELEMENT command (uname,code,par*)>

<!ELEMENT uname (#PCDATA)>
<!ELEMENT code (#PCDATA)>

<!ELEMENT par (uname,valtype)>
<!ELEMENT valtype (#PCDATA)>

Application Task
Data Objects

<!ELEMENT datamessages (datamsg*)>

<!ELEMENT datamsg (uname,code,data*)>

<!ELEMENT uname (#PCDATA)>
<!ELEMENT code (#PCDATA)>

<!ELEMENT data (uname,valtype,size?)>

<!ELEMENT valtype (#PCDATA)>

Similarly, the data that can be produced by the

application task comes in the form of JSON objects, whose
structure is defined via a corresponding XML file, following
the DTD in Table III. Each datamsg element represents a
separate data object, which can include one or more data
elements; optionally, a size element can be used to indicate
an array of values of the same type and name. Importantly,
the order of elements inside the data object defines the order

249

in which the application task is expected to serialize the
respective values in the WSN-level packet sent to the
gateway, and the naming convention for the data items in the
JSON object that will be ultimately delivered to the client.

The client can retrieve the data objects produced by the
task in two different ways. The first option is to poll the
gateway to receive a file with the data that was produced by
the task up to that point. The corresponding service request
takes as a parameter the node address and a flag indicating
whether the contents of the file should be erased after the
transfer completes. The second option is for the client to be
notified when the task produces new data, via a web-socket,
in the same way this is done for periodic sensor queries.

E. Sensor Node Middleware
The middleware running on the sensor nodes implements

the access services provided by the WSN gateway to external
clients, on the node itself. The interaction between the sensor
nodes and the gateway occurs via a suitable WSN-level
protocol that uses a binary encoding for compactness.

One of the main responsibilities of the middleware is to
enable the dynamic installation and execution of application
tasks via a suitable runtime environment (see next section).
Moreover, whenever possible, the middleware bundles
together data produced from different sensor queries and
tasks that run locally, in a single packet. This can greatly
reduce the number of individual packet transmissions in the
WSN, which in turn increases reliability and saves energy.

V. TASK PROGRAMMING MODEL

Application tasks correspond to independent, event-
driven software components – tasks do not have a control
thread of their own. The task has three event handlers:
on_init, on_sensordata and on_command (see Table IV).
The on_init handler is called right after task installation, to
let the task perform initialization actions. The middleware
invokes the on_sensordata handler as soon as sensor
measurements become available, so that the task can process
them as needed. The sensors for which values are available
and the corresponding measurements are passed to the task.
Finally, on_command is called when the external client
issues a configuration command for the task, passing the
identifier of the command and a buffer with marshalled
values for each of the command parameters, as per the
corresponding XML description.

It is the responsibility of the application programmer to
provide these handlers. The middleware offers a set of
primitives that can be invoked from within the task in order
to implement the desired functionality, listed in Table IV.

The set_sensors primitive is used to specify the sensors
the task wishes to use and the sampling rate for each one of
them. This is typically done from within the on_init handler.
Based on this setting, the middleware periodically performs
the desired low-level sensor access, and up-calls the
on_sensordata handler to forward the values to the task.

The task must store the data it wishes to send in a buffer
which it has to manage itself. This can be a global variable
that persists across handler invocations, or a temporary
variable used in the context of a single handler invocation.

TABLE IV. EVENT HANDLERS AND API FOR APPLICATION TASKS

Event handlers

on_init(void) Initialize task state

on_sensordata(int mask, float *vals[]) Handle new sensor values

on_command(char id, char *buf) Handle config. command

Sensor primitives

set_sensors(int mask, int rates[])
Set the sensors to use and
their sampling rates

Outgoing data primitives

setType(char *buf, int type) Set message buffer type

writeUInt8(char *buf, int *pos, int v)
writeUInt16(char *buf, int *pos, int v)

…

writeFloat(char *buf, int*pos, float f)

Data marshalling routines

send(char *buf, int len) Send message buffer

Incoming command primitives
readUInt8(char *buf, int *pos, char *v)

readUInt16(char *buf, int *pos, int *v)
…

readFloat(char *buf, int*pos, float *f)

Data unmarshalling
routines

The type of the message buffer is set via setType, to one

of the data object identifiers defined in the XML description.
The payload is marshalled into the buffer using the
corresponding write* primitives. The programmer is
responsible for writing data in the order specified in the
XML description, so that data can be properly read/decoded
by the gateway. To save space in the WSN-level packets, the
marshalling routines do not add any extra type information.
The only type information that is available in the packet is
the data object identifier. Finally, the message buffer is sent
over the network via the send primitive.

 A similar approach, in the reverse direction, is followed
for incoming configuration commands. In this case, the task
retrieves the corresponding parameter values via the read*
unmarshalling primitives. Again, this must be done in the
order given in the corresponding XML description.

VI. IMPLEMENTATION DETAILS

We have implemented the node middleware on top of
Contiki [16], a well-documented open source operating
system ported to a wide range of hardware platforms.
Contiki also supports different protocols such as
ContikiMAC [17] and Rime [18], that are reliable and
energy efficient.

Application tasks are written in C, following the model
described in the previous section. Task execution is based on
the Contiki programming model [19]. Each task is a Contiki
process, executed by the kernel along with other system-
level processes, and communicates with them via the Contiki
IPC mechanisms. However, all Contiki-specific aspects are
hidden from the programmer, who only needs to write the
three event handlers using the task API. The code is then
passed through a pre-processor, which generates the full
Contiki program.

250

Using the existing Contiki development tool chain, this
code is converted into a dynamically loadable binary (ELF).
Contiki provides support for loading ELF code on RAM via
a procedure known as relocation [20]. The transfer of an ELF
file from the WSN gateway to one or more sensor nodes is
done via the Deluge protocol [21]. Finally, the ELF files are
stored on the flash memory of the sensor node (from where
they can then be retrieved by the ELF-loader) using the
Coffee file system [22].

As a hardware platform for the sensor nodes we use
TelosB nodes from AdvanticSYS (Fig. 2a), with 48K of
ROM and 10K of RAM. The WSN gateway software is
developed based on the Python CherryPy framework, and
runs on a mini-PC (Fig. 2b) on top of a Linux environment.
The interface to the WSN is a sensor node that is connected
to the mini-PC over serial, which plays the role of the “data
sink” for the WSN. In turn, the mini-PC can be accessed
from the Internet over a wireless or wired connection,
depending on the setup. Our prototype currently supports a
star network topology, where every sensor node has a direct
wireless link to the sink node. Given the rich networking
support of Contiki, it is rather straightforward to extend our
implementation to support multi-hop topologies.

VII. APPLICATION EXAMPLE

We give a concrete example for an application that
deploys a task into the WSN placed in a greenhouse (Fig. 3),
to monitor environmental parameters that can affect crop
health and performance. This information feeds into a model

that controls the greenhouse environment and watering
process in order to achieve optimal crop growth conditions.
One of the parameters of the model is the Vapor Pressure
Deficit (VPD) value inside a greenhouse. This is calculated
as a function of temperature (T) and relative humidity (RH):
(0.611*exp(17.27*T/(T+237)))*RH/100. Let us assume that
the model does not need to receive updates on this value, as
long as there is no large deviation compared to the old value.

The conventional way would be to periodically query the
sensor nodes for T and RH, in the spirit of the service
examples given in Table I, and then calculate the VPD on the
machine that runs the model. But this would be inefficient,
especially if the VPD value changes rarely.

Instead, one can use a task that performs this calculation
locally, and sends updates only when the current VPD differs
significantly from the last reported value. To increase
flexibility, the task can have a configurable deviation
threshold. Listing 1 gives the code for the application task,
and Table V provides the XML descriptions for the
configuration command supported by the task and the data
that is produced by it.

#define SETTHRESHOLD_CMD 1
#define UPDATE_MSG 1

#define DEFAULT_DIFF 0.5

#define TEMP_SENSOR 1
#define HUM_SENSOR 3

static float diff=DEFAULT_DIFF, tmp,hum,lastvpd;
static char mbuf[1+sizeof(float)];

float calcVPD(float t, float rh){ … }
int getPos(int bit, int mask) { …}

on_init() {
 setType(mbuf,UPDATE_MSG);

 int rates[]={60,60};

 set_sensors(2, TEMP_SENSOR | HUM_SENSOR,rates);
}

on_command(int id, char *buf) {
 int pos=0;

 if (id == SETTHRESHOLD_CMD)

 readFloat(buf, &pos, &diff);
 }

}

on_sensordata(int mask, float vals[]){

 int pos,update=0; float vpd;

 pos = getPos(TEMP_SENSOR,mask);

 if (pos > 0) { tmp = vals[pos]; update = 1; }

 pos = getPos(HUM_SENSOR,mask);
 if (pos > 0) { hum = vals[pos]; update = 1; }

 if (update) {

 vpd = calcVPD(tmp,hum);
 if (abs(vdp – lastvpd) > diff) {

 pos = 1;

 writeFloat(mbuf,&pos,vdp);
 send(buf,pos);

 lastvdp = vpd;

 }
 }

}

Listing 1. Code for the VPD task

Figure 2. Hardware of the system prototype: (a) node; (b) mini PC.

 (a) (b)

Figure 3. Wireless sensor node in a greenhouse.

251

TABLE V. XML DESCRITPIONS FOR THE VPD TASK

Task-specific
command

<command>
 <uname>setthreshold</uname>

 <code>1</code>

 <param>
 <uname>absdiff</uname>

 <valtype>float</valtype>

 </param>
</command>

Task-specific
data object

<datamsg>

 <uname>update</uname>
 <code>1</code>

 <data>

 <uname>vpd</uname>
 <valtype>float</valtype>

 </data>

</datamsg>

The task code is 42 lines long, and compiles into a binary

of roughly 2.200 bytes, out of which about 900 is the code of

the API added by the pre-processor. Assuming the task runs

on the sensor node with address 12.25, the client can

set/change the notification threshold via a request
http://server/taskcmd?adrr0=12&addr1=25&cmd=s
etthreshold&absdiff=0.95, and receive data in the

form {addr:[12,25],time:'2015:09:18:23:36:58',
update:{vpd:1.45}}.

It is easy to imagine different versions of such a task,
with a more complex application logic and commands for
setting additional configuration parameters, which can also
produce more than one types of data objects. Note that it is
trivial for the external application to replace the task at any
point in time, e.g., to correct a bug, or to use a more
advanced version.

VIII. CONCLUSION

We presented a unified service-oriented access to a WSN
for conventional queries as well as for the interaction with
application-specific tasks deployed in the WSN dynamically.
This greatly increases flexibility, without introducing extra
interfacing complexity for the clients of the WSN.

One of the enhancements we wish to pursue in the future
is to extend the task programming model to support
application-specific in-network processing and multi-hop
data forwarding within the task itself. We also want to
experiment with mechanisms for adapting the operation of
the sensor node, in an application-aware manner, to further
reduce the energy consumption of sensor nodes.

ACKNOWLEDGMENT

This work was funded in part by the General Secretariat
for Research and Technology of Greece, action KRIPIS,
project “Smart Pole for Specialization and Development of
Thessaly: Research, Innovation, Strategies”.

REFERENCES

[1] S. R. Madden, M. J. Franklin, J. M. Hellerstein and W. Hong.
“TinyDB: an acquisitional query processing system for sensor
networks,” ACM Trans. Database Syst. 30(1), pp. 122-173, 2005.

[2] Y. Yong and J. Gehrke. “Query Processing in Sensor Networks.”
CIDR. 2003, pp.233-244.

[3] B. D. Noble, M. Satyanarayanan, D. Narayanan, J. E. Tilton, J. Flinn
and K. R. Walker. “Agile application-aware adaptation for mobility,”
SIGOPS Oper. Syst. Rev. 31(5), pp. 276-287, 1997.

[4] P. Levis and D. Culler. “Maté: a tiny virtual machine for sensor
networks,” SIGARCH Comput. Archit. News, 30(5), pp. 85-95, 2002.

[5] O. Gnawali, B. Greenstein, K. Jang, A. Joki, J. Paek, M. Vieira,
D. Estrin, R. Govindan and E. Kohler. “The tenet architecture for
tiered sensor networks,” 4th Intl Conf on Embedded Networked
Sensor Systems, pp. 153-166, 2006.

[6] C.-L. Fok, G.-C. Roman and C. Lu. “Servilla: A flexible service
provisioning middleware for heterogeneous sensor networks,” Sci.
Comput. Program. 77(6), pp. 663-684, 2012.

[7] N. Tziritas, G. Georgakoudis., S. Lalis, T. Paczesny, J. Domaszewicz,
P. Lampsas and T. Loukopoulos. “Middleware mechanisms for agent
mobility in wireless sensor and actuator networks,” 3rd Intl Conf on
Sensor Systems and Software, pp. 30-44, 2012.

[8] E. Avilés-López, J. Antonio García-Macías. “TinySOA: a service-
oriented architecture for wireless sensor networks,” Service Oriented
Computing and Applications, 3(2), pp. 99-108, 2009.

[9] N. B. Priyantha, A. Kansal, M. Goraczko and F. Zhao. “Tiny web
services: design and implementation of interoperable and evolvable
sensor networks,” 6th ACM Conf on Embedded Network Sensor
Systems, pp. 253-266, 2008.

[10] M. Kovatsch, S. Duquennoy and A. Dunkels. “A low-power CoAP
for Contiki,” IEEE Intl Conf on Mobile Adhoc and Sensor Systems,
pp. 855-860, 2011.

[11] B. Le Corre, J. Leguay, M. Lopez-Ramos, V. Gay and V. Conan.
“Service Oriented Tasking System for WSN,” IEEE Intl Conf on
Developments in E-Systems Engineering, pp. 64-69, 2010.

[12] E. Caete, J. Chen, M. Diaz, L. Llopis and B. Rubio, “USEME: A
Service-Oriented Framework for Wireless Sensor and Actor
Networks,” 8th Intl Workshop on Applications and Services in
Wireless Networks, pp. 47-53, 2008.

[13] A. Elsts, F. H. Bijarbooneh, M. Jacobsson and K. Sagonas. “ProFuN
TG: A Tool for programming and managing performance-aware
sensor network applications,” 40th IEEE Intl Workshop on Local
Computer Networks, pp. 751-759, 2015.

[14] A. Elsts, J. Judvaitis and L. Selavo, “SEAL: a domain-specific
language for novice wireless sensor network programmers,”
EUROMICRO SEAA, pp. 220–227, 2013.

[15] G. Fortino, A. Guerrieri, G. M. O'Hare and A. Ruzzelli, “A flexible
building management framework based on wireless sensor and
actuator networks.” Journal of Network and Computer Applications,
35(6), pp. 1934-1952, 2012.

[16] A. Dunkels, B. Gronvall and T. Voigt, “Contiki - a lightweight and
flexible operating system for tiny networked sensors,” 1st IEEE
Workshop on Embedded Networked Sensors, pp. 455-462, 2004.

[17] A. Dunkels. "The ContikiMAC radio duty cycling protocol,” SICS
Technical Report T2011:13, 2011.

[18] A. Dunkels. “Rime - a lightweight layered communication stack for
sensor networks,” European Conf on Wireless Sensor Networks,
poster, 2007.

[19] A. Dunkels, O. Schmidt, T. Voigt and M. Ali, “Protothreads:
Simplifying event-driven programming of memory-constrained
embedded systems,” 4th ACM Conf on Embedded Networked Sensor
Systems, pp. 29-42, 2006.

[20] A. Dunkels, N. Finne, J. Eriksson and T. Voigt, “Run-time dynamic
linking for reprogramming wireless sensor networks”, 4th ACM Conf
on Embedded Networked Sensor Systems, pp. 15-28, 2006.

[21] J. W. Hui and D. Culler. “The dynamic behavior of a data
dissemination protocol for network programming at scale,” 2nd Intl
Conf on Embedded Networked Sensor Systems, pp. 81-94, 2004.

[22] N. Tsiftes, A. Dunkels, Z. He and T. Voigt, “Enabling large-scale
storage in sensor networks with the coffee file system,” 8th
ACM/IEEE Intl Conf on Information Processing in Sensor Networks,
pp. 349-360, 2009.

252

