
Extending T-Res with mobility for context-aware IoT

Shashank Gaur, Raghuraman Rangarajan, Eduardo Tovar
CISTER/INESC TEC, ISEP, Polytechnic Institute of Porto, Porto, Portugal

email:{sgaur, raghu, emt}@isep.ipp.pt

Abstract—In this paper, we develop a framework for building
context-aware applications in IoT. The IoT paradigm brings in
various new issues such as macroprogramming, interoperability
for heterogeneous devices and in-network processing. Solutions
to these issues can enable IoT to support all available resources
in an efficient manner and also enable ease of access for users.
In addition, this can help in collecting useful information about
the user and the system, such as context. Understanding context
of different entities and taking actions accordingly will enable a
context-aware IoT. However, no complete solution is available to
this issue of achieving context-awareness in IoT. In this paper, as a
step towards a context-aware framework, we present a mobility-
enabling extension of the T-Res programming abstraction. We
implement a web-based framework for users to write context-
aware applications. We then describe and implement an auto-
mated mechanism for deploying these applications.

I. INTRODUCTION

Till now, applications for Wireless Senor Networks(WSNs)
were typically designed to perform a single task repetitively,
often in strictly controlled environments. This meant that
programming applications for a specific system were a one
time task. Nowadays, WSNs have become an integral part
of the Internet of Things (IoT) paradigm. This enables IoT
to become more pervasive, powerful, reliable, and able to
incorporate an increasing number of functionalities. Such
advancement enables the development of a self-adapting IoT,
that can respond to environmental conditions (or context), such
as location, activity, availability of resources or time, without
need of actions from user. To enable this, there is a need for
a framework, which enables the user to think about IoT in an
abstract manner and offloads any responsibilities regarding the
resources. In this paper we discuss ongoing efforts to provide
solutions to this problem. Our contribution is an extension to
one of the existing tools, T-Res [1].

This paper is organized as follows. Section II discusses
context-awareness in IoT. Section III examines related work
for context-aware IoT. Section IV presents our idea of Context
Aware Framework (CAF). Section V describes our effort and
implementation of the extension of T-Res [1] towards CAF.
Section VI provides a simulation based demonstration and
finally, Section VII provides concluding remarks.

II. CONTEXT-AWARENESS IN IOT
One important challenge for IoT is the ability to exploit

the dynamic nature of the physical environment. This can be
achieved by deploying a new class of applications that are
aware of the context for the users and/or the system itself. Such
context-aware IoT can adapt according to the location of the
user, the collection of nearby entities, the host infrastructure,
or other accessible resources, as well as to the changes in these
over time. A system with these capabilities can examine the
environment and react to such changes. Context can include
energy and noise levels, network connectivity, communication
costs, and even the social situation; e.g., whether someone
is with their family, friends or co-workers. Three important
aspects of context for both user and system are: (1) where you

are; (2) when you are; and (3) how you are. These aspects
contribute to define a particular context, and that context
contributes to define a selection of applications and resources.

The importance of context-awareness has existed before
for ubiquitous and pervasive computing [2], [3]. Most of the
existing work has been about collecting the data from a limited
number of input devices and analyzing it afterwards. With
almost every heterogeneous devices equipped with sensors,
now context can be understood more clearly than ever before.

ECG + Processing

EEG

(a) Context: Normal Energy Levels

Smartphone

Collection

Pressure
Motion

Temperature

ECG

EEG

(b) Context: Low Energy Levels

Smartphone

Collection

Processing

Pressure
Motion

Temperature

Fig. 1: Context-awareness in body area network.

To understand the importance of context-awareness in IoT,
let us consider an e-health scenario, where vital parameters
of a patient are monitored by a body area network (BAN).
As shown in Figure 1(a), the BAN has various sensor nodes
measuring specific vital parameters (Pressure, Motion, Tem-
perature, ECG, and EEG). The sensed data needs to be pre-
processed before results are delivered to a medical expert for
evaluation. For example in the case of ECG, there is a need
to perform some preprocessing such as noise rejections, in
order to have valuable information for the medical expert.
Let us assume this is done via writing an application with
multiple modules. For example the ECG module collects the
raw data of heart’s electrical activity from the sensor and
the Processing module operates on that raw data to generate
valuable information. When the BAN has normal energy levels,
all the modules may be deployed on each sensor and the
results may be collected by the collection on the smartphone
for delivery, as shown in Figure 1(a).

However, with time, due to running heavy processing,
the energy levels of the ECG node may drop below the
desirable levels. To save energy until the node is recharged,
the Processing module can be moved from the node to the
smartphone (Figure 1(b)) and then just poll the sensor for
the raw data. After that, the smartphone can process the data
into valuable information within the required time. Once again
when the node has sufficient energy levels, the module can be
moved back to the BAN from smartphone. For such abilities,
Abstraction is required for the user to program applications
independently of the resources on which the application is
executed. Modularity is required in this case to easily break
down the application running on the ECG node into pieces,

2016 IEEE First International Conference on Internet-of-Things Design and Implementation

978-1-4673-9948-7/16 $31.00 © 2016 IEEE

DOI 10.1109/IoTDI.2015.16

293

while with the help of Mobility the modular piece can be
moved to the smartphone when required.

This need can occur in various situations. Nowadays smart-
phones have capabilities to measure some vital signs. In case
of low energy levels of a particular node, the smartphone can
take over the complete module from that node until it recovers.
Here we are using our e-health usecase just to introduce the
intuition of context-awareness, but the basics for context switch
can exist in any other foreseeable scenario. Also some relevant
research work for BAN application already exists [4].

III. RELATED WORK

Providing a high level abstraction for programming wire-
less sensor networks has been a major research direction for
almost a decade. To support the context-awareness in IoT,
there is a need for more efforts in the same direction as
some of relevant work, which already contributed significantly
towards macroprogramming. To name a few of them, we refer
to Regiment [5] and Abstract Task Graph [6].

Regiment is a functional reactive programming model,
which treats the outputs of sensor nodes as Streams [5]. A
programmer can write functionalities based on these streams
instead of worrying about the nodes. There are some basic
functions such as rmap, rfilter, and rfold to operate on these
streams. The streams can be combined into groups which are
called regions. Due to a functional approach, the regiment
provides a high level of accuracy in performance.

While Regiment is a Functional approach, Abstract Task
Graph (ATaG) is a data driven approach. In ATaG, every
application is divided into three declarations: Abstract Tasks,
Abstract Data and Abstract Channels. Abstract Tasks represent
the type of processing in any application, Abstract Data
represents the type of data handled by the applications and
Abstract Channel associates the task declaration with data
declaration. Using these declarations any application can be
described by a model and then that model can be instantiated
any number of times throughout the sensor network. ATaG
provides abstraction because the number and the placement
of the application can be determined at compile or run time
according to the target devices.

The above mentioned efforts do not take into account the
diversity of any IoT devices included in possible scenarios. The
IoT devices bring in a number of new challenges such as in
network processing, heterogeneity of software and hardware
platforms, resource management, etc. There are other recent
contributions that try to contribute towards solving these
challenges. T-Res [1] is a programming abstraction targeted
specially for IoT. It assigns Uniform Resource Identifier (URI)
addresses to devices and utilizes Constrained Application
Protocol (CoAP) [7] instructions to deploy applications. We
will take a detailed look at T-Res in section V.

These previous efforts still lack the support required for
context-aware IoT, which our proposed framework attempts
to provide. The programming model described in this paper
provides essential features such as Modularity, Mobility and
Abstraction, in a way that is absent in any previous work. In
this paper, we try to extend T-Res towards CAF by enabling
one of those features, i.e. Mobility.

IV. CONTEXT-AWARE FRAMEWORKS (CAF)
As discussed before, IoT can have various contexts con-

strained by security, power management, communication cost,
or user behavior. For any IoT, these contexts can change with
time or multiple contexts can exist at the same time. To adapt
to new context scenarios the system must take actions. These
actions can be the deployment of new applications across
the network or re-configuration of old ones. We define a
framework with such capabilities as Context-Aware Frame-
work (CAF). A CAF should be able to learn about context
by design or by monitoring the system.

To achieve these goals CAF needs to have three features
(Figure 2). A programming approach to write context-aware
applications, a resource manager to deploy those applications
and keep track of resources, and a context manager to learn
from current status of applications and resources. In this work
we discuss the programming approach required for a CAF. We
will expand on the remaining two features in our future efforts.

User
Programming

Approach

Applications

Resource
Manager

Context Manager

Motion

Pressure Temperature

Light

Context A Context B Context C

Fig. 2: Main features for Context-Aware Framework for IoT.

The main motivation behind CAF is to keep the user
free from responsibilities other than expressing the application
goal. Hence, the application written by the user should be
independent of specific resources. On the other hand, the code
must be expressed in a modular way, so that the resource
manager can easily make decisions about usage of the available
resources in the IoT. Such a modular and abstract approach
will allow the system to move the code around the network.
Hence, we propose a declarative programming approach for the
user to write the application in self-contained blocks of code.
A declarative approach allows the user to write meaningful
statements instead of defining each action. These blocks of
code can process only the values received as input(s) and send
resulting output(s).

V. PROPOSAL AND IMPLEMENTATION OF CAF
As discussed in Section III, the previous related work does

not significantly contribute towards context-aware systems.
However, there are some previous research and technological
efforts which can be extended and adapted towards achieving a
solution to accommodate context-aware systems. One of those
prior efforts is T-Res [1].

T-Res provides a programming abstraction, specially tai-
lored for the IoT paradigm. In T-Res, simple tasks can be
created in the form of specified structures, called T-Res tasks.
These tasks can be installed on IoT devices during runtime.
This is done using CoAP procedures which allow configuring
applications on a device and also the interaction among multi-
ple devices. A T-Res task has four sub-resources. Input sources
(/is) stores the devices used to collect input data for the task.

294

Output destination (/od) stores the devices used to deliver the
output of the task. Processing function (/pf) stores the data
processing to be done on the input data and compute output,
hence the task itself. Last output (/lo) stores the most recent
output from the task. Input and outputs are assigned to /is and
/od by means of URI addresses. The application is provided
as a compiled file to /pf.

With such a structure T-Res establishes separation between
data processing, input sources and output destinations. This
is a required feature for building CAF, as our proposed
model utilizes an abstraction to provide the user with the
ability to write applications independent of the knowledge
about each resource. T-Res comes close to provide similar
abstraction between the application written by the user and the
resources utilized by that application, which other approaches
not provide. Next, we will take a closer look at T-Res with
a simple example, and we will identify shortfalls in it and
propose a solution to evolve it towards CAF.

A. Extending T-Res

To understand how T-Res works and how the proposed
evolution towards CAF can be designed, we take a look at a
simple application. The application maintains the temperature
of a room between 19°C and 22°C. The room has two
temperature sensors and one heating actuator. A T-Res task
structure (see Figure 3) can be created for this application. One
of the temperature sensors can be the host for the T-Res task.
The sub-resources of T-Res task structure can be set to these
resources. The /is sub-resource can be the temperature sensor
other than the host. The /od sub-resource can be the heating
actuator. The /pf can be set to a script which takes the input
from /is, performs the calculation to check the temperature
bound and provides the output instruction to /od.

aaaa::2
/sens/temp
/tasks/avgtemp/is
/tasks/avgtemp/pf
/tasks/avgtemp/od
/tasks/avgtemp/lo

aaaa::3

/sens/temp

aaaa::1
/act/heater
/tasks/control/is
/tasks/control/pf
/tasks/control/od
/tasks/control/lo

X

Fig. 3: T-Res task structure for the example.

In order to demonstrate a context change, assume the tem-
perature sensor set as /is sub-resource, is no longer available.
This may happen due to energy failure, communication cost, or
any other change in context. In this example we emphasize on
the context of energy failure. Since there is another temperature
sensor available in the room, the system should be able to
detect this change, adapt to it and then use the other sensor
as /is sub-resource. However, in T-Res, that has to be done by
the user by providing manual instructions using a CoAP agent.
Although there may be many other possible solutions for this,
we emphasize on extending T-Res because it provides similar
abstraction required for the CAF.

As discussed in the example above, to adapt to the energy
failure context, T-Res needs to detect the failure and change
the resource allocated to appropriate task sub-resources. Our
extension for mobility enables T-Res to do the same. We define
Mobility as a feature where the resources and the processing

function can be moved around to satisfy the context of the
system, independent of user inputs. For example in above
scenario, when the failure of temperature node is detected the
system should be able to assign another available temperature
node to /is sub-resource of the task, as shown in Figure 3.

IoT Node

Sensor
IoT Node

Task
IoT Node

Actuator

Application
Manager

Resource
Administrator

T-Res

mT-Res

User

User
Manual
Automatic

Fig. 4: mT-Res: Extension to T-Res.

We have designed and implemented an extension, called
mT-Res [8], which facilitates above mentioned capabilities
on top of T-Res. The extension is divided into two parts,
Resource Administrator and Application Manager, as outlined
in Figure 4. The Resource Administrator deploys the code to
host devices, assigns the input and output devices and keeps
track of any changes in the system.

The Application Manager inside mT-Res, which includes
an application form where user can provide the task, keeps
track of status of all applications with the help of the Resource
Administrator. If any change in the resources is detected by the
Resource Administrator, the Application Manager configures
all applications again as per those changes.

The application form contains four fields, similar to the T-
Res structure. These are input, output, host and code. In the
code field, the user can provide the same code as required
for T-Res. However, in the Input/Output/Host fields the user is
asked to do an abstract selection from available resources, by
selecting the type of resource the user wants to use for input or
output or host for the code. The user does not need to provide
URI addresses of specific resources. However, there can be
more complex scenarios where more details are required from
the user, such as spatial information, time bound, etc.

The Resource Administrator is enabled via python scripts,
which provide automated CoAP operations (such as PULL,
PUSH, GET, and OBSERVE), in form of python functions.
The Application Manager is a django-based web framework,
including the application form.

As the application is deployed and execution starts, the
Application Manager updates the status of all active resources
regularly. At any point if any operation returns with an error,
the framework will once again execute the process to allocate
resources. However, this time it will use another available
resource for the corresponding error received earlier.

VI. WORKING DEMONSTRATION

We tested our implementation [8] on the Cooja simulator in
the Contiki Operating System. Cooja provides emulated motes
based on the MSP430 microcontroller such as WiSMotes. The
simulation on Cooja is cycle accurate for each device and also

295

bit-level accurate for the radio transceivers of each device.
This allows to have the same behavior in the simulator as
on the actual hardware. IPv6 and CoAP support are provided
by Contiki itself. Our implementation also provides support
for the CoAP operations in python with the help of the
txthings [9].

For our experiments, first we consider the same example
as provided by T-Res. The simple example in T-Res has four
WiSMotes as shown in Figure 5. The functions of each mote
are as follows, mote 1 as border router; mote 2 as host sensor
mote; mote 3 as input sensor mote and mote 4 as output
actuator mote. Both sensor motes 2 and 3 can measure the
same physical parameter. The host sensor mote 2 takes input
from the sensor mote 3, divides the input values in half and
provides output to the actuator mote 4.

Router

Temperature
Sensor

Temperature
 Sensor

Heating
Actuator

Task

CoAP
Instructions

Output

Input

Input

X
Router

Temperature
Sensor

Temperature
 Sensor

Heating
Actuator

CoAP
Instructions

Output

Input

X

Task

(a) Input Node Failure (b) Host Node Failure

Fig. 5: Four motes with a simple T-Res application

In T-Res, these three devices have to be connected by a
PUT request of CoAP. The compiled code of task is also
deployed using another PUT request to the uri path of host
mote 2. To complete the deployment, a POST request to host
mote 2 is required. In T-Res the user is required to issue all
these CoAP requests via the Copper CoAP [10] user agent for
Firefox. In mT-Res, the user can provide the same code using
the application form provided by the Application Manager.
The Resource Administrator takes care of all CoAP operations.

In this example we take a look at a change in context due
to energy failure. We demonstrate the actions of m-Tres on
failure of two motes, host and input, respectively. First, let us
assume that after some time of operation, input sensor mote 3
fails due to the context switch. The mT-Res will automatically
reinitialize the deployment by substituting the mote 3 with
mote 2. The Resource Administrator performs PUT request
for input source as mote 2. After this, normal execution of the
application resumes.

In a second case, host sensor mote 2 may fail instead of the
input sensor mote 3. In that case, the mT-Res will reinitialize
the deployment by substituting the mote 2 with mote 3 as host
mote and assign itself as the input source as well. Once again,
this would be done by Resource Administrator, which performs
two PUT requests for both code and input respectively.

VII. CONCLUSION

We described mT-Res, an extension of T-Res, to en-
able mobility T-Res. mT-Res combines a django-based web
framework for developing applications and autonomous CoAP
operations. We also described a demonstration of mT-Res in
Cooja simulations. In this paper, we targeted a controlled set
of contexts such as energy failure or node failure. However,

Mobility in CAF should be able to address many more contexts
for complex scenarios. This is our future workplan as we
describe next.

We intend to analyze the temporal performance of context-
aware applications on mT-Res, such as response time and
deadline guarantees. In order to measure the real-world perfor-
mance, we will also evaluate the performance of mT-Res on
implementations of IoT systems with heterogeneous devices.

mT-Res is the first step towards our CAF. There remain
two other features of CAF that need to be tackled: the context
manager to learn from entities in IoT and make decisions
regarding contexts; and the resource manager to keep track of
resources and (re-)deploy application with change in contexts.
In the future, we intend to address complex scenarios with the
integrated CAF.

ACKNOWLEDGMENTS

This work was partially supported by National Funds through FCT/MEC

(Portuguese Foundation for Science and Technology) and co-financed by

ERDF (European Regional Development Fund) under the PT2020 Partnership,

within project FCOMP-01-0124-FEDER-020312 (Smartskin) and also by

FCT/MEC and the EU ARTEMIS JU within project ARTEMIS/0004/2013

- JU grant nr. 621353(DEWI).

REFERENCES

[1] D. Alessandrelli, M. Petraccay, and P. Pagano, “T-
res: Enabling reconfigurable in-network processing in
iot-based wsns,” in IEEE International Conference on
Distributed Computing in Sensor Systems, 2013.

[2] B. Schilit, N. Adams, and R. Want, “Context-aware
computing applications,” in First Workshop on Mobile
Computing Systems and Applications, 1994..

[3] D. Salber, A. K. Dey, and G. D. Abowd, “The context
toolkit: Aiding the development of context-enabled ap-
plications,” in Proceedings of the SIGCHI conference
on Human Factors in Computing Systems, ACM, 1999.

[4] G. Fortino, R. Giannantonio, R. Gravina, P. Kuryloski,
and R. Jafari, “Enabling effective programming and
flexible management of efficient body sensor network
applications,” Human-Machine Systems, IEEE Transac-
tions on, 2013.

[5] R. Newton, G. Morrisett, and M. Welsh, “The regiment
macroprogramming system,” in Proceedings of the 6th
international conference on Information processing in
sensor networks, ACM, 2007.

[6] A. Bakshi, V. K. Prasanna, J. Reich, and D. Larner, “The
abstract task graph: A methodology for architecture-
independent programming of networked sensor sys-
tems,” in Proceedings of the 2005 Workshop on End-
to-end, Sense-and-respond Systems, Applications and
Services.

[7] C. Bormann, A. Castellani, and Z. Shelby, “Coap: An
application protocol for billions of tiny internet nodes,”
Internet Computing, IEEE, vol. 16, no. 2, 2012.

[8] S. Gaur. (2015). T-res extension, [Online]. Available:
https://bitbucket.org/shashankgaur /tres extension.

[9] M. Wasilak. (2015). Txthings, [Online]. Available: https:
//github.com/siskin/txThings/.

[10] M. Kovatsch, “Demo abstract: Humancoap interaction
with copper,” in Proceedings of the 7th IEEE Interna-
tional Conference on Distributed Computing in Sensor
Systems, 2011.

296

