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Abstract—Cloud computing and Internet of Things (IoT)
represent two different technologies that are massively being
adopted in our daily life, playing a fundamental role in the
future Internet. One important challenge that need to be handled
is the enormous amount of data generated by sensing devices,
that make the control of sending useless data very important. In
order to face with this challenge, there is a increasing interest
about predictive approaches to avoid to send high spatio-temporal
correlated data. Belief Propagation (BP) algorithm is a method of
performing approximate inference on arbitrary graphical models
that is becoming increasingly popular in the context of IoT.
By exploiting BP, we can derive effective methods to drastically
reduce the number of transmitted messages, while keeping high
the data throughput in the global information system. In this
paper, we propose a BP approach in a hierarchical architecture
with simple nodes, gateways and data centers. We evaluate the
error bounding and propose a corrective mechanism to keep
a certain quality of the global information in the architecture
considered.

Keywords—IoT, Belief Propagation, Markov Random Fields,
Cloud.

I. INTRODUCTION

Recently, with the evolution of the Internet and related
technologies, there has been an evolution of a new emerging
paradigm, namely the Internet of Things (IoT) [2]. In IoT
scenarios, a large number of devices –and more in general
objects– are seamlessly connected to each another for informa-
tion sharing through the Internet. All these devices connected
to the IoT may be of heterogeneous types with respect to
their operational mode, and communication technologies. As
one of the main strengths behind the IoT paradigm, it is the
high impact on several aspects of everyday-life, from working
to the domestic fields. As an instance, domotics [10], and
smart cities [4] are main application scenarios where the IoT
paradigm is expected to play a leading role in the next future.

From the above considerations, and due to the huge amount
of heterogeneous devices, information sharing among IoT
devices is one of the biggest challenges. Classic Internet
approaches need to be revised to address the complex re-
quirements imposed by IoT. This asks for the development
of intelligent algorithms for routing [1], information sharing
security [6], novel network paradigms [7], new services [11],
and advanced techniques for data fusion [3]. A few related

works have addressed the issue of forwarding data among
IoT devices, by modeling the IoT network as a Bayesian
network [3], [8], [9]. Under this hypothesis, Bijarbooneh et
al. [3] present an adaptive sensing belief propagation algo-
rithm, where each node updates its belief about the environ-
ment status by incorporating its local measurement with the
beliefs of its neighboring nodes and the belief obtained in the
past.

In this paper, we address the connectivity issue among IoT
heterogeneous devices for data sharing, under the hypothesis of
Bayesian Networks and Markov Random Fields, both modeled
by means of Factor Graphs. We assume each IoT device
represents a node in the IoT network with some sensing
and processing capabilities. Moreover, these devices may be
located at different places across the globe. They are connected
to the Internet, although the rate of data transfer, and the
supported security level may be different. Each node needs
to get information about its local environment, in order to
perform some task and/or to provide this information to a
higher decision level. As an instance, an IoT node deployed
in a domestic network may need information about current
and future usage of some limited resources, like energy or
communication bandwidth, to orchestrate their consumption
with the help of the other IoT devices controlling specific
appliances. Data exchange among devices allows a single
node to increase its own knowledge of global information and
optimize the scheduling of the tasks that it has to accomplish
with the usage of a shared resource.

This paper introduces a data sharing approach based on
Pearl’s Belief Propagation (BP) algorithm in the IoT context
with a cloud-based architecture. BP is an iterative technique
mainly used for solving inference problems. In the IoT context,
the belief of a device (e.g., a sensor node) is the data measure-
ment. The BP infers the measurements of other neighboring
devices, especially in cases where the data is missing. More-
over, the BP technique allows to correct the errors that can
occur in the data propagation; at each run, the BP provides to
the devices both spatial and temporal cooperation. Indeed, in
BP-based approaches, each sensor node determines its belief
by incorporating its local measurement with the beliefs of
its neighboring nodes, as well as its beliefs obtained in the
past run. Then, at each run, we assume a node is able to
(i) reduce the own distortion level (i.e., estimation error on
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Figure 1: A cloud-based IoT network model.

Figure 2: DAHMS’s proof of concept architecture.

global information), and (ii) provide an update of the global
information to be shared with other neighboring nodes.

This paper is organized as follows. Section II describes the
reference cloud-based architecture for the IoT scenario. Due
to the heterogeneity of the IoT devices, we assume a multi-
network scenario with a plethora di interconnected devices. In
Section III we present our technique based on BP algorithm,
for data sharing in a noisy IoT scenario. The presence of
errors along the message reconstruction phase occurring at
each receiver node can be mitigate through our BP’s algorithm.
Finally, conclusions are drawn at the end of this paper.

II. NETWORK MODEL

In our architecture, we consider different entities with
specific computational and communication capabilities and
functionalities. As illustrated in Figure 1 the IoT network
model may comprise several sub-networks associated with
different applications. Indeed, due to the huge amount of
IoT devices, we assume each sub-network is composed by
IoT devices connected to each others for data sharing, and a
gateway that interacts with the “external world”. The role of
the gateways consists into relaying the messages to the cloud,
which is responsible of typical cloud-based services (e.g., data
fusion, storage, etc.).

Each device performs sensing and processing activities.
Our network model supports multi-hop routing, and the gate-
ways collect data and forward them to the cloud. To sup-
port high scalability of the architecture, gateways implement

publish-subscribe message passing mechanisms based on mes-
sage brokers. Depending on the device capabilities, publish-
subscribe mechanisms can be supported even at IoT node level.
In this scenario, we assume that each IoT node can be in two
states, either idle or active. A node is in a idle state, when it
disconnects its radio, and it cannot send and receive data. On
the other hand, a node is in active state when it can perform
sensing activities, and can send and receive messages.

Moreover, presence of errors in the connectivity links
among IoT devices has to be accounted for. This can affect
communication reliability, and also cause packet losses. Packet
retransmission are then necessary to overcome packet errors
and losses. At the same time, the increase of message re-
transmissions affects energy consumption on each IoT devices,
latency in information sharing, and in the extreme case, net-
work congestion. So, in order to keep low the effective number
of retransmissions, each active sensor implements an error
concealing strategy based on BP message passing algorithm
with a twofold objective i.e., (i) to recover missing data, and
(ii) to reconstruct “incomplete” or “corrupted” messages.

The proposed architecture has been adopted by the authors
in the design of the proof of concept of DAHMS and LogOn
projects, both funded by the Italian Ministery of Economic
Development in the framework “New Technologies for the
Made in Italy”, carried out at the Radiolabs research cen-
ter labs. DAHMS (Distributed Architecture Home Modular
Multifunctional Systems) scope is the improvement of the
quality of life and the degree of self-sufficiency of chronically
ill and elderly and disabled persons through the integration
of Home Automation and remote heath-care functionalities.
LogOn (Logistic Open Network) concerns the goods logistic
in historical art cities with high level of tourism economy.

Both projects include fixed and mobile IoT devices, typ-
ically based on Raspberry and Arduino platforms, able to
notify events, send data and receive data and commands from
a set of local and remote control interfaces, including those
implemented on Android and iOS smartphones. In Figure 2
the Secure Mediation GateWay (SMGW) represents the con-
junction element among the devices within the Control Room
and on-board (vehicular) devices. The information messages
sent from each device follow a publish/subscribe framework
able to forward MQTT (MQ Telemetry Transport) messages,
provided by the Mosquitto message broker. MQTT is a mes-
saging protocol working on the top of TCP/IP, that has been
projected for specific situations where low impact and limited
bandwidth are required. All the devices are equipped with
MQTT and will be in charge to forward informations about
events or commands. Through the federated system of SMGW,
the informations published via MQTT will be available in a
seamless way from each intraSMGW domain, as described
in the architectural scheme of SMGW. Within each domain,
the devices are in charge of exchanging event/commands and
messages with the SMGW. Also, the SMGW exports each
message in a secure way towards all the other SMGWs. At
this aim the WS-Security extension to SOAP, published by
OASIS has been adopted.

III. A BP TECHNIQUE FOR ERROR CORRECTION

In this section, we investigate the proposed BP technique in
IoT noisy scenarios. Our aim is to reduce the message errors
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through an iterative algorithm that corrects and updates the
received data at each run. With regards to Figure 1, each device
is initiated in active mode, and transmits messages to its own
neighbors. A message is related to local data measurements,
sampled at a fixed time step. The global information, related
to a given sub-network, is then obtained from the contributions
coming from each IoT device within the subnetwork.

Let us assume that the distributed sensing system consists
of N IoT nodes, interconnected in various ways. Each IoT
node collects a set of data provided by several sensors. Our
scope is then to estimate the state X of the sensed environment
starting from the sets {Di} of data collected by the individual
nodes related to non overlapping regions {Ri}. Here X is
modeled as a dynamical Random Field. More in detail we
focus our attention to the case in which the dynamical (i.e.
temporal) behavior of the system can be described by a linear
model, while the spatial behavior is described by a Markov
Random Field (MRF).

We incidentally recall that given a finite rectangular lattice
L = {(i, j), 1 ≤ i ≤ N1, 1 ≤ j ≤ N2}, a neighborhood
system associated with L is, by definition, a collection of
subsets η = {ηij} with the property that each subset ηij ,
namely the neighborhood of i, j, is such that:

• (i, j) ∈ ηij ,

• if (k, l) ∈ ηij , then (i, j) ∈ ηkl, ∀(i, j) ∈ L
It follows that a random field X is said to be a MRF w.r.t.

(L, η) if and only if:

P (X(i, j)/X(k, l), (k, l) ∈ L− {(i, j)}) =
= P (X(i, j)/X(k, l), (k, l) ∈ ηij − {(i, j)}) ,
∀(i, j) ∈ L.

Then, in the distributed estimation scheme we can take ad-
vantage of the Hammersley-Clifford Theorem, stating that the
joint distribution of a MRF w.r.t. (L, η) is of the form

PX(x) =
1

Z
exp {−U(x)} , (1)

where Z is a normalizing constant and

U(x) =
∑

∀clique c

Vc(x), (2)

is the energy function, and Vc(x) is the potential associated
with clique c ∈ C. The only constraint on the clique potential
Vc(x) is that it depends only on the restriction of x to C.
Nevertheless, here we focus our attention on those MRFs for
which the potential function consists only of a set of singleton
potentials, defined on single variables, and on a set of pairwise
potentials, defined on pairs of variable.

To derive the distributed state estimation model, we resort
to the unified representation for both Bayesian Networks and
MRFs, constituted by the Factor Graphs (FGs). FGs use
factor nodes to describe the factorization property of the joint
distribution, as the one stated by the Hammersley-Clifford
Theorem. At this aim, for sake of compactness of the notation,
and without loss of generality, we assume that the sensor data
Di and Dj provided by the sensors respectively connected to
the i-th and j-th node cover two non-overlapping areas, and
that the overall state space X is the Cartesian product of the

state subspaces Xi associated to the environmental variables
related to the areas covered by the individual nodes.

By associating each node i of a sub-network, with a random
variable Xi that represents the local information, and by
considering a set of edges E, we can write the joint distribution
as:

PX(x) =
∏
i

ψi(xi)
∏

(i,j)∈E

ψij(xi,xj), (3)

where the function ψij() represents the message exchange
among node i and j. In practice, p(xi) represents the marginal
distribution of i-th node, and the BP allows the computation
of the marginal distribution at each node i.

From rate-distortion theory, given a one-dimensional ran-

dom variable X̂ (X) is the representation of X , so that

X̂ ∈ {
1, 2, ..., 2nR

}
, (4)

where R are the bits needed for the representation of X . Then,

the distortion function is a mapping d : X × X̂ → R
+, from

the set of source alphabet pairs X into the set of non-negative
real numbers. It measures the cost of representing symbol x
by x̂. By assuming a squared-error distortion i.e.,

d (x, x̂) = (x− x̂)T (x− x̂), (5)

we can derive the distortion between sequences xn and x̂n as

d (xn, x̂n) =
1

n

n∑
i=1

d (xi, x̂i). (6)

It follows that the distortion associated with a (2nR, n) code
is defined as:

D = E [d (Xn, gn (fn (X
n)))] , (7)

where fn : Xn → {
1, 2, ..., 2nR

}
, and gn :

{
1, 2, ..., 2nR

}→
X̂n.

Finally, we can derive the information rate distortion
function R(D) for a source X with distortion measure d(x, x̂)
as:

R (D) = min I
(
X; X̂

)
, (8)

where I(X; X̂) is the mutual information. Notice that Eq. (8)
is subject to the following constraint

p ( x̂|x) :
∑

(x,x̂)
p (x) p ( x̂|x) d (x, x̂) ≤ D, (9)

that is, the minimization of the mutual information is over all
conditional distribution p ( x̂|x) for which the jointly distribu-
tion p(x, x̂) satisfies the expected distortion constraint.

From (7), the expectation value respect to the probability
distribution on X is as follows:

D =
∑

xnp (xn) d (xn, gn (fn (x
n))). (10)

Now, in order to solve previous equation, we need the
estimation of xi. This can be provided through the BP algo-
rithm. This is a message passing algorithm for the calculation
of a posteriori probabilities of nodes of a loop-free FG,
given a priori probabilities and observations. As known, the
BP algorithm is a graphical model to represent conditional
independence relations of large numbers of random variables.
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Since the BP algorithm is a message-passing technique
between nodes, and represents an update to the outgoing
message from i-th node to j-th neighboring node, we can
state that the message from i-th to j-th node related to the
local information xi is proportional to

mji(xi) ∝
∫
ψji(xj ,xi)ψj(xj)

∏
u∈Γj\i

muj(xj)dxj , (11)

where the incoming messages from previous iteration are rep-
resented by muj . This equation represents the message update
operation that is performed in the BP’s algorithm. Notice that
the BP is capable to compute the exact marginalization in
the case of tree-structured graphical models, and this means
that (11) converges in a finite number of iterations, limited to
a superior bound, that is the length of the longest path in the
graph.

The BP algorithm starts with a “belief updating” phase,
where the a posteriori probabilities of the random variable
xi associated to the i-th node, i.e. BEL(xi), is computed
through the information about the evidence coming from the
neighboring nodes i.e., BEL(xi) = αμ(xi), where μ(xi)
represents the double contribution from “child” and “parent”
nodes w.r.t. the i-th node i.e.,

μ (xi) = λ (xi)π (xi) , (12)

with
λ (xi) =

∏
j

λxj (xi) , (13)

π (xi) =
∑

u1,...,un

P ( i|u1, ...,un)
∏
k

πxi
(xk), (14)

where j and k are the indexes for the child and parent nodes,
respectively. Figure 3 depicts a schematic of an IoT FG,
assumed as a graph with parent and child nodes with respect
to the xi node. The computation of the a posteriori probability
of the node xi, given all evidence except for the information
coming from the j-th child node, is obtained through the
parent-to-child message for the child node whose information
is excluded. The message from the i-th parent node xi to the
j-th child node yj is denoted as πyj

(xi), whose expression
is:

πyj
(xi) = α

∏
m �=j

λym (xi)
∑

u1,...,un

P (xi|u1, ...,un)
∏
k

πxi (uk ) .

(15)

Finally, the computation of the conditional probability of
the evidence coming from the children of xi given different
possible values for the random variable corresponding to the
i-th node is obtained through the message exchange from the
j-th child node to the k-th parent node as:

λxi
(ui) = β

∑
xi

λ (xi)
∑

uk;k �=i

P (xi|u1, ...,un)
∏
k �=i

πxi
(uk) .

(16)

IV. CONCLUSIONS

In this paper, we addressed the issue of data sharing and
message correction in an heterogenous IoT networks scenario,
with a plethora of devices for sensing applications. A multi-
hop IoT environment has been investigated through a Bayesian

xi 

u2 

y1 y2 

u1 

π(u2) 

π(y1) 

π(u1) 

λ(u1) 

π(y2) 
λ(y2) 

λ(y1) 

λ(u2) un π(un) 

λ(un) 

ym 
λ(ym) 

π(ym) 

Figure 3: Architecture of the IoT Bayesian network as a graph,
for the computation of the BP algorithm.

approach. Specifically, a BP algorithm for message correction,
and information update has been presented in its infancy. The
spatio-temporal behavior of the system has been described by
a linear model, and through the Markov Random Field theory.
Future works will address the assessment of the proposed
algorithm in an extended simulated scenario.
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