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Abstract—Computation demands on mobile and edge devices
are increasing dramatically. Mobile devices, such as smart phones,
incorporate a large number of dedicated accelerators and fixed-
function hardware blocks to deliver the required performance
and power efficiency. Due to the heterogeneous nature of these
devices, they feature vastly larger design spaces than traditional
systems featuring only a CPU. Currently, academia struggles
to fully evaluate such heterogeneous systems on chip due to
the limited access and availability of proprietary workloads. To
address these challenges, we propose Mocktails: a methodology
to synthetically recreate the varying spatio-temporal memory
access behaviour of proprietary heterogeneous compute devices.
We focus on capturing the interspersed address streams of
the workload and the burstiness of the injection process for
proprietary compute devices commonly found in mobile systems.
We evaluate Mocktails in simulation with proprietary memory
traces of IP blocks. Mocktails accurately recreates the dynamic
behaviour of memory access scheduling for memory controller
metrics including read row hits (at most 7.3% error) and write
row hits (at most 2.8% error). Architects can use Mocktails in
their simulations as a substitute for a proprietary compute device,
making the tool a useful conduit between industry and academia.

Index Terms—Simulation, Systems-on-Chip, Memory Systems

I. INTRODUCTION

The heterogeneity available on today’s systems-on-chip

(SoCs) is staggering. Currently, mobile SoCs allocate less than

a third of their area to general-purpose cores with the rest dedi-

cated to specialized intellectual property (IP) blocks [1]. These

IP blocks perform tasks from video encoding to immersive

graphics (e.g., augmented reality) to networking [19]. However,

much less is known about both the underlying hardware of

these IP blocks and their workloads compared to CPUs; both

the IP and workloads are largely considered proprietary by the

company that has designed them. Without access to how and

what IP blocks execute, evaluating SoCs in academic research

is difficult; only 1% of papers published in top architecture

conferences focus on mobile SoCs [35]. This gap between

academia and industry will continue to widen with the growing

number of IP blocks found in future mobile systems [38].
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Fig. 1: Two use cases for Mocktails.

A key challenge in designing heterogeneous SoCs is ensuring

that the memory system can efficiently deliver data to these

compute devices [19], [35]. Heterogeneous IPs place varying

demands on the memory hierarchy–they access vastly different

volumes of data, have different access patterns and experience

different latency and bandwidth sensitivities. But how can

academia explore memory hierarchy designs when the work-

loads and devices are proprietary? While there is a plethora of

workloads addressing general-purpose compute [8], [42], [43],

[47], there is a dearth of workloads and open source models for

proprietary hardware IP blocks used in heterogeneous mobile

SoCs. This is problematic for the architecture community which

relies primarily on simulation to evaluate ideas [5].

A promising approach that addresses the lack of access to

models and workloads is statistical simulation. In statistical

simulation, a profile of a workload running on a device is

created from the characteristics of its execution and then used

to synthesize the workload’s behaviour. Fig. 1 shows how

Mocktails uses statistical simulation to bridge the gap between

industry and academia. Industry collects traces of memory

requests from their state-of-the-art IP and uses Mocktails’

model generator to create a statistical profile. Using a black-

box modeling approach, the Mocktails profile hides details

that are contained in the original trace. This allows industry to

distribute profiles freely without revealing proprietary secrets.
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Academic researchers can augment their simulations with

synthetic requests generated by these profiles to recreate the

behaviour of proprietary workloads and devices.

Prior statistical simulation techniques focus on modeling

general-purpose CPUs [3], [4], [6], [28], [32]. However, these

models are only applicable to CPUs (Sec. II), which necessitates

further research on how to model heterogeneous devices.

Architects have begun exploring how to model GPUs [20],

[21], [23], [30], [33], [48]. But developing a different model

for every generation or type of compute devices is intractable.

Next-generation systems-on-chip (SoCs) are developed at a

rapid pace and range from low-end to high-end with different

hardware characteristics [19]. Ideally, a single technique should

be robust enough to encompass multiple compute devices that

interact with the memory hierarchy in different ways.

In this paper, we develop Mocktails, a statistical simulation

technique that is both accurate and robust enough to apply to

multiple devices. The most commonly used compute devices in

a standard SoC include CPUs, GPUs, display processing units

(DPUs) for controlling screen output, and video processing

units (VPUs) for streaming video. Mocktails uses a divide-and-

conquer approach, grouping memory requests temporally and

spatially so that each partition can be modeled independently.

Our spatial partitions are dynamically-sized, adapting to the

memory access behaviour of the compute device and workload

being modeled. We use these models to synthesize memory

requests, taking special care to recreate the time-varying

behaviour of the original memory access pattern. Specifically,

we make the following contributions:

• A novel scheme for dynamically partitioning requests

based on their spatial behaviour.
• A novel injection process model that recreates the time-

varying behaviour of multiple, concurrent address streams.
• Mocktails accurately captures the memory access be-

haviour of CPUs, GPUs, DPUs, and VPUs, without any

assumptions of the underlying compute device.
• An open source implementation of Mocktails and the

profiles generated for this paper available at: https://github.

com/mariobadr/statistical-simulation.

II. RELATED WORK

In this section, we present three areas of related research.

First, we discuss statistical simulation for CPUs. Second, we

review current GPU modeling approaches. Finally, we present

literature related to modeling domain-specific accelerators.

Statistical Simulation for CPUs. Reuse distance models are

pervasive in statistical simulation for modeling temporal locality

in CPU workloads [3], [6], [15], [28], [31], [32], [45], [46].

Reuse distance is the number of unique addresses referenced

between consecutive requests to the same address [7], [29], [50].

In general, a reuse distance profile is a discrete distribution

of the relative frequency of observed reuse distances. WEST

observes that building a reuse distance model at the global

level (i.e., all requests) does not accurately capture the temporal

locality of cache sets [6]. Instead, WEST builds multiple reuse

distance models for each cache set. MeToo extends WEST to

explore the design space of main memory [46], emphasizing

the importance of request timing by modeling an application’s

instruction dependencies and instruction count intervals.

While reuse distance captures temporal locality, it does not

capture spatial locality. To overcome this issue, HRD creates

reuse distance profiles for multiple block granularities (e.g., 64B

and 4KB) [28]. Stride pattern models can also capture spatial

locality [3], [31], [32]. The main difficulty in modeling strides

is that several address streams are interleaved in time [22]. STM

overcomes this problem with a novel stride pattern table (similar

to a Markov chain) that predicts the next stride for a history of

strides [3]. SLAB groups requests by PC to uncover sequences

that can be modeled with a single stride value [32]. HALO

groups requests into 4KB blocks and dynamically determines

how much history to use when modeling the stride pattern [31].

Statistical simulation techniques are well-tuned and accurate

for mimicking CPU behaviour [3], [6], [28], [31], [32], [46].

However, they are not appropriate for modeling the proprietary

IP blocks that we target. The main reason is specialized

hardware accelerators do not behave like general-purpose

CPUs. For example, non-CPU devices have very different reuse

behaviour [19], [30]. Moreover, prior CPU techniques exploit

several CPU-specific features such as the PC [32], instruction

set [28], basic blocks [22], or the existence of virtual memory

(e.g., 4KB page sizes) [31]. In contrast, Mocktails makes no

assumptions on the underlying compute device or workload.

Modeling GPUs. A GPU’s parallel execution model makes

it difficult to use insights from reuse distance that have

helped architects understand CPUs [30]. Instead, analytical

and statistical GPU models take into account the GPU’s fine-

grained multi-threaded execution model. For example, G-MAP

is a statistical simulation technique that uses the execution

models of CUDA and OpenCL as a guide [33]. Specifically,

G-MAP generates request sequences for each GPU core and

then orders them based on a model of the scheduling policy.

Like SLAB [32], G-MAP partitions requests by PC to find

constant stride patterns. Analytical [20], [21], [30], [49] and

statistical [33] models are useful for understanding the multi-

threaded execution model of GPUs. Mocktails differs in that

its black-box approach does not assume an execution model,

making it useful for modeling other compute devices for

statistical simulation.

Modeling IP Blocks. Modeling of domain-specific accel-

erators for mobile SoCs is less mature than for CPUs [35].

Aladdin estimates the performance, power, and area of various

IP blocks using dynamic data dependence graphs [38], [39].

LogCA is a high-level model for identifying performance

bottlenecks in accelerators [2]. Gables [19] finds bottlenecks by

adapting the Roofline model. Unlike LogCA, Gables considers

multiple IP blocks running concurrently on a mobile SoC.

GemDroid [9] is a simulation framework for evaluating SoCs;

it features high level models of IP blocks which may include

simplications. Rather than a high-level system, Mocktails

targets something completely different: allowing integration of

more recent, closed-source IP into a simulation infrastructure
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Fig. 2: Requests from a 4KB memory region of a VPU

workload (HEVC1).

of the researcher’s choice. Mocktails is a novel addition

to the architect’s toolbox that tackles a different challenge:

the growing gap between academia and industry caused by

increasing heterogeneity and proprietary IP blocks.

III. MOCKTAILS

At a high level, Mocktails (1) deconstructs a sequence of

memory requests into partitions, (2) models each partition

independently, and (3) uses each model to synthetically

reconstruct the behaviour of the original workload. Synthetically

reconstructing the behaviour hides proprietary information;

industry vendors are often unwilling to disclose memory traces

as they reveal too much information about what the proprietary

hardware design does, how the software is implemented and

other aspects of the system.

In this section, we use Fig. 2 as an example to explain

temporal and spatial partitioning and motivate the need for

both. Fig. 2 shows over 30 memory requests (as rectangles)

from HEVC1 that belong to a 4KB memory region. We focus

on request features that are available at the interface between

the compute device and memory. Specifically, we consider

the timestamp, address, operation (read/write), and size (bytes

requested) of memory requests. In Fig. 2, the height of a

rectangle indicates the size of the memory request (e.g., 64

and 128 bytes). The figure plots the order requests to a specific

block are sent to the memory system.

The goal of Mocktails is to not only find access patterns

in the address streams, but also to capture temporal changes

(i.e., burstiness, or lack thereof) at the global level. Capturing

the spatio-temporal behaviour of the workload is not limited

to one particular step in Mocktails. Partitioning along both

spatial and temporal dimensions is crucial, but so is modeling

the injection process of each partition (Sec. III-B) as well as

combining the injection processes into one that resembles the

original memory access behaviour (Sec. III-C).

A. Partitioning Memory Requests

There are multiple ways to partition memory requests (e.g.,

by size, operation, time, or address). We focus on the temporal

(time) and spatial (address) dimensions because temporal and

spatial locality are well known properties of applications [13].

Fig. 2, our example, partitions in both the spatial and temporal

dimensions. The requests shown are from the first 100,000
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Fig. 3: The timing of the requests from Fig. 2.

requests (temporal) in HEVC1 and belong to the same 4KB

block (spatial). First, we review the different approaches to

temporal partitioning then present our novel approach for

creating spatial partitions. After introducing temporal and

spatial partitioning, we show how to combine both dimensions

hierarchically to uncover simple patterns within partitions.

Temporal Phases. Dividing requests temporally in a way that

is agnostic of the compute device is challenging. Prior work

uses the instruction stream to identify phase behaviour [24],

[25], [40], [41]. However, this assumes the existence of a PC

or basic blocks, which is not applicable to all compute devices.

To address this challenge, prior art relies on fixed-size tem-

poral partitions (i.e., intervals). STM uses fixed-size intervals

containing at most 100,000 requests (i.e., request_count)

for single-core processors [3]. Using request_count for

temporal partitions helps bound the number of requests being

modeled at a time but it ignores the time the requests were

injected. In Fig. 3, we plot the number of requests sent per

50M cycle interval. Clusters of requests are separated in time

by hundreds of millions of cycles. SynFull uses fixed-size

cycle_count intervals at two granularities: macro (100,000s

of cycles) and micro (100s of cycles) [4]. This captures bursty

and idle phases, but does not bound the number of requests in

an interval. Mocktails is compatible with both approaches for

creating temporal partitions to capture time-varying behaviour.

Dynamic Memory Regions. Prior work divides requests

spatially using fixed-size blocks. For example, HALO divides

requests into 4KB memory regions that are modeled indepen-

dently [31]. These regions may be merged if two contiguous

regions have similar models. Our proposed spatial partitioning

scheme dynamically uncovers variable-sized memory regions

before modeling. The dynamic memory regions vary in size

and are not multiples of an input block size (e.g., 4KB).

Dynamic spatial partitioning merges requests that access

overlapping or adjacent memory regions (Alg. 1). Fig. 2 shows

the six dynamic partitions created by our approach (A through

F). It is possible that multiple requests, spread out over time,

belong to the same memory region (e.g., due to reuse). For

example, the dynamic partition F is made up of two sets of six

requests that access the same memory region. Dynamic spatial

partitioning may find a request that does not overlap and is not

spatially adjacent to any other requests. Because the objective

of partitioning is to generate a subset of requests to model, it

does not make sense to model a single request. We merge lonely
requests with other lonely requests (e.g., dynamic partition D).

If there are multiple lonely requests that are equally spaced
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out in memory (i.e., they have the same stride between them),

we group them into a single partition (not shown in Fig. 2).

Algorithm 1: Pseudocode for Dynamic Spatial Partitioning

Data: Sequence of memory requests.
Result: Non-overlapping spatial partitions.
ranges← [];
foreach Memory Request r ∈ requests do

ranges.append([r.address, r.address+ r.size]);
end
ranges.sort();
partitions← [];
group← ranges[0];
i← 1;
while i < ranges.length() do

if ranges[i].intersects(group) then
group.expand(ranges[i]);

else
partitions.append(group);
group← ranges[i];

end
i← i+ 1;

end
partitions.append(group);

The requests in Fig. 2 are sparse and irregular, accessing

only a small subset of the 4KB block. But there are patterns

among the requests within the 4KB block (e.g., partitions A,

B, F). Considering these requests as a single partition would

increase the variance of the memory request features that need

to be modeled. We reduce this variability with dynamic spatial

partitioning, which finds fine- and coarse-grained memory

regions. Our hypothesis is that requests within a memory region

behave similarly and that dynamic spatial partitioning adapts

to the memory access behaviour.

Hierarchical Partitioning. Capturing the spatio-temporal

behaviour of the requests sent by a compute device requires

partitioning in both dimensions. Hierarchical partitioning is

not only important at the global level (i.e., when considering

all requests), but also within a partition. Mocktails accepts a

hierarchical configuration as input. The configuration specifies

the number of layers in the hierarchy. For each layer, the

type of partitioning (e.g., spatial or temporal) is specified.

For spatial partitioning, Mocktails supports fixed-size and dy-

namic schemes. For temporal partitioning, Mocktails supports

request_count and cycle_count. The leaves of the

hierarchy represent the final partitions of requests.

Fig. 4a shows an example hierarchy where requests are

partitioned temporally (three intervals) then spatially (dynamic).

Here we illustrate reads with a circle and writes with an x. In

the first temporal partition, there are two concurrent address

streams that are each assigned to a spatial partition, which

we model separately. In the top spatial partition, there is a

mixture of reads and writes while in the bottom, there are only

reads. In addition, read requests in the bottom spatial partition

are evenly spaced out in time and access the same memory

location. Relying only on temporal partitioning requires the

model to account for variability in the operation, timestamp,

Original Workload Temporal First Spatial Second

(a) Partition temporally first, then spatially.

Original Workload Spatial First Temporal Second

(b) Partition spatially first, then temporally.

Fig. 4: Partitioning requests in a two-level hierarchy. Reads

are circles and writes are x’s.

TABLE I: Requests from Partition F in Fig. 2.

Address 1 Temporal Partition 2 Temporal Partitions

Stride Size Stride Size

81002EB8 N/A 128 N/A 128
81002EC0 8 64 8 64
81002F00 64 64 64 64
81002F40 64 64 64 64
81002F80 64 64 64 64
81002FC0 64 64 64 64
81002EB8 -264 128 N/A 128
81002EC0 8 64 8 64
81002F00 64 64 64 64
81002F40 64 64 64 64
81002F80 64 64 64 64
81002FC0 64 64 64 64

and address features because requests in both spatial partitions

would be interleaved. The second temporal partition is further

divided into three spatial partitions, but these spatial partitions

have different start times. By allowing spatial partitions to

begin at different times, we capture burstiness of requests and

of addresses being accessed.

Fig. 4b shows an example where requests are partitioned

spatially (dynamic) then temporally (two intervals). This

approach finds the time-varying behaviour within a spatial

partition, unlike the previous approach which finds the spatial

behaviour within a time interval. Table I shows the requests for

the dynamic partition F (Fig. 2). In the 1 Temporal Partition
column, we show the sequence of strides and sizes for all

requests in F. In the 2 Temporal Partitions column, we further

divide the requests in F into two temporal partitions (using

an interval_count of 2). If we only partition spatially (1
Temporal Partition), then the leaf contains all 12 requests in

the table. If we partition spatially then temporally (2 Temporal
Partitions), then there are two leaves, each containing six

requests (the second leaf in Table I is shaded). With two

temporal partitions, the stride and size features can be modeled

with 100% accuracy using Markov chains (e.g., a stride of

64 is always followed by the same stride). But with only

one temporal partition, a Markov chain does not capture the

sequence perfectly (e.g., a stride of 64 can be followed by

either 64 or -264).

We discuss how to model each leaf independently in
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Sec. III-B. Table I shows that the partitioning scheme has

an impact on model accuracy. For example, modeling each of

the two temporal partitions separately with a Markov chain, we

capture the Stride and Size columns perfectly. In Sec. III-C, we

demonstrate how to reconstruct a sequence of memory requests

that mimics the behaviour of the workload by combining

the independent models. The hierarchical configuration may

increase the meta-data overhead of the model; we model the

trade-off between accuracy and meta-data in Sec. IV-C.

B. Modeling the Leaves

Each leaf in the hierarchy consists of a sequence of requests.

In Mocktails, our statistical profile is a collection of models,

one for each leaf in the hierarchy. In this section, we describe

our approach to recreate the behaviour of each request feature

(i.e., timestamps, address, operation, and size). For timestamps

and addresses, we consider the difference between subsequent

values (i.e., delta values) to capture relative changes.

We model each feature in isolation, making the assumption

that they are independent (we evaluate the impact this has on

accuracy in Sec. IV). If the feature shows no variability in the

leaf node, then the sequence of values produced for that feature

can be generated from a single value (e.g., a constant stride

captures a linear pattern). If there is variability, we generate

the sequence from an initial state and a Markov chain. Markov

chains of each feature allow us to capture both regular and

irregular patterns in a leaf. We call our approach, choosing

between a Markov chain or Constant value, the McC model.

All requests in Fig. 2 are read requests. Thus, all dynamic

partitions have a McC model with a constant value (read) for the

operation feature. However, this is not the case for all features.

Table I shows the requests for dynamic partition F (focusing on 1
Temporal Partition column). Consider the sequence of sizes: Our

Markov chain generates a size of 64 with 100% probability if

the last size was 128. However, if the last size was 64, there is a

89% probability of generating a size of 64 and an 11% chance of

generating 128. The stride pattern is similiar, with a 14% chance

of generating a stride of -264 when the last stride was 64. Our

Markov chain does not capture the exact sequence of values (e.g.,

strides or sizes), but accurately recreates the overall behaviour

of the leaf node. Because each feature is modeled independently,

there is a chance of producing a 128B size for an address that is

not 81002EB8.

Capturing the exact behaviour of requests in a partition would

reveal proprietary details of the overall execution flow of the

IP workload. Instead our goal is to accurately approximate

the behaviour of the original workload. Approximating the

behaviour is lower overhead and helps obfuscate details of the

workload, which is beneficial when the details are proprietary.

We obfuscate in two ways: (1) Using Markov chains and (2)

modeling features independently. A more accurate model with

dependent variables would leak more information by revealing

correlations between memory features as compared to our

independent modeling approach. To minimize error, we save

the address range and starting address of each leaf node to

aid in generating the sequence. We also save the time that

request

stride op.

Read

size time

request

stride op.

size time…

Priority Queue

Leaf Model Leaf Model

16

8

Fig. 5: Generated requests are pushed into a priority queue.

each partition should begin sending requests, which we use

in conjunction with our McC model for delta times. Next, we

show how to use this data with the McC models to minimize

error in the access pattern and recreate the injection process.

C. Synthesizing Requests

Each model in our statistical profile generates a partial

order of requests. Each model contains only a partial order

because requests from different spatial partitions are interleaved

in time. The synthesis step must both generate the requests

and reconstruct their total order. Synthesis must also capture

the bursts and idle phases of the injection process. In this

section, we first discuss how to generate a request, then how

to reconstruct a total order that has time-varying behaviour.

Generating a Request. Each McC model captures the

behaviour of a particular feature (delta time, stride, operation,

and size). We use each McC model to generate the feature

of the next request, either by using a constant value or based

on the initial state and transition probabilities of the Markov

chain. When using the Markov chain for a feature, we ensure

strict convergence, following a similar methodology to prior

work [3], [6]. When using strict convergence with Markov

chains, each time we transition to a particular state we adjust

(lower) the probability of doing so again the next time (down to

a minimum of 0%). For example, for Table I, strict convergence

ensures that only two 128 sizes and ten 64 sizes are generated.

We treat address generation as a special case. Once a stride

is generated and added to the last address we synthesized, we

check if the new address lies within the address range of the

model’s memory region. If it does not, we modulo the address

back into the range to preserve spatial locality.

The Injection Process. Each model provides a start time

(cycle count) and a McC model for the delta time, and pushes

their generated requests onto a priority queue (Fig. 5). The

priority queue is sorted by timestamp to create a total order of

requests. Bursts in the injection process are captured because

each model generates requests that may overlap in time. For

example, multiple models may have similar start times to

guarantee a burst. It is important to capture these bursts for

two reasons. First, a burst puts strain on buffers in the memory

hierarchy (e.g., the read and write queues found in memory

controllers). Second, these bursts contain requests from different

spatial partitions which can stress the memory system. For
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example, the requests may need to go to different memory

controllers, putting strain on the interconnection network [4].

Or many requests in the burst need to go to the same memory

controller, offering additional opportunities to the memory

scheduler [36]. We discuss metrics related to queue length and

memory scheduling further in Sec. IV.

The use of start times and delta times, in conjunction

with a priority queue, differs from previous approaches. We

experimented with modeling the transitions between models, as

done in prior art, but this leads to random behaviour. In addition,

it added complexity to the statistical profile by requiring each

parent to capture a transition model for its children. The use of

a priority queue helps keep all models completely independent

and allows concurrent address streams to be synthesized without

having to track which address stream generates the next request.

Simulator Feedback. The timestamps of the requests in the

priority queue give the relative time between memory requests.

During a simulation, however, it may not be possible to inject

these requests due to backpressure. In our simulations, we

accumulate backpressure delay and add the latency to the

timestamps of requests in the priority queue. This allows our

simulations to adapt to the varying amount of contention found

in the interconnect and memory hierarchy.

D. Summary

Hierarchical partitioning and dynamic spatial partitioning

reveal underlying patterns that are difficult to model when

considering all requests at once. This allows us to use a

comparatively simple model, McC, to effectively recreate

the behaviour of requests within a partition. In general, we

recommend partitioning temporally before spatially. Spatial

partitions have different durations; it is difficult to select

a universal number that temporally partitions variable-sized

time intervals of fine- and coarse-grained memory regions. In

this paper, we focus on two-level hierarchies that partition

temporally first. We use insights from prior art to appropriately

size our time intervals [3], [4] and explore our model’s

sensitivity to length of these time intervals in Sec. IV-C. We

validate that our two-level hierarchical model recreates the

behaviour of CPU, DPU, GPU, and VPU devices. Sec. IV

models requests as seen in the network before arriving at

the memory controller. Sec. V models requests between the

CPU and L1 cache, stressing our dynamic spatial partitioning

approach to uncover memory regions that have not yet been

filtered by any memory component.

IV. VALIDATING MOCKTAILS

The goal of Mocktails is to dynamically generate a request
sequence to plug into your simulator in lieu of a detailed
simulator model of a proprietary IP block. In this section, we

validate Mocktails against proprietary traces from SoC compute

devices. To validate Mocktails, we examine the interaction of

our generated requests from each IP block with the memory

controller and compare this against statistics obtained from

running real applications on the real device. In addition, we

show that we can incorporate previous models with Mocktails.

TABLE II: Proprietary traces.

Name Device Description

Crypto CPU A cryptography workload (2 traces).

CPU-D CPU A workload that interacts with a DPU.

CPU-G CPU A workload that interacts with a GPU.

CPU-V CPU A workload that interacts with a VPU.

FBC-Linear DPU Display compressed frames (linear mode, 2
traces).

FBC-Tiled DPU Display compressed frames (tiled mode, 2
traces).

Multi-layer DPU Display multiple VGA layers.

T-Rex GPU T-Rex from GFXBench (2 traces) [11].

Manhattan GPU Manhattan from GFXBench [11].

OpenCL GPU An OpenCL stress test (2 traces).

HEVC VPU Decoding compressed video (3 traces).

Specifically, we use STM in place of our McC models for the

address and operation features [3]. Finally, in Section IV-C,

we explore how sensitive Mocktails is to the hierarchical

configuration used during modeling.

A. Methodology

To evaluate our technique with proprietary IP blocks, we

used memory traces of CPU, DPU, GPU, and VPU devices

for state-of-the-art SoC platforms from an industry partner.

Table II describes these proprietary traces. The traces were

collected through RTL emulation with probes that monitored

the memory requests injected into the interconnect.1 In the

case of the CPU and GPU, these requests come from multiple

cores after being filtered by the cache hierarchy. The CPU

and GPU are connected to the memory system via a cache

coherent interconnect, while the DPU and VPU are connected

with a different, non-coherent interconnect. Note that RTL

emulation is expensive and time consuming; some steps were

taken to reduce run time (e.g., VPU traces had their inputs

down-scaled). Our main goal is to validate that Mocktails

recreates the different behaviour exhibited by compute devices

found on SoCs; this can be effectively achieved with down-

scaled inputs and/or shortened traces.

To create a common platform for validation, we simulate

these traces in gem5 to obtain reference memory statistics.2 The

simulation connects a traffic generator (that parses trace files)

to main memory through a crossbar and does a cycle-accurate

simulation of the network and memory system. Mocktails also

uses the traces to generate its statistical profiles for a two-

level hierarchy that partitions temporally first, then spatially.

Temporally, we use 500,000 cycles per execution phase as

found in SynFull [4]. Spatially, we use our novel dynamic

partitioning scheme. We call this configuration 2L-TS..

1Trace collection is orthogonal to Mocktails. For example, traces can be
obtained through hardware performance counters, RTL or simulation.

2 Note: Our use of Mocktails in this section corresponds to Option A in
Fig. 1 where our trace generator takes the Mocktails profile and makes a
synthetic trace that gets fed into gem5. Alternatively, one could feed the
statistical profile directly into the simulator to allow a more tightly coupled
feedback mechanism between address generation and memory system and
interconnect backpressure.
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TABLE III: Memory configuration.

Parameter Value

Number of Channels 4

Ranks per Channel & Banks per Rank 1 & 8

Burst Size 32 bytes

Read & Write Queue Size 32 & 64 bursts

High & Low Write Threshold 85% & 50%

Leaf nodes are modeled using McC for each feature (2L-TS
(McC)), which we also compare with an STM model for the

operation and stride features (2L-TS (STM)). We compare

to STM using the same hierarchical configuration, allowing us

to explore the importance of capturing the stride history when

using dynamic spatial partitioning and how best to model reads

and writes. As our hierarchical partitioning results in smaller

subsets of requests in each leaf than considered in the original

paper, we use smaller tables. Specifically, we use 32 rows for

the stack distance table and consider, at most, the last 8 strides.

Note that strict convergence ensures that both McC and STM

models produce the exact number of reads and writes as found

in the baseline trace. In Sec. IV-B, we compare the accuracy

of McC and STM models for memory controller metrics.

Table III show the main memory configuration we use in

gem5. We focus on memory controller metrics because they are

sensitive not only to the pattern of memory accesses but also to

the time memory accesses arrive [10], [12], [17], [36]. In gem5,

a memory controller is made up of a read and write queue for

incoming requests [17]. Large memory requests are divided

into smaller packets to match the DRAM interface (Read

Bursts, Write Bursts). Scheduling determines when requests

are serviced, which impacts the row hits and the length of the

queues. Our evaluations use first ready, first come first serve

scheduling (FR-FCFS) with an open adaptive page policy. The

open adaptive policy exploits row locality, but also dynamically

decides when to close a page (a non-adaptive policy waits until

there is a bank conflict) [17]. Our simulations uses a write

drain model; writes are only serviced at certain thresholds to

increase scheduler’s opportunity to exploit parallelism. Our

evaluation considers several metrics to validate that we recreate

the spatio-temporal behaviour of the proprietary workloads.3

B. Results and Analysis

In this section, we show that Mocktails accurately generates

requests from heterogeneous devices. Our validation looks

at multiple memory controller metrics that demonstrate how

well Mocktails captures the spatio-temporal behaviour of each

memory request feature. For example, the size feature impacts

the number of DRAM bursts created. Most metrics are impacts

by multiple aspects of memory access behaviour and validate

our Mocktails approach. For example, the length of the read

and write queues for each memory channel is impacted by

all four features of a memory request. Overall, the McC

models combined with hierarchical partitioning accurately

3Note: the goal is not to evaluate the goodness of this configuration but to
validate that our synthetic traffic is an accurate recreation of the IP applications.
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Fig. 6: Average error per device for the number of DRAM bursts.
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Fig. 7: Average read and write queue length for each SoC device.

adapt memory request generation to the workload and device.

Sec. IV-C analyzes how sensitive Mocktails is to different

hierarchical configurations.

DRAM Bursts. The memory controller divides requests into

packets to match the DRAM’s burst length [17]. The size

feature of memory requests impacts the number of bursts; this

feature is modeled the same way for McC and STM. Fig. 6

shows the geometric mean error of read and write bursts for

each SoC device. The differences between STM and McC stem

from how operations are modeled. Mocktails with McC has

low error across multiple devices with the highest average error

of only 7.5% for write bursts from the CPU.

The error stems from modeling features independently. The

operation type and size features each have their own McC

model; therefore, there is a small probability that Mocktails

synthesizes requests with an operation-size pair that did not

exist in the original workload. The probability is higher on

CPU and VPU workloads because memory regions are more

likely to have both read and write operations, impacting the

read and write bursts in Fig. 6. In contrast, both the read-write

and size patterns for DPU and GPU memory regions are more

structured and easily captured with a Markov chain. The error

could be further reduced by building a more detailed model

of read and write interleaving; such a model might reveal

correlations that the vendor would prefer to obscure and is

likely unnecessary given the already low error.

Queue Length. At the memory controller, DRAM bursts go

into their respective read or write queue. The queue lengths

validate how well our injection process recreates burstiness

in terms of the number of requests as well as how those

requests are distributed spatially; spatial behaviour exercises

different memory channels. Fig. 7 shows the average read and

write queue length of each SoC device. On average, the read

queue contains approximately 3-4 requests. The write queue is

typically longer: ∼18 requests on average; write drain mode

waits until certain thresholds are met before servicing writes,
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Fig. 9: Average error for read and write row hits for each SoC device.

which we discuss in more detail later in this section.

GPU workloads have longer average queue lengths because

large requests are issued in short time intervals (i.e., burstiness).

When a request arrives at the memory controller, packets are

likely to already be in the queue. Fig. 8 shows the distribution

of write queue lengths observed by a new request at each

memory channel. The McC model captures the distribution of

queue lengths well, but the STM model is slightly worse, which

we explain further when we discuss read and write row hits.

Fig. 8 also shows that Mocktails captures the spatio-temporal

behaviour of the workload. Write requests must arrive at one

of four possible destinations at the right time in order for the

distributions to match (the same is true for read requests).

Row Hits. Open adaptive page policies try to maximize row

hits by exploiting the row locality of requests in the read and

write queues [17]. Fig. 9 shows the geometric mean error of

read and write row hits for each SoC device. Overall, the McC

model is more accurate than the STM model, implying that

the need for modeling stride history is diminished thanks to

dynamic spatial partitioning. Dynamic spatial partitions greatly

reduces the variance in observed strides. STM’s error stems

comes from the fact that the operation is modeled based on

one probability value, which does not capture patterns in the

order of reads and writes. A memoryless Markov chain, used

in McC, is enough to capture the performance of write row

hits (a maximum error of 2.8% for GPU workloads).

We show the importance of capturing read and write patterns

by comparing DPU workloads. Fig. 10 shows the total number

of row hits for a linear and tiled approach to accessing

memory. The linear approach differs from the tiled approach

in the address access sequence, which impacts the sequence

of strides being modeled by McC and STM. Both McC and

STM capture the stride pattern well; the addresses arriving
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Fig. 10: Number of row hits when decompressing frame buffers

on DPU.
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Fig. 11: The average number of reads sent to DRAM before

switching to writes for each memory channel.

at the memory controller mimic the behaviour of the original

workload. However, the operation synthesized by STM does

not accurately mimic the behaviour of the original workload

because the write requests belong to different rows, reducing

row locality and degrading the hit rate (over 25% error on

write row hits). McC is more accurate (less than 1% error)

because both the sequence of addresses and operations being

synthesized closely match the original workload.

Another way to evaluate how well the operation feature is

captured is by monitoring the memory controller’s read/write

switching policy. Writing to DRAM requires switching the

direction of the bus used for data transfer; this takes time and

frequent switching is undesirable. One solution is a write drain

mode where writes are delayed until a certain threshold [17].

We saw evidence of this earlier when discussing queue lengths,

where the average write queue length was longer than the

read queue length. Here, we are interested in the number of

reads that are sent to DRAM by the memory controller before

switching to write requests (i.e., reads per turn around). Reads

per turn around is impacted by both the number of requests in

the read queue that map to the same row and the number of

requests in the write queue.

Fig. 11 shows the average number of reads per turnaround

for each memory controller using the same DPU workloads.

Overall, McC (4% to 56% error) is always more accurate than

STM (18% to 110% error), which underscores the importance

of capturing read-write behaviour. While McC is more accurate

than STM, the injection process is still a source of error. The

injection process attempts to order requests from all leaf nodes

based on the node’s start time and model of delta time. This

was done so that each node can be modeled independently, but

it approximates the total order of requests. The approximate

total order impacts when events, such as dynamically switching
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Fig. 12: The number of read or write bursts arriving at each

bank for the FBC-linear1 DPU workload.

to writes, occur. Despite this approximation, Mocktails captures

the overall trend in complex memory controller metrics that

are sensitive to the scheduling policy.

Per Bank Accesses. Thus far we have discussed the im-

portance of capturing row locality. A good model should

synthesize addresses that map to banks in the same manner as

the original workload and device. Accurately capturing bank

accesses is critical as bank conflicts (or lack thereof) will

have a significant impact on DRAM performance. Each bank

has its own open row and allows the memory controller to

request data concurrently to improve performance [10]. Fig. 12

shows the number of read and write bursts arriving at each

bank. Overall, McC accurately captures the memory access

pattern with respect to different banks. Fig. 12b shows that the

baseline does not issue any writes to certain banks in any of

the memory controllers. The error for McC and STM here is

due to modeling the operation and address feature separately.

Summary. In Mocktails, there are two ways in which the order

of requests arriving at the memory controller may differ from

the original workload. The first is caused by concurrent leaf

nodes, where the injection process intersperses requests from

different partitions. These requests enter the read or write queue,

allowing the memory controller to exploit any parallelism it

may find. The second is caused from the individual requests

synthesized within a partition. Probabilistic models do not

guarantee that a synthetically generated sequence matches the

original sequence. In addition, the models for each memory

request feature are independent, which creates a wider spectrum

of memory requests than originally found in the workload.

Mocktails is highly accurate despite these subtle changes in

the total order of requests. Hierarchical partitioning uncovers

patterns that are recreated well by Markov chains, which
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Fig. 13: Memory access latency sensitivity (variance shown in

gray) to different sizes of time intervals.

results in accurate partial orders for many leaf nodes. This

translates into recreating the very different behaviours of

heterogeneous SoC devices without making any assumptions

about the hardware or the workload.

C. Memory Access Latency and Sensitivity Analysis

Mocktails dynamically partitions requests spatially, but we

rely largely on prior art to select the length of temporal
execution phases. We use 500,000 cycles based on SynFull [4].

In this section, we study the sensitivity of Mocktails to the

temporal partition length. Fig. 13 plots the average error

for the average memory access latency. We use the 2L-TS
configuration and sweep the temporal partition size from

100,000 to 1,000,000 cycles. We plot the trends for each of the

four SoC devices. The shaded region shows the variance in error

(there are multiple traces for each device). Overall, the error is

low (less than 8%) for all cycle counts. Error for CPU traces

increases as we consider larger temporal partitions because

more requests are grouped together in the dynamic spatial

partitions. In different execution phases, a CPU application may

use a certain memory region differently than in an earlier phase.

This contributes to the error because the requests synthesized

within a partition are not as accurate as for smaller execution

phases. Other devices do not exhibit the same behaviour as the

CPU (the main motivation for this work). Finally, while this

section focused on low-level memory controller metrics, Fig. 13

summarizes the overall validity of Mocktails by demonstrating

low error on overall memory access latency.

V. COMPARING TO PRIOR WORK

This section focuses on the CPU to facilitate comparison

with prior work. Specifically, we compare against HRD, which

includes only a reuse distance model but at multiple block

granularities to capture the spatial behaviour [28].

A. Methodology

We follow the methodology used by HRD to accurately

recreate their results. Using Pin [27], we collect traces for

23 SPEC CPU2006 benchmarks with the reference input set.

We fast-forward for 10 billion instructions before collecting

memory requests. We stop trace-collection once 250 million
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Fig. 14: Cache miss rates (geo. mean) for two cache configs.

additional instructions are executed. Our traces contain the fol-

lowing features: running instruction count, operation, memory

address, and request size.

We configure gem5 for atomic mode simulation (which

disregards the timestamp feature, focusing only on the order

requests arrive). We use a least-recently used replacement

policy, a 256KB 8-way L2 cache, and a 64B block size while

varying the configurations (size and associativity) of a write-

back L1 cache. We selected this cache configuration to align our

results with those generated by prior art in this area.4 HRD was

evaluated with traces of memory requests from the port between

the CPU and L1 cache; we do the same here for consistency.

In Mocktails, we create a two-level hierarchy that partitions

temporally first, then spatially. Temporally, we use 100,000

requests per execution phase as found in STM [3]. Spatially, we

compare our novel dynamic partitioning scheme (Mocktails
(Dynamic)) with fixed-size 4KB partitions (Mocktails
(4KB)). Our HRD model configuration matches the original

paper: reuse is modeled at the 64B granularity first and, in the

event of a cold miss (i.e., reuse distance of infinity), reuse is

then modeled at the 4KB granularity [28]. In addition, we do

not divide requests into different phases to remain consistent

with the original work.

B. Results and Analysis

Fig. 14 compares the miss rates of each technique against the

baseline for two cache configurations: a 16KB 2-way and 32KB

4-way L1 cache. We see that Mocktails (Dynamic)
closely matches the baseline and Mocktails (4KB) is

slightly worse. The main reason for Mocktails out-performing

HRD is temporal partitioning. HRD considers all requests in

the entire trace, while Mocktails uses fixed-size intervals of

100,000 requests as done in prior art [3], [31].

Mocktails (Dynamic) has the lowest error across all

the cache metrics evaluated. Mocktails (4KB) has more

error due to the looser bounds on the address range of spatial

partitions. For example, requests within a 4KB memory region

may not touch the entire address range, but the McC model

for strides generates addresses anywhere within the 4KB block.

Conversely, requests within a dynamic memory region are

guaranteed to touch the entire address range; the McC model

for strides only generates addresses within a very tight address

range. Overall, this results in the lowest error for the cache

4Our goal is not to endorse a particular cache hierarchy; modern CPUs
contain L3s, but as we recreate requests between the CPU and the L1, an L3
is irrelevant to our analysis.
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Fig. 15: Varying L1 cache associativities (2, 4, 8, and 16).

footprint (2.7%), L1 miss rates (5.6%), and L2 miss rates

(2.6%) across all benchmarks and cache configurations.

Cache Replacements. Prior work frequently uses reuse

distance models because they capture temporal locality [3],

[28], [31], [32], [46]. Mocktails is accurate for CPU devices

even without a reuse distance model because it separates

out interleaved requests from different address ranges. The

variance in strides within a spatial partition is typically low (and

sometimes constant), which minimizes the error for synthesized

addresses. The priority queue combines the requests from

multiple partitions into a total order of requests that faithfully

captures cache performance metrics. Moreover, this is done

without relying on any instruction-level information, such as

the PC [32] or instruction dependencies [46].

To further demonstrate that Mocktails captures temporal

behaviour, we explore L1 caches with different associativities

and LRU replacement. Fig. 15 shows a 32KB L1 cache’s

miss rate for six SPEC benchmarks across four associativities:

2, 4, 8, and 16. Both HRD and Mocktails capture the three

trends: First, increased associativity may decrease the miss rate

(e.g., gobmk). Second, increased associativity may have no

impact on the miss rate (e.g., libquantum). Third, increased

associativity may increase the miss rate (e.g., zeusmp).

Mocktails captures these trends because the dynamic spatial

partitions have variable-sized time intervals with different

start times. This results in 5.6% error on the number of L1

replacements across all benchmarks and cache configurations.

Cache Write-Backs. To accurately capture the behaviour of

reads and writes, HRD employs a multi-state model for operations

with explicit states for clean and dirty memory locations. Con-

versely, Mocktails only uses a McC model for operations. Fig. 16

shows the same cache configurations as Fig. 15, but measures

the number of write-backs. Despite using a model that does not

explicitly differentiate between clean and dirty memory locations,

Mocktails captures the same trends as HRD.

Mocktails’ fidelity (6.9% absolute error overall on L1 write-

backs) stems from hierarchical partitioning: First, memory

regions with different read-write behaviour are modeled in-

dependently (dynamic spatial partitioning). Second, read-only

phases for a memory region are also modeled independently

(temporal partitioning). The use of hierarchical partitioning

means that Mocktails relies on the same, flexible McC model
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Fig. 16: The number of write-backs for a 32KB L1 cache.
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Fig. 17: The file sizes of traces and Mocktails models.

for operations as it does for strides. We find that this observation

holds for other features, which is the reason Mocktails has high

fidelity for CPU devices despite modeling them as a black-box.

Metadata Overhead. The metadata required by a Mocktails

profile is a function of how many leaves it models. For each

leaf, the overhead varies depending on whether constants or

Markov chains are used for strides, operations, and sizes. Leaf

nodes also consist of a starting time/address and request count.

Figure 17 compares the amount of metadata required by Mock-

tails to the original trace sizes for SPEC CPU2006 benchmarks.

We show the file sizes of profiles using both dynamic and fixed-

size partitioning. Dynamic spatial partitioning results in larger

profiles (1.5 to 261 MB, 50 MB on average) because it creates

more fine-grained partitions. Fixed-size profiles (1.5 to 187

MB) are, on average, 20 MB less because they allow for sparse

partitions, which reduces fidelity.

Both the trace and the model use Google’s protobuf technol-

ogy [16]; files are in an encoded binary format and compressed

via gzip. Mocktails produces models that are smaller than a

trace, sometimes by orders of magnitude (e.g., calculix,

hmmer). The amount of metadata required for Mocktails is a

trade-off between how many random variables are modeled with

a constant versus how many requests each leaf node models.

For example, in calculix, nearly half of the requests in the

majority of temporal partitions belong to a single dynamic

spatial partition, which significantly reduces the number of leaf

nodes in the profile. In hmmer, many of the spatial partitions

model a combination of strides, operations, and/or sizes with

a constant value; the amount of metadata required increases

if large (i.e., high number of states) Markov chains need to

be stored. For example, astar has a large number of leaves,

but the main reason it takes up more metadata than the other

benchmarks is due to high variability in strides.

Overall, Mocktails profiles are 84% smaller than trace files.

This size reduction is particularly important when considering
larger and longer running applications that may produce very
large traces that would be particularly cumbersome to store
or distribute. HRD (not shown in the figure) requires the least

amount of metadata; the model consists of only two histograms

(64B and 4096B granularities) and a model for read/write

operations. In contrast, Mocktails models additional features

(e.g., request sizes, timestamps) that are not considered in

HRD.

VI. DISCUSSION

In this section, we discuss some use cases for Mocktails as

well as its limitations. Mocktails enables the exploration of

the memory hierarchy in heterogeneous SoCs. Our evaluation

validates memory controller metrics related to the dynamic

scheduling of requests to off-chip memory. Architects can use

Mocktails to explore optimizations at the memory controller,

such as: the scheduling policy, page policy, and read-write

switching policy. For example, ChargeCache reduces the

latency of off-chip requests by exploiting temporal row access

locality [18]. ChargeCache is evaluated for CPU workloads,

but Mocktails enables an evaluation with heterogeneous SoCs

to determine if non-CPU devices also benefit from the design.

Our evaluation also validates cache metrics, allowing research

into appropriate cache sizes, the number of levels in a

cache hierarchy, and replacement policies. Although Mocktails
focuses on the memory system, it can provide insights to
the IP block designers; for example, if the traces generated
do not saturate the available memory bandwidth, than more
parallelism can be introduced into the accelerator to fully
exploit the memory capabilities. If row buffer locality is poor,
IP designers may want to try and modify the access pattern of
their designs. We envision the primary beneficiary of Mocktails
to be academics who do not have access to proprietary IP blocks
in SoCs; however, they can also be shared across companies
so that one IP vendor can understand how their design will
interact in the memory system with proprietary designs made
by another company.

Mocktails models four features of a memory request:

time, address, size, and operation. Another important feature

not modeled by Mocktails is the data being communicated.

Modeling data may give rise to privacy concerns; however we
envision that techniques such as differential privacy [14] could
be applied to obscure sensitive information while allowing
patterns to be discerned. Modeling data would enable memory
hierarchy research that exploits data value locality, such

as: approximate computing [37], value prediction [26], and
compression [34], [44]. Modeling the data feature in a way

that hides proprietary information while enabling research in

value locality is important. Mocktails’ hierarchical partitioning

can complement future models by uncovering patterns in the

data feature once differential privacy has been applied. This is
left for future work.
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VII. CONCLUSION

Heterogeneous SoCs include many compute devices for

general and special purpose computing. Research into SoC

memory systems needs to model these devices to fully

evaluate their designs. However, detailed architectural models

of proprietary accelerators are not available in academia. In

this paper, we propose Mocktails to create black-box models

of these IP blocks. Mocktails recreates the memory access

behaviour of heterogeneous compute devices. A hierarchy is

created by dividing along both temporal and spatial dimensions,

which reveals patterns in subsets of requests and adapts to

the device being modeled. Using proprietary traces of IP

blocks, Mocktails accurately captures the dynamic behaviour

of memory access scheduling for many metrics including read

row hits (at most 7.3% error) and write row hits (at most 2.8%

error). We also show that Mocktails accurately captures the

same trends as statistical simulation techniques for CPU devices

(HRD)–capturing several cache metrics including: the miss

rate, footprint, number of replacements, and number of write-

backs. Despite making no assumptions about the underlying

compute device, Mocktails captures the memory behaviour of

CPUs, DPUs, GPUs, and VPUs. With the growing degree of

heterogeneity in SoCs, Mocktails’ black-box approach serves

as a useful bridge between academia and industry.
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