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Abstract—Following the idea of Fleischer who repre-
sented BCK-algebras by means of residuable elements
of commutative integral po-monoids, we describe quan-
tum B-algebras as subsets of residuable elements of po-
semigroups. Moreover, we show that quantum B-algebras
correspond one-to-one to what we call Fleischer po-
semigroups. Such an approach is more economical than
using logical quantales introduced by Rump.
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INTRODUCTION

Residuation is one of fundamental concepts in par-

tially ordered structures and categories. In the context of

logic, residuated lattices and other residuated structures

(although they originated in a different context) arise as

algebraic models of substructural logics [6].

On the object level, unital quantales are exactly

complete residuated lattices. The term quantale was

suggested by Mulvey [11] as a “quantization” of the

term locale. Quantales are applied in linear and other

substructural logics or in automata theory [1], [18].

The residuation subreducts of residuated structures

give algebraic models of the implicational fragments

of the corresponding logics. Perhaps the most general

structures of this kind are Rump’s quantum B-algebras
[13], [14], which are partially ordered algebras arising

as subreducts of quantales and which subsume most of

other implicational algebras such as BCK-algebras and

pseudo-BCK-algebras [7] (also known as biresiduation

algebras [17]). Therefore, quantum B-algebras (possibly

equipped with additional operations) can provide a uni-

form algebraic semantics for a wide class of substructural

logics.

Every quantum B-algebra [13]–[15] (and in particular,

every BCK- and pseudo-BCK-algebra [2], [10], [17])

can be embedded into a quantale, but the connection

between a given quantum B-algebra and its enveloping

quantale may be quite loose. On the other hand, Rump

and Yang [13], [15] proved that there is a one-to-one

correspondence between quantum B-algebras and the so-

called logical quantales.

In our paper we follow the idea of Fleischer [2] who

represented BCK-algebras using residuable elements of

commutative integral partially ordered monoids. Our aim

is to represent quantum B-algebras [13], [14] by means

of residuable elements of partially ordered semigroups

and show that there is a one-to-one correspondence

between quantum B-algebras and what we call Fleischer
po-semigroups.

The paper is organized as follows. First, in Section I

we present several necessary algebraic concepts such as

a quantum B-algebra, a partially ordered semigroup (po-

semigroup) and a residuable element. Then we describe

quantum B-algebras as subsets of residuables of partially

ordered semigroups.

In Section II we give a representation of quantum

B-algebras and related implicational algebras using the

notion of a Fleischer po-semigroup. Finally, Section III

concludes this paper.

In this paper, we take for granted the concepts and

results on quantales and residuated lattices. For more

information on these topics we direct the reader to [6],

[9] and [12].

I. EVERY QUANTUM B-ALGEBRA IS A SUBSET OF

RESIDUABLES IN A PO-SEMIGROUP

In this section, we construct a partially ordered semi-

group M for every quantum B-algebra A such that we

can identify A with a subset A of the set of residuables

of M.

First, we recall some basic concepts.
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A partially ordered semigroup (or a po-semigroup for

short) is a structure A = (A,≤, ⋅) where ≤ is a partial

order and ⋅ is a binary operation that is associative and

order-preserving in both variables. If x⋅y ≤ x and y ⋅x ≤
x for all x, y ∈ A, then A is called two-sided (or negative
[5]).

A partially ordered monoid (or a po-monoid for short)

is a structure A = (A,≤, ⋅, e) such that (A,≤, ⋅) is a

po-semigroup and (A, ⋅, e) is a monoid. If the unit e is

also the greatest element of the poset (A,≤), then the

po-monoid A is called integral.
In a po-semigroup A, we call an element z ∈ A:

(i) weakly residuable if there are unary operations \z
and z/ which satisfy

x ⋅ y ≤ z iff x ≤ z/y iff y ≤ x\z

for all x, y ∈ A; in other words, if for all x, y ∈ A,

both z/y = max{a ∈ A ∣ a ⋅ y ≤ z} and x\z =
max{a ∈ A ∣ x ⋅ a ≤ z} exist;

(ii) residuable if z is weakly residuable and, for all

x, y ∈ A, the elements z/y and x\z are weakly

residuable.

We let r(A) and R(A) denote the set of weakly

residuable elements of A and the set of residuable

elements of A, respectively.

The following statement is evident.

Lemma 1. Let A be a po-semigroup.

(i) If z ∈ r(A), a, b ∈ A and a ≤ b, then z/b ≤ z/a
and b\z ≤ a\z.

(ii) If z ∈ r(A) and a, b ∈ A, then z/(a⋅b) = (z/b)/a
and (a ⋅ b)\z = b\(a\z); if z ∈ R(A), then also
a\(z/b) = (a\z)/b.

(iii) If A is a po-monoid with unit e and z ∈ r(A),
then e\z = z = z/e.

(iv) If A is commutative, then r(A) = R(A).

A residuated po-semigroup A = (A,≤, ⋅, \, /) is a

po-semigroup (A,≤, ⋅) with two binary operations \, /
which satisfy the residuation law

x ⋅ y ≤ z iff x ≤ z/y iff y ≤ x\z (1)

for all x, y, z ∈ A. Thus, in the po-semigroup (A,≤, ⋅),

all elements are (weakly) residuable. A residuated po-
monoid is a structure A = (A,≤, ⋅, \, /, e) such that

(A,≤, ⋅, \, /) is a residuated po-semigroup and (A, ⋅, e)
is a monoid.

A quantum B-algebra [13], [15] is a structure A =
(A,≤, \, /) where ≤ is a partial order and \, / are binary

operations such that for all x, y, z ∈ A:

x\(z/y) = (x\z)/y; (2)

x ≤ y implies z\x ≤ z\y and x/z ≤ y/z; (3)

x ≤ z/y iff y ≤ x\z. (4)

A unital quantum B-algebra A = (A,≤, \, /, u) is a

quantum B-algebra (A,≤, \, /) with constant u satisfy-

ing u\x = x = x/u for all x ∈ A. In this case, x ≤ y
iff u ≤ x\y iff u ≤ y/x. If, moreover, the unit u is the

greatest element of (A,≤), then A is a pseudo-BCK-
algebra [7] (or a biresiduation algebra [17]).

We say that a quantum B-algebra A = (A,≤, \, /) is

(i) commutative1
if x\y = y/x for all x, y ∈ A;

(ii) two-sided if x ≤ x/y and x ≤ y\x for all x, y ∈ A;

(iii) idempotent if, for all x, y ∈ A, x ≤ y iff x ≤ y/x
iff x ≤ x\y.

A routine application of (1) shows that if (A,≤, ⋅, \, /)
is a residuated po-semigroup, then (A,≤, \, /) is a

quantum B-algebra. More generally, we have:

Proposition 2. Let A = (A,≤, ⋅) be a po-semigroup. Let
B be a non-empty subset of R(A) such that a, b ∈ B
implies a\b, b/a ∈ B. Then B = (B,≤, \, /) equipped
with the induced order relation ≤ and binary operations
\, / is a quantum B-algebra. Moreover, we have:

(i) if the po-semigroup A is commutative, two-sided or
idempotent, then the quantum B-algebra B is com-
mutative, two-sided or idempotent, respectively;

(ii) if A is a po-monoid with unit e and if e ∈ B, then
(B,≤, \, /, e) is a unital quantum B-algebra;

(iii) if A is an integral po-monoid with unit e ∈ B, then
(B,≤, \, /, e) is a pseudo-BCK-algebra.

Proof. By Lemma 1 (i) and (ii) we obtain (2) and (3),

while (4) follows directly from the definition of residu-

able elements. The remaining parts of the statement are

evident.

Let A = (A,≤, \, /) be a quantum B-algebra. For any

non-empty word α = a1 . . . an of the free semigroup A
+

over A and any element x ∈ A we write α\x and x/α
for

an\(. . . \(a1\x) . . . ) and (. . . (x/an)/ . . . )/a1,

1
In BCK- and pseudo-BCK-algebras, the adjective “commutative”

traditionally has another meaning. Namely, a pseudo-BCK-algebra is
called commutative if it satisfies the identity x/(y\x) = (y/x)\y
that, however, does not entail x\y = y/x.
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respectively. When allowing the empty word ε, we have

ε\x = x = x/ε for any x ∈ A. It is easily seen that in

analogy with (2) and (3) we have

α\(x/β) = (α\x)/β, (5)

x ≤ y implies α\x ≤ α\y and x/α ≤ y/α, (6)

for all words α, β of the free monoid A
∗

over A and

x, y ∈ A. Moreover, by repeatedly using (4) and (5) we

get a1 ≤ x/a2 . . . an iff an ≤ a1 . . . an−1\x, for any

α = a1 . . . an ∈ A
+

and x ∈ A, which allows us to write

α ≤ x, (7)

just as in [14]. The following generalizations of the

residuation law (1) and of transitivity then hold for all

α, β ∈ A
+

and x, y ∈ A:

αβ ≤ x iff α ≤ x/β iff β ≤ α\x, (8)

α ≤ x and x ≤ y imply α ≤ y. (9)

The relation (7) induces, again as in [14], a Galois

connection between P(A
+
) and P(A). We write

L
↑ = {x ∈ A ∣ α ≤ x for all α ∈ L}

for any L ⊆ A
+

. If L is {α} for some α ∈ A
+

, we write

simply α
↑

instead of {α}
↑
.

It is obvious by (9) that for any L ⊆ A, L
↑

is an up-set

in (A,≤) and, for any a ∈ A, a
↑ = {x ∈ A ∣ a ≤ x} is

the principal order-filter of (A,≤) generated by a.

The converse of Proposition 2 is also true:

Theorem 3. Let A = (A,≤, \, /) be a quantum B-
algebra. There exists a po-semigroup M = (M,⊑,∗)
and a non-empty subset A of R(M) equipped with
induced binary operations � and � such that A =
(A,⊑,�,�) is a quantum B-algebra isomorphic to A.
In addition,

(i) the subset A is meet-dense in M and M is multi-
plicatively generated by A;

(ii) A is a commutative quantum B-algebra if and only
if M is a commutative po-semigroup;

(iii) A is a two-sided quantum B-algebra if and only if
M is a two-sided po-semigroup;

(iv) if A is an idempotent quantum B-algebra, then A ⊆
Id(M), where Id(M) is the set of idempotent
elements of the po-semigroup M;

(v) A is an idempotent and commutative quantum B-
algebra if and only if M is an idempotent and
commutative po-semigroup;

(vi) A is an idempotent, commutative and two-sided
quantum B-algebra if and only if M is an idem-
potent, commutative and two-sided po-semigroup,

in which case (M,⊑) is a lower semilattice with
meet operation ∗.

Proof. The proof consists of several steps.

(a) Following [2], we take M = {α
↑
∣ α ∈ A

+
} and

equip it with a binary operation ∗ as follows:

α
↑ ∗ β

↑ = (αβ)
↑
.

It is easy to verify that ∗ is well-defined and that M =
(M,⊇,∗) is a po-semigroup. (Clearly, (M,⊆,∗) is a

po-semigroup, too, but we will see below that it is better

to take ⊇ rather than ⊆.)

First, we observe that

α
↑ ∗ β

↑ = {z ∈ A ∣ xy ≤ z for some x ∈ α
↑
, y ∈ β

↑
}

=⋃{(xy)
↑
∣ x ∈ α

↑
, y ∈ β

↑
}

for all α, β ∈ A
+

. Indeed, for every z ∈ A, if z ∈ (αβ)
↑
,

i.e. αβ ≤ z, then letting x = z/β and y = x\z, we have

α ≤ z/β = x and β ≤ x\z = y by (8), thus xy ≤ z
where x ∈ α

↑
and y ∈ β

↑
. Conversely, if xy ≤ z for

some x ∈ α
↑

and y ∈ β
↑
, then α ≤ x and x ≤ z/y

imply α ≤ z/y by (9), thus y ≤ α\z, which along with

β ≤ y yields β ≤ α\z again by (9), and so αβ ≤ z.

This shows that Fleischer’s product [2] on M is the

restriction of Rump’s product [13], [15] on U , the set of

all up-sets in (A,≤), which is defined by

X ∗ Y = {z ∈ A ∣ x\z ∈ Y for some x ∈ X}

= {z ∈ A ∣ z/y ∈ X for some y ∈ Y }

= {z ∈ A ∣ xy ≤ z for some x ∈ X, y ∈ Y }

=⋃{(xy)
↑
∣ x ∈ X, y ∈ Y },

for X,Y ∈ U .

Second, let us check that ∗ is associative and order-

preserving. Let α, β, γ ∈ A
+

. Then

(α
↑ ∗ β

↑
) ∗ γ

↑ = (αβ)
↑ ∗ γ

↑ = (αβγ)
↑

= α
↑ ∗ (βγ)

↑ = α
↑ ∗ (β

↑ ∗ γ
↑
)

and from β
↑ ⊇ γ

↑
we obtain

α
↑ ∗ β

↑ =⋃{(xy)
↑
∣ x ∈ α

↑
, y ∈ β

↑
}

⊇⋃{(xy)
↑
∣ x ∈ α

↑
, y ∈ γ

↑
}

= α
↑ ∗ γ

↑

and similarly, β
↑ ∗ α

↑ ⊇ γ
↑ ∗ α

↑
.

(b) For all α, γ ∈ A
+

and b ∈ A we have

γ
↑ ⊇ (α\b)

↑
iff γ ≤ α\b iff αγ ≤ b iff (αγ)

↑ ⊇ b
↑
,
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and symmetrically,

γ
↑ ⊇ (b/α)

↑
iff γ ≤ b/α iff γα ≤ b iff (γα)

↑ ⊇ b
↑
.

Thus, in the po-semigroup M = (M,⊇,∗), the resid-

uals α
↑
�b
↑ = (α\b)

↑
and b

↑
�α

↑ = (b/α)
↑

exist for

all α ∈ A
+

and b ∈ A, since α\b and b/α are again

elements of A.

In particular, a
↑
�b
↑ = (a\b)

↑
and b

↑
�a
↑ = (b/a)

↑

exist for all a, b ∈ A. Since a ≤ b iff a
↑ ⊇ b

↑
, it follows

that A = (A,⊇,�,�), where A = {a
↑

∣ a ∈ A}, is

a quantum B-algebra which is an isomorphic copy of

A = (A,≤, \, /).

(c) The set A has, among others, the following notable

properties:

• A is meet-dense in the poset (M,⊇) because for

every α
↑ ∈ M we have α

↑ = ⋃{x
↑
∣ x ∈ α

↑
},

whence α
↑ = inf(M,⊇){x

↑
∣ x ∈ α

↑
};

• A generates the semigroup (M,∗) because α
↑ =

a
↑
1 ∗ . . . ∗ a

↑
n when α = a1 . . . an;

• A ⊆ R(M) because, as proved in (b), both α
↑
�b
↑

and b
↑
�α

↑
exist and belong to A, for all α

↑ ∈ M
and b

↑ ∈ A.

(d) It remains to prove that A, which is isomorphic

to A, and M satisfy (ii)–(vi). If the po-semigroup

M is commutative, two-sided or idempotent, then by

Proposition 2 (i) we have that the quantum B-algebra A
and hence also A has the respective property, too. Hence

the “if” parts of (ii), (iii), (v) and (vi) are evident.

(ii) Assume that the quantum B-algebra A is commu-

tative. Then, by (8), for all x, y, z ∈ A we have xy ≤ z
iff x ≤ z/y = y\z iff yx ≤ z. Thus (xy)

↑ = (yx)
↑
,

which yields

α
↑ ∗ β

↑ =⋃{(xy)
↑
∣ x ∈ α

↑
, y ∈ β

↑
}

=⋃{(yx)
↑
∣ x ∈ α

↑
, y ∈ β

↑
}

= β
↑ ∗ α

↑

for all α, β ∈ A
+

, proving that M is a commutative

po-semigroup.

(iii) Assume that the quantum B-algebra A is two-

sided. Then for all x, y ∈ A we have x ≤ x/y, which is

equivalent to xy ≤ x, whence (xy)
↑ ⊇ x

↑
. Then

α
↑ ∗ β

↑ =⋃{(xy)
↑
∣ x ∈ α

↑
, y ∈ β

↑
}

⊇⋃{x
↑
∣ x ∈ α

↑
}

= α
↑

for all α, β ∈ A
+

. Similarly, β
↑ ∗ α

↑ ⊇ α
↑
. Thus the

po-semigroup M is two-sided.

(iv) Assume that the quantum B-algebra A is idempo-

tent. Then a
↑ ∗a

↑ = a
↑

for every a ∈ A because aa ≤ x
iff a ≤ a\x iff a ≤ x for every x ∈ A by the definition

of idempotency. Thus A is a subset of Id(M), the set

of idempotent elements of M.

(v) Assume that the quantum B-algebra A is idempo-

tent and commutative. Then M is a commutative po-

semigroup by (ii) and A ⊆ Id(M) by (iv). For every

α = a1 . . . an ∈ A
+

we have α
↑ ∗ α

↑ = a
↑
1 ∗ . . . ∗ a

↑
n ∗

a
↑
1∗. . .∗a

↑
n = a

↑
1∗a

↑
1∗. . .∗a

↑
n∗a

↑
n = a

↑
1∗. . .∗a

↑
n = α

↑
.

Thus M is idempotent.

(vi) Finally, assume that the quantum B-algebra A is

idempotent, commutative and two-sided. By (iii) and (v)

we know that M is an idempotent, commutative and

two-sided po-semigroup; in other words, (M,∗) is a

semilattice. To complete the proof we need to show that

α
↑ ⊇ β

↑
iff α

↑ = α
↑ ∗ β

↑
, for all α, β ∈ A

+
. But this

easily follows from M being two-sided: If α
↑ ⊇ β

↑
,

then α
↑ = α

↑ ∗ α
↑ ⊇ α

↑ ∗ β
↑ ⊇ α

↑
, so α

↑ = α
↑ ∗ β

↑
.

Conversely, if α
↑ = α

↑ ∗ β
↑
, then clearly α

↑ ⊇ β
↑
.

Concerning (iv), there exist idempotent quantum B-

algebras or even pseudo-BCK-algebras A such that the

po-monoid M is not idempotent. (A concrete example

can be the algebra D4 in [17], p. 435.)

Concerning the difference between (v) and (vi), in

both cases (M,∗) is a semilattice, so the rule α
↑ ⪯ β

↑

iff α
↑ = α

↑ ∗ β
↑

defines a partial order on M, but if A
and/or M is not two-sided, then ⪯ differs from ⊑ (i.e.,

from ⊇ in the proof above).

Let us determine what happens when we work with

unital quantum B-algebras. So, let A = (A,≤, \, /, u)
be a unital quantum B-algebra. For every α ∈ A

+
and

x ∈ A we have u ≤ α\x iff α ≤ x/u = x, and likewise

u ≤ x/α iff α ≤ u\x = x. Hence we may write ε ≤ x
iff u ≤ x. Then ε

↑ = u
↑ ∈ A and M = (M,⊇,∗, u↑)

is a po-monoid.

Theorem 4. Let A = (A,≤, \, /, u) be a unital quantum
B-algebra. There exists a po-monoid M = (M,⊑,∗, e)
and a non-empty subset A of R(M) equipped with
induced binary operations � and � such that A = (A,⊑,
�,�, e) is a unital quantum B-algebra isomorphic to A.
Mutatis mutandis, (i)–(vi) of Theorem 3 hold true for A
and M. Moreover, if A is a pseudo-BCK-algebra, then
M is an integral po-monoid.

Proof. With the exception of the final statement, this

follows immediately from Proposition 2 and Theorem 3.

The final statement is also quite obvious because when A
is a pseudo-BCK-algebra, then u is the greatest element
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and ε
↑ = u

↑ = {u} is the smallest up-set, so that M is

an integral po-monoid.

II. QUANTUM B-ALGEBRAS AND FLEISCHER

PO-SEMIGROUPS

The preceding Theorem 3 suggests that quantum B-

algebras can be identified with a special class of po-

semigroups.

Therefore, in the light of Theorem 3, and since our

construction is clearly inspired by that by Fleischer [2],

we define a Fleischer po-semigroup to be a pair (M , A)
where M = (M,≤, ⋅) is a po-semigroup and A is a

distinguished non-empty subset of R(M) satisfying the

following conditions:

• a, b ∈ A implies a\b, b/a ∈ A;

• A is meet-dense in the poset (M,≤);

• A generates the semigroup (M, ⋅).

Let (M , A) be a Fleischer po-semigroup. From

Proposition 2 we obtain that A = (A,≤, \, /) is a

quantum B-algebra. Every z ∈M is a meet of elements

of A, so z = inf{a ∈ A ∣ z ≤ a}. Moreover, for every

α = a1 . . . an ∈ A
+

and x ∈ A:

α ≤ x (in A) iff a1 ⋅ . . . ⋅ an ≤ x (in M ). (10)

Indeed, recalling Lemma 1 (ii), we have a1 . . . an ≤ x
in A iff an ≤ a1 . . . an−1\x = an−1\(. . . \(a1\x) . . . ) =
(a1 ⋅ . . . ⋅ an−1)\x iff a1 ⋅ . . . ⋅ an−1 ⋅ an ≤ x in M .

Further, by (the proof of) Theorem 3 the quantum

B-algebra A determines the Fleischer po-semigroup

(M,A), where M = (M,⊇,∗). We aim at showing

that the Fleischer po-semigroups (M , A) and (M,A)
are isomorphic (in the obvious sense).

In view of (10) we have

α
↑ = {x ∈ A ∣ a1 ⋅ . . . ⋅ an ≤ x}

for every α = a1 . . . an ∈ A
+

, whence we may define a

map ϕ∶M →M simply by

ϕ(z) = {x ∈ A ∣ z ≤ x}.

Indeed, every z ∈M is of the form z = a1 ⋅ . . . ⋅ an for

some a1, . . . , an ∈ A, in which case z ≤ x iff a1 . . . an ≤
x, and so ϕ(z) = (a1 . . . an)

↑
. It is evident that ϕ(z)

is independent of the choice of a1, . . . , an. Also note

that z = inf ϕ(z). Then u ≤ v iff ϕ(u) ⊇ ϕ(v) for all

u, v ∈ M . Moreover, for any α = a1 . . . an ∈ A
+

we

have α
↑ = ϕ(a1 ⋅ . . . ⋅ an), so the map ϕ is surjective.

If u, v ∈M , with u = a1 ⋅ . . . ⋅ am and v = b1 ⋅ . . . ⋅ bn,

then

ϕ(u ⋅ v) = {x ∈ A ∣ u ⋅ v ≤ x}

= (a1 . . . amb1 . . . bn)
↑

= (a1 . . . am)
↑ ∗ (b1 . . . bn)

↑

= ϕ(u) ∗ ϕ(v).

Thus ϕ is an isomorphism between the po-semigroups

M = (M,≤, ⋅) and M = (M,⊇,∗). Finally, it is

obvious that ϕ(A) = {a
↑

∣ a ∈ A} = A, whence ϕ
is the desired isomorphism between the Fleischer po-

semigroups (M , A) and (M,A).

We have seen before (Theorem 3) that if A is a quan-

tum B-algebra with associated Fleischer po-semigroup

(M,A), then the quantum B-algebras A and A are

isomorphic. Therefore:

Theorem 5. There is a one-to-one correspondence be-
tween (commutative, two-sided) quantum B-algebras and
(commutative, two-sided) Fleischer po-semigroups.

Lastly, we include unital quantum B-algebras and po-

monoids. By a Fleischer po-monoid we mean a pair

(M , A) where M = (M,≤, ⋅, e) is a po-monoid and

((M,≤, ⋅), A) is a Fleischer po-semigroup such that

e ∈ A.

From Theorem 5 we obtain the following:

Theorem 6. There is a one-to-one correspondence be-
tween (commutative) unital quantum B-algebras and
(commutative) Fleischer po-monoids. There is a one-
to-one correspondence between pseudo-BCK-algebras
and integral Fleischer po-monoids. There is a one-to-
one correspondence between BCK-algebras and integral
commutative Fleischer po-monoids.

III. CONCLUSION

Rump and Yang [13], [15] proved that quantum B-

algebras correspond one-to-one to the so-called logi-

cal quantales. Our construction, mimicking Fleischer’s

construction for BCK-algebras [2], is more economical:

Given a quantum B-algebra A = (A,≤, \, /), in or-

der to build a po-semigroup whose set of residuable

elements contains an isomorphic copy of the algebra

A, we consider only the up-sets generated by words

α ∈ A
+

(whereas all up-sets are considered in [13],

[15]). Specifically, we take M = {α
↑

∣ α ∈ A
+
}

and prove that M = (M,⊇,∗) is a po-semigroup,

A = {a
↑
∣ a ∈ A} ⊆ R(M) and A = (A,⊇,�,�) is

a quantum B-algebra isomorphic to A. Thus A is fully

determined by (M,A).
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Every (unital) quantum B-algebra can be embedded

into a (unital) quantale [13], and in particular, every

pseudo-BCK-algebra can be embedded into an integral

quantale [10], [17]. One of possible proofs goes along the

following lines: Let A be a quantum B-algebra. First, we

construct the free quantale P(M) over the semigroup

(M,∗). Then we choose a suitable nucleus j on P(M)
(see [12]) and construct the j-retraction P(M)j ; we

may take j(B) = {α
↑ ∈ M ∣ α

↑ ⊇ β
↑

for some β
↑ ∈

B}. Finally, the map a ∈ A↦ j({a
↑
}) ∈ P(M)j is the

embedding in question.
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