
Time-Aligned Edge Plots for Dynamic Graph
Visualization

Moataz Abdelaal∗, Antoine Lhuillier∗, Marcel Hlawatsch∗, and Daniel Weiskopf∗
∗ VISUS, University of Stuttgart, Germany

Email: {moataz.abdelaal, marcel.hlawatsch, antoine.lhuillier, daniel.weiskopf}@visus.uni-stuttgart.de

Abstract—We present time-aligned edge plots: time- and edge-
scalable representations of dynamic graphs. Vertices are mapped
to two vertical parallel axes. The left axis depicts the source
vertices, whereas the right one depicts the destination vertices.
The time axis is horizontally embedded in-between the two axes,
resulting in a two-dimensional graph layout. Edges are added by
drawing straight lines connecting the corresponding source and
destination vertices through time, while the pixels along the lines
are used to encode the time-varying information. In this way,
the depiction of edges at the individual timepoints is reduced to
only a few pixels, resulting in a less cluttered representation of
dynamic graphs, while the alignment of edges over time reveals
the temporal patterns in the data and preserves the users’ mental
map. We evaluate our approach by comparing it theoretically and
empirically against the state-of-the-art using dynamic graphs of
varying complexities.

Keywords-Visualization, dynamic graphs, time scalability, vi-
sual clutter

I. INTRODUCTION

Visualizing large and dense static graphs is, by itself, a

difficult task. Node-link diagrams or adjacency matrices are

often used. Adding time as a third dimension increases the

complexity of the data, and poses a visualization challenge,

making even basic and essential tasks—such as getting an

overview—challenging and non-trivial. Animation and small

multiples are two popular approaches to map the time dimen-

sion. However, animation does not preserve the users’ mental

map, and small multiples are not scalable in time. In our work,

we aim to provide a time-scalable overview of dynamic graphs

that preserves the users’ mental map and does not suffer from

visual clutter.

While current visualization techniques [12], [37] are able

to achieve time scalability, they suffer from overdrawing

problems and, therefore, fail to attain edge scalability. This

work contributes time-aligned edge plots (TEPs), a novel

visualization approach that is scalable in the edge and time

dimensions. Graph vertices are mapped to two parallel vertical

axes representing the source and destination vertices. The

time axis is horizontally embedded in-between the two axes,

resulting in a two-dimensional layout. Edges are depicted by

drawing straight lines connecting the source and destination

vertices through time, while the strokes of the lines are drawn

only at the respective timepoints where the edges occur. This

allows us to depict the multiple occurrences of the same edge

by only one line and, therefore, obtain a less cluttered visual

representation of dynamic graphs.

II. RELATED WORK

Static graphs build a complex data structure composed of

vertices and edges. To visualize them, node-link diagrams or

adjacency matrices are often used. Dynamic graphs add time as

a third data dimension, posing a visualization challenge. In the

recent decade, dynamic graph visualization became an active

area of research. Beck et al. [9] discuss two major concepts

to encode the time information into the graphs: animation

(time-to-time mapping) [18], [19] and timeline (time-to-space

mapping) [12], [37]. Animation bears a close resemblance

to the real world. According to the Congruence Principle, it

is an intuitive choice for conveying concepts of change [36].

However, when used for analysis tasks, animation may be too

fast to be accurately apprehended and less effective than its

static counterpart [34]. This is due to the limited capacity of

humans to preserve information [3], [30] and detect changes

(change blindness) [23] over time.

Alternatively, time-to-space mapping approaches use the

screen space to encode the time dimension. A simple approach

is to juxtapose the node-link diagrams in a small multiples fash-

ion [11], [16]. To achieve the dynamic stability [18] between

timepoints, graph layout algorithms can be employed [20], [26].

However, it is hard to trace the nodes across the timepoints,

and the node-link graph layout is likely to be cluttered.

Other approaches attempt to achieve dynamic stability by

transforming the node-link graph layout into a more structured

layout where the positions of nodes are fixed over time,

therefore, providing an effective way to compare the graphs

at different points in time. The adjacency matrix layout [4],

[33] is one example, the bipartite graph layout [13] is another.

These approaches, however, are limited with respect to the

number of individual graphs that can be displayed on the

screen. Additionally, it requires the viewers to revisit the graphs

back-and-forth to obtain an overview of the temporal changes,

which is a challenging task given the limitations of humans’

short-term memory [39] and perceptual issues like change

blindness [23].

To address these problems, other approaches adopt a stacking

representation to overlay small multiples on top of each other,

resulting in a more condensed visualization where the changes

between different timepoints can be instantly perceived, thus,

reducing the users’ cognitive load. Bach et al. stack the

adjacency matrices on top of each other, resulting in a three-

dimensional cube [5] or a pile [4] of adjacency matrices.

235

2020 24th International Conference Information Visualisation (IV)

978-1-7281-9134-8/20/$31.00 ©2020 IEEE
DOI 10.1109/IV51561.2020.00048

A

D

B

E

C

A

D

B

E

C

A

D

B

E

C

A

D

B

E

C

A

D

B

E

C

A

D

B

E

C

t0 t1 t2

t3 t4 t5

A

B

C

D

E

time

A

B

C

D

E

Fig. 1. Comparison between small multiples of node-link diagrams (left) and time-aligned edge plots (right). Edges over time are depicted by a single line in
time-aligned edge plots.

Similarly, Abdelaal et al. [1] stack the individual bipartite

graphs by drawing partial edges, resulting in a time-condensed

visualization.

Although both approaches use the same stacking metaphor,

the underlying graph layout affects the final result. The

adjacency matrix layout is a two-dimensional representation.

Adding the time dimension results in a three-dimensional

representation, making it difficult to obtain an overview of

the dynamic graph without applying interaction techniques.

Moreover, the screen space consumed by the adjacency matrix

grows quadratically with respect to the number of vertices,

making these techniques only suitable for visualizing small

graphs. The bipartite graph layout, in contrast, is based on a

one-dimensional representation, making it more suitable for

the stacking idea. However, since edges are drawn partially,

it becomes more difficult to accurately determine the edge

direction without the use of interaction.

Van den Elzen et al. [38] and Bach et al. [6] attempt to reduce

the complexity of dynamic graphs by modeling the individual

graphs as points in high-dimensional space and projecting them

back to a two-dimensional node-link graph layout. However, in

this case, the original graph’s structure is not visible anymore,

and the meaning of the resulting projection can be hard to

grasp.

In our work, we aim to provide a static overview of dynamic

graphs that is scalable in time and does not suffer from visual

clutter. Instead of modeling a dynamic graph as a sequence

of individual graphs at different points in time, we model

the dynamic graph as a single super graph whose edges are

changing over time. In this way, we avoid replicating the

graph vertices at each timepoint, resulting in a time-scalable

representation of dynamic graphs.

We situate our work close to the massive sequence views [37]

and interleaved edge splatting [12]. Both approaches result in a

two-dimensional visualization, where the x-axis encodes time,

and the y-axis encodes the positions of vertices. Additionally,

both employ vertex ordering to reduce the amount of visual

clutter. Nevertheless, both approaches suffer from overdrawing

problems caused by the overlapping edges that occur at the

same timepoint in the massive sequence views, or by the

interleaving of individual bipartite graphs in interleaved edge

splatting. In our approach, regardless of how many timepoints

the edge appears in, it will be depicted by a single line going

from the source to the destination, while the pixels along the

line are used to encode the time-varying information. In this

way, the depiction of edges at the individual timepoints is

reduced to just a few pixels, resulting in an edge-scalable

visualization.

III. METHOD

We model a dynamic graph as a single super graph G :=
(V,E) that consists of set vertices V and set of edges E ⊆
V ×V . This functional model allows us to depict each dynamic

graph edge e(vi, vj) by drawing a straight line going from the

source vi to the destination vj through time T , while the

varying width or color along the line encodes the edge weight

fe(t) : IR→ IR at time t ∈ [tmin . . . tmax].

A. Layout

TEPs consist of one horizontal axis placed in-between two

vertical parallel axes (see Figure 1 (right)). The horizontal

axis depicts time, while the vertical axes depict graph vertices.

The left vertical axis represents the source vertices, whereas

the right one represents the destination vertices. To visualize

dynamic graphs, vertices are placed on both vertical axes in

the same order determined by our ordering algorithm (see

Section III-D). Then, directed edges are drawn as straight lines

from left to right to connect the corresponding source and

destination vertices, through time. This results in a time- and

edge-scalable representation of dynamic graphs.

Figure 1 shows a comparison between small multiples of

a node-link graph layout (left) and TEPs (right). One can

instantly perceive several temporal patterns in the data by

looking at TEPs. For example, the periodic pattern of edges

C→D and D→E, the stability of edges A→C and B→A, and

the gaps in edges E→B and A→D. These patterns are difficult

to obtain by looking at the small multiples, regardless of the

underlying graph layout being employed (i.e., node-link graph

layout, adjacency matrix, or bipartite graph layout). Typically,

236

it requires the viewers to revisit the individual graphs back-

and-forth in order to see these patterns. Additionally, it is even

more difficult to spot temporal synchronization such as the

alternating behavior between the two edges C→D and D→E

in the small multiples view. In contrast, in TEPs, the alignment

of edges over time allows the temporal synchronization in the

data to appear as spatial synchronization and, therefore easier

to detect.

As shown in Figure 1, small multiples depict the graph

structural information separately at each timepoint. In contrast,

TEPs show the graph structure once for all timepoints. While

increasing the number of timepoints results in new node-link

diagrams in small multiples, it will only increase the width

of a TEP by a few pixels. As shown in Figure 1, the edge

C→D occurs at three timepoints (t0, t2, and t4). In TEPs, these

three occurrences are depicted by one line going from the C

to D, such that the lines’ stroke is drawn only at the respective

timepoints when the edge occurs. This allows us to reduce

the number of depicted graph lines by a significant amount,

resulting in a less cluttered visual representation.

B. Edge Depiction

In TEPs, the depiction of edges depends on their occurrence

frequency over time. While stable edges will be depicted as

solid lines, periodic edges will appear as stippled or partially

drawn lines (see Section III-E2). As a result, the visibility of an

edge and, therefore, the ability to identify its source and target

nodes correlates with the occurrence frequency of that edge.

Burch et al. [14] found that drawing edges at 75% of their full

length achieve the right balance between clutter reduction and

perception of node connections. However, since edges can occur

only for short periods (i.e., outliers), it becomes challenging to

see them let alone trace the source and target nodes. To address

this problem in TEPs, we draw reference lines for edges in the

background. Instead of setting a fixed threshold for drawing the

reference lines, we provide the users with adjustable settings.

For example, the users can select to draw the reference lines for

edges that have occurrence frequency between the minimum

and the maximum of a defined interval. To distinguish between

the reference lines in the background and the actual edges in

the foreground, we increase the reference lines’ transparency

(see Figure 1 (right)).

To further amplify the recognition of edges in highly

cluttered areas, we use color to encode the slopes of the lines.

Additionally, we blend the lines by applying alpha compositing.

As shown in Figure 2 (c), using both strategies increases the

visibility of edges in crossing areas.

C. Time-Varying Attribute

Taking into account that the color is already used to encode

the line slope, we experimented with three options to encode

a time-varying attribute of the graph (i.e., edge weight):

(a) Constructing a bi-variate color map from the uni-variate

isoluminant color map [27]. This option allows us to use

color to encode the edge weight besides the line slop (see

Figure 3 (a)). (b) Using the line width as an additional variable

(a) (b) (c)

Fig. 2. By encoding the slope by color and applying alpha composition,
we amplify the recognition of edges in highly cluttered areas. (a) Edges are
drawn as opaque lines. (b) Edges are blended by applying alpha compositing.
(c) Edges are blended, and slope is encoded by color.

to encode the edge weight. As illustrated in Figure 3 (b), a

uni-variate color map is used to encode the slope, while the line

width encodes the edge weight. (c) This option combines both

options (a) and (b). In this way, the edge weight is encoded

both by color and line width (see Figure 3 (c)).

Although option (a) works in principle, the use of color

to encode quantitative data is not perceptually accurate [15],

[28]—especially in cluttered areas of the graph, taking into

account the blending of edges. Additionally, this option does

not produce aesthetically pleasing results due to the low contrast

of isoluminant colors. From our experiments, we found that

options (b) and (c) provide a more accurate representation of

edge weight with option (b) being more aesthetically pleasing

due to the flexibility it offers when it comes to choosing the

color map.

(a) (b) (c)

Fig. 3. Three options to encode a time-varying attribute while using the
color to encode the line slope: (a) color encoding using bi-variate color map,
(b) line width encoding, and (c) color encoding using bi-variate color map
and line width.

D. Vertex Ordering

Since vertices are placed on the vertical axis, vertex-ordering

algorithms play a critical role in obtaining a less cluttered

visual representation. In graph theory, the problem of linearly

ordering the vertices to optimize a cost function is an NP-

hard problem, known as minimum linear arrangement [21],

or MinLA problem. In our work, we combine hierarchical

clustering with simulated annealing to obtain an efficient

arrangement of vertices. Hierarchical agglomerative clustering

is a deterministic algorithm except for the tied distances. The

algorithm proceeds in a bottom-up approach by merging the

two most similar clusters, until all clusters are hierarchically

merged into one single cluster contains all graph vertices. The

similarity between two graph vertices vi and vj is obtained by

calculating the Jaccard coefficient:

237

J(Vi, Vj) =
|Vi ∩ Vj |
|Vi ∪ Vj |

∈ [0, 1],

where Vi and Vj are the sets of direct neighbors for vertices

vi and vj , respectively.

In other words, this similarity metric describes a measure

for a common neighborhood of vertices. Vertices that have

similar out- and in-connections will belong to the same cluster,

and therefore, placed close to each other on the vertical axes.

The resulting hierarchy is further reordered to minimize a cost

function according to:

minimize : l̄(πV) =
1

|E|
∑

∀e∈E

l(e), (1)

where l̄(πV) is the average edge length in the graph, πV is

a permutation on the set of vertices V, and l(e) is the edge

length defined as:

l(vi, vi) =
|i− j|
|V | − 1

,

where i and j are the positions of vi and vj on the vertical

axis in permutation πV .

This allows us to further optimize the global connections

between clusters without losing the hierarchical relationship

between them. To do this, the hierarchy is traversed from top

to bottom (breadth-first approach). For each cluster, the left and

right children are swapped, and the cost function is computed

before and after the swapping so that we keep the configuration

that achieves minimum cost.

We further use the flexibility of simulated annealing to

optimize the hierarchy resulting from the clustering algorithm,

resulting in an even more optimized order of vertices. Similar

to Van den Elzen et al. [37], we define a proportional cooling

schedule, that is, Ti+1 = αTi, where α is a constant close to

but smaller than 1, known as the cooling factor. We chose a

low value for the initial temperature (T0 = 100) and cooling

rate (α = 0.999).

E. Visual Patterns

Applying a proper vertex-ordering technique and aligning

the edge over time, allows TEPs to reveal some of the graph

topological features and temporal patterns. In the following,

we describe graph structural features and temporal patterns

that can be recognized in TEPs.

1) Structural Patterns: In the following, we sketch some

of the structural patterns that can be recognized in TEPs (see

Figure 4).

(a) (b) (c) (d) (e)

Fig. 4. Structural patterns in TEPs: (a) fan-out, (b) fan-in, (c) cross, (d)
cluster, and (e) cross-cluster.

The fan pattern describes a single graph node that has a lot

of incoming (fan-in) or outgoing (fan-out) connections. The

connections are usually spreading in all directions, forming a

fan-like shape (see Figure 4 (a) and (b)). If the same node has

both fan-in and fan-out patterns, the overlapping between both

patterns will form a diamond-like shape. The cross pattern

describes a symmetrical relationship between two nodes, where

the connections between them exist in both directions. This

pattern forms a cross-like shape where the intersection point

occurs exactly at the center of the graph (see Figure 4 (c)). This

pattern does not apply if the intersection point occurs off-the-

center of the graph. The cluster pattern describes a group of

graph nodes that are strongly connected. In an ordered graph,

the connections within a cluster are almost in a horizontal

direction (see Figure 4 (d)). The cross-cluster pattern is a

special case of the cross pattern, where the connections exist

in both directions between two groups of nodes (two clusters),

resulting in an hour-glass like shape (see Figure 4 (e)). This

pattern does not require an equal number of connections

between the two clusters.

2) Temporal Patterns: Similarly, we sketch some of the

temporal patterns that could be recognized in TEPs (see

Figure 5).

a

b

c

d

e

f

Fig. 5. Temporal patterns in TEPs: (a) stability, (b) gap, (c) periodicity,
(d) trend, (e) phase shift, and (f) anomaly.

The stability pattern describes a constant presence of certain

connection(s) over time. For a single connection, this pattern

appears as a solid line going from the source to the destination

(see Figure 5 (a)). The gap pattern describes a break in the

continuity of a stable connection(s) for extended periods of time.

For a single connection, this pattern appears as a solid line with

a gap occurring at the beginning, the middle, or the end of it

(see Figure 5 (b)). The periodicity pattern describes a regularly

repeated presence and absence of certain connection(s) over

time. For a single connection, this pattern appears as a dotted-

or dashed-line. The lengths of the dashes or the gaps between

the dots are not necessarily uniform over time (see Figure 5

(c)). A trend describes a gradual increase or decrease of certain

connection(s) over time. For a single connection, this pattern

appears as a dotted- or a dashed-line, where the lengths of the

dashes or the gaps between the dots are gradually increasing or

decreasing over time (see Figure 5 (d)). The phase shift pattern

describes a series of two or more periodic connections that are

regularly repeated in the same order over time. This pattern

appears as two or more dotted- or dashed-lines synchronized

together over time (see Figure 5 (e)). This pattern, by itself, is

an analytical insight that could not be obtained easily using

other visualization approaches. The anomaly pattern describes

238

a

d

b

c

e
a

d

b

c

e
a

d

b

c

e

a

d

b

c

e
a

d

b

c

e

t0 t1 t2

t3 t4

…..

time time time

(a) Small Multiples of NL (b) Massive Sequence Views (c) Interleaved Edge Splatting (d) Time-Aligned Edge Plots

Fig. 6. Two conceptual models for representing dynamic graphs. While small multiples approaches model the dynamic graph as a sequence on individual
graphs, edge-based approaches model the dynamic graph as one super graph whose edges are changing over time.

an unusual presence of certain connections or a sudden change

in their weights at specific points in time. This pattern appears

as an unusual presence of a dot or a dash in a temporally

coherent structure (see Figure 5 (f)). An anomaly timepoint is

a point in time where the graph density remarkably deviates

from the average density.

F. Zoom Lens

In TEPs, the information about edges direction and desti-

nation vertices are obtained by tracing the edges over the

entire graph sequence. However, when the timepoints are

not consistent with the surrounding context (i.e., anomaly

timepoints), it is hard to obtain such information. To address

this problem, we implemented an interactive nonlinear time-

zooming lens that allows the users to magnify the timepoints

by moving the mouse cursor over them. To maintain the slope

information unchanged, we perform nonlinear scaling of time:

timepoints near the center of the lens are enlarged, whereas

the ones near the borders of the lens are shrunk in size. As

shown in Figure 12, zooming at the anomaly timepoint allows

us to obtain more information about the edges that occur at it,

while at the same time preserving the slope information inside

and outside the zooming lens.

IV. EVALUATION

To evaluate our approach, we compared it against two state-

of-the-art techniques that share several aspects with TEPs:

massive sequence views (MSVs) [37] and interleaved edge

splatting (IES) [12]. The evaluation is composed of a theoretical

comparison (presented in Section IV-A) complemented by

an empirical one (presented in Section IV-D). The empirical

assessment is done by qualitative results inspection (QRI)

of visual results, a frequently used evaluation method in

visualization research [24]. To assure the rigorousness of

the QRI and avoid cherry-picking the datasets [35], we

synthetically generated dynamic graph datasets with varying

complexities based on a scale-free network generation model

(see Section IV-B). Furthermore, we selected three analysis

tasks to serve as a base for our inspection (see Section IV-C).

Finally, in Section V, we further asses the capability of TEPs

by visualizing a real-world network that does not share the

scale-free property.

A. Theoretical Comparison

In the following, we distinguish between the conceptual

models behind the three visualization techniques in contrast

to the conceptual model behind the traditional approaches of

small multiples. Then, we comment on three technical aspects;

the depiction of edges, encoding of color and slope, and the

graphs’ structural patterns. Due to the space limitation, we

refrain ourselves from describing the techniques in detail. The

interested reader, however, is encouraged to read the respective

publications.

1) Conceptual Model: TEPs, MSVs, and IES are edge-based

visualization techniques. Edge-based techniques model the

dynamic graph as one super graph whose edges are changing

over time. Therefore, graph vertices are drawn only once for

the entire sequence, while edges are repeated at each timepoint.

In contrast, small multiples approaches model the dynamic

graph as a sequence of individual graphs. Therefore, graph

vertices and edges are drawn repeatedly at each timepoint (see

Figure 6).

This distinction in modeling allows edge-based techniques

to be scalable with respect to the time dimension more than

small multiples approaches, and, as a result, providing a better

overview of the temporal events. In contrast, in edge-based

techniques, changes in graph vertices are not expressed by

the vertices themselves, but rather by the edges attached

to them. Therefore, temporal changes related to the graph

vertices are not easily recognized in these techniques (i.e.,

node addition/removal).

2) Edge Depiction: The difference between TEPs and the

other edge-based approaches lies in the way the edges are

depicted over time. As seen in Figure 6, in both IES and

MSVs, edges are depicted by drawing straight lines going

from the source to the destination, resulting in a sequence of

lines over time. These sequences of lines form block structures

that cover certain areas of the graph, depending on the edge

length and time span. In large dynamic graphs, these blocks are

likely to be drawn on top of each other, resulting in a cluttered

visual representation, where the temporal patterns are hardly

seen. In contrast, in TEPs, each edge is depicted by a single

line throughout the entire graph sequence. This reduces the

number of depicted lines by a significant amount, resulting in

an edge-scalable visualization and revealing temporal patterns

in the graph.

3) Color and Slope Encoding: In TEPs and IES, the

depiction of edges essentially relies on the edge slope or

inclination. To amplify the recognition of slope in highly

cluttered areas, color is used to encode this information. In

contrast, in MSVs, since all edges are drawn as vertical lines,

239

the slope encoding is irrelevant. Hence, the technique makes

use of color to encode the length and direction (top or down)

of edges. However, relying on color alone to distinguish edges

might be problematic because the color of an edge is, actually,

the alpha composition of all edges underneath. Therefore, it

is highly likely that the edge will have different colors as the

density of the graph changes over time. While this problem is

present in the three visualization techniques, it is less critical

in TEPs, due to the small amount of overdrawing and the slope

encoding, and severe in MSVs, due to the large amount of

overdrawing and the absence of slope encoding.

Fig. 7. Fan-out pattern depicted over time in TEPs (top), MSVs (middle),
and IES (bottom). While the shape of the pattern remains unchanged in MSVs
and IES, it is gradually changing in TEPs.

4) Structural Patterns: Compared to IES and MSVs, the

graphs’ structural information in TEPs is depicted over the

entire graph sequence. Therefore, the same graph structure

might appear differently, depending on the point in time it

occurs. Figure 7 shows how the fan-out pattern is depicted

over time in each visualization approach. While the shape of

the pattern remains unchanged in MSVs and IES, it is gradually

changing in TEPs, affecting the recognition of the same pattern

over time.

B. Generative Data Model

To generate synthetic dynamic graphs, we adopted the

model proposed by Cooper et al. [17]. This model extends

the preferential attachment model introduced by Barabási and

Albert [8] by considering four elementary processes that are

present in many real networks: the addition and removal of

edges and vertices, over time. While the addition processes

follow the preferential attachment model, the removal is done

rather randomly. By suitable choice of the input parameters, the

model produces scale-free graphs, where the degree distribution

of vertices follows the power-law pk ∼ k−γ , a property that

has been observed in many real-world networks [7], [31].

The generative model has the following input parameters:

1) α, α0, α1: the input parameters in the original model. The

choice of these parameters has to satisfy the constraints

mentioned in the proposed model [17]. Generally, α has

to satisfy the condition α > 0.5. Choosing α1 > α0,

assigns more weight to the probabilities of node events.

In contrast, α0 > α1, assigns more weight to the proba-

bilities of edge events.

2) m: defines how many edges to be added/removed

randomly at each timepoint. It also defines the number

of neighbors for the new nodes

3) t: defines the number of timepoints (iterations).

Similar to Okoe et al. [32], we adopted a linear density

definition as d� = |E|/|V |, which considered a better descriptor

of the complexity of the real-world networks [29]. Since the

parameter m defines how many edges to be added or deleted at

each iteration, we can maintain a relatively stable edge density

over time by setting the m parameter to the desired density

accompanied by suitable α’s probabilities. The graph size n, in

contrast, is controlled indirectly by the number of timepoints t
and the value of the α1 parameter. Setting α1 close or equal

to 1.0 increases the probability of adding a new node at each

iteration, implying that the total size of the graph will be close

to the number of timepoints.

By manipulating the m, t, and α parameters, we can generate

dynamic graphs of varying complexities. We experimented

with three density values m = {1, 2, 4}, to generate dynamic

graphs where the number edges is {equal, double, or four

times} the number of nodes. By choosing these values, we

aim to capture the average density found in many real-world

networks [29], [32]. Similarly, we experimented with two sets

of α parameters {α = 0.85, α0 = 0.01, α1 = 0.75} and {α =
0.6, α0 = 0.35, α1 = 0.2}. By the first and second sets, we aim

to evaluate the techniques against node-related and edge-related

events, respectively. Both sets result in scale-free graphs with

degree exponent γ ≈ 3, which lies in the range 2 ≤ γ ≤ 4.

This range has been identified as the degree exponent range

for most real-world networks [7], [22].

We decided to use fixed number of timepoints t = 100. On

the one hand, we wanted to narrow the scope of our evaluation

to be only against the edge density, which is the critical factor,

considering the techniques under evaluation. On the other hand,

we wanted to ensure that the resulting visualizations could fit

nicely in a browser. This results in a total of six dynamic

graphs listed in Table I. For simplicity, we assume that all

edges have the same weight (i.e., unweighted graphs).

TABLE I
BY EXPERIMENTING WITH THREE DENSITY VALUES AND TWO DIFFERENT

SETS OF α PARAMETERS, WE PRODUCE SIX DIFFERENT GRAPHS OF

VARYING COMPLEXITIES (G1 – G6).

Edge density

1 2 4

Node-related events G1 G2 G3

Edge-related events G4 G5 G6

C. Analysis Tasks

We assume an explorative analysis scenario where the analyst

has no prior knowledge of the data and wants to see what is

happening in the network? When does it happen? And how
does it take place? To decide upon the analysis tasks that are

240

4

3

5

6

7
8

1

11

2

9

12

13

16

14

15

10

3

4

1

6

2

7

5

4

3

5

6

7
8

1
2

9

10

11

(a) TEPs (b) MSVs (c) IES

Fig. 8. A cut-off of graph G2 visualized using TEPs, MSVs, and IES. More node addition events are identified in TEPs.

suitable for answering these high level questions, we considered

the task taxonomy for network evolution analysis [2]. Based

on that, we chose the following analysis tasks as a base for

the evaluation process:

T1: Identifying node addition/removal events

T2: Identifying link addition/removal events

T3: Identifying temporal patterns (see Section III-E2)

Since the node-related events are always expressed by links,

edge-based visualization approaches suffer from an ambiguity
problem when it comes to identifying the moments of node

birth/death (Task T1). One way to tackle such a problem is by

determining the first/last occurrence of a link event(s) where

the node under question was involved. Due to the generative

model, each new node will be connected to m existing nodes

at the moment of birth. Therefore, the task of identifying newly

added nodes, is, in fact, a task of identifying m links coming

out from the same node at the same point in time (i.e., fan-out

pattern). Similarly, to identify removed nodes we were looking

for multiple links removed at the same point in time. If the

target node is removed, the event appears as an incomplete fan-

in pattern. In contrast, if the source node is removed, the event

appears as an incomplete fan-out pattern. The more connections

the node has, the more prominent will be the event.

Nevertheless, finding these first/last-occurred fan patterns

does not necessarily mean that the node was added/removed

at this timepoint. It is only a likelihood that correlates with

the number of links. For example, if a node was inactive

from the beginning of the graph sequence, and suddenly

many links, involving this node, start to occur precisely at

the same timepoint. Then, it is highly likely that the node was

created/added at this timepoint. This is a special case due to

the way edge-based techniques model and represent dynamic

graphs and the generative data model being used.

Depending on the technique being evaluated, some of these

tasks might require an additional step(s) from the analyst.

For example, identifying the source and target nodes of a link

requires mapping links end-points to the vertical axes. In MSVs

and IES, links are drawn in a full length at each timepoint.

Hence, identifying the source and target nodes is done by

merely projecting the two end-points to the vertex axes. In

contrast, in TEPs, the identification is done by extending the

two end-points along the line slope, until they meet the two

vertex axes. However, it might be hard to determine the slope

of the links that occur for a short period, without drawing

reference lines in the background.

D. Discussion of the Results

We generated six random graphs (see Table I) using the

generative model described in Section IV-B. We then visualized

those graphs by the three visualization techniques. In this

section, we summarize the results of our qualitative comparison

based on the fore mentioned analysis tasks. For the node-related

tasks, we considered graphs G1, G2, and G3. For the link and

temporal patterns-related tasks, we considered graphs G4, G5,

and G6. For illustration purposes and due to the space limitation,

we only show selected examples by cutting off the resulting

images. To view the complete set of images in the original

size, please refer to the supplementary materials1.

1) T1: Identifying Node Addition/Removal Events: We were

able to identify more node events in TEPs, in comparison to

MSVs and IES. Figure 8 shows a cut-off graph G2 visualized

using TEPs (a), MSVs (b), and IES (c). We identified 16,

11, and 7 node addition events in TEPs, IES, and MSVs,

respectively. TEPs and IES both utilize the line slope as an

additional variable for visualizing links. However, TEPs shows

better results when the out-going links have similar slopes, for

example, events 11, 12, and 15 in Figure 8 (a). In contrast, links

with similar slopes are drawn over each other in IES, making

it difficult to see the fan-out pattern, and therefore, hiding the

node addition event. In MSVs, to identify new nodes, we look

for the rectangular corners (see Figure 8 (b)). However, since

links do not have a slope, we cannot distinguish between a node

addition event, link addition event, or random intersections

between rectangles. Although TEPs provide a less cluttered

visualization compared to MSVs and IES, the visibility of the

1https://doi.org/10.5281/zenodo.3975572

241

node addition event depends on the density of the graph. The

denser the graph, the less visible are the events.
Similar to node addition events, node removal events are

more visible in TEPs. For example, in graph G2, we detected

six node removal events in TEPs. In MSVs and IES, we were

able to spot only two of them. The remaining events appear

as a slight change in the color opacity, which could be easily

overlooked or miss-interpreted without prior knowledge.
2) T2: Identifying Link Addition/Removal events: Similar

to node events, we were able to identify more link events in

the resulting images from TEPs, in comparison to MSVs and

IES. To have a concise comparison, we inspected a sequence

of 34 timepoints in the middle of the graph sequence G4, from

timepoint time 36 to timepoint time 70 (see Figure 9). In

TEPs, we identified more than 20 added links (annotated by
+©) and eight removed links (annotated by -©). In MSVs and

IES, while we recognized some of the added links (seven in

MSVs, and eleven in IES), it was particularly hard to spot the

deleted ones. We only saw three deleted links in IES and one

in MSVs.
As the density increases in graph G6, it becomes more

challenging to detect link events. While this holds for all

techniques, TEPs shows better results compared to the others.

In TEPs, link events appear as a presence or absence of lines.

In contrast, in MSVs and IES, link events appear as a change

in color opacity, making them easy to miss or overlook without

prior knowledge.

(a) TEPs (b) MSVs (c) IES

Fig. 9. A cut-off of graph G4 between timepoint time 36 and timepoint
time 70 visualized using TEPs, MSVs, and IES. More link events are
identified in TEPs.

3) T3: Identifying Events Temporal Patterns: When it comes

to identifying the temporal patterns of events, TEPs provide

a better overview of such patterns. Figure 10 shows the first

33 timepoints of graph G5 visualized using TEPs, MSVs, and

IES. We annotated some of the temporal patterns that we could

recognize in each technique. In TEPs, we identified a periodic

behavior for four links: 75->8 1©, 23->75 2©, 23->8 3©, and

8->71 4©. Additionally, we spotted one link that lasts for exactly

one timepoint: link 5© at timepoint 21. However, it is hard to

determine the source and target nodes for this link without

adjusting drawing settings for the reference lines.

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

(a) TEPs (b) MSVs (c) IES

Fig. 10. A cut-off of the first 33 timepoints from graph G5 visualized using
TEPs, MSVs, and IES. Links 1©, 2©, 3©, and 4© exhibit a periodic behavior.

In MSVs, it is challenging to spot links with periodic

behavior. This is because links occurring at the same timepoint

will be drawn over each other, and the final color of the top

link will be the accumulated color of all links underneath.

As a result, it is hard to recognize the same link over time,

due to the color change. As seen in Figure 10 (a), the first

occurrence of link 75->8 1© took place between timepoints 1

and 13. However, looking at the resulted image from MSVs in

Figure 10 (b), we could recognize link 1© up until timepoint 4.

After that, the color of the link changes due to the appearance of

other links. The same thing can be noticed in links 23->75 2©
and 23->8 3©. This change in color misleads our perception of

identifying periods of time where an edge persisted, making

the detection of periodicity patterns very challenging.

Although IES suffers from the same overdrawing problem

as MSVs, the usage of the slope encoding allows us to still

recognize the links despite the color change. For example, we

recognized the periodicity of links 75->8 1©, 23->75 2©, and

8->71 4©. However, we cannot see the patterns easily if the

links have similar slopes. For example, 23->8 3© is overlapping

with 75->8 1©. Since both links have similar slopes, they have

similar colors, making it hard to distinguish between them in

dense areas. As opposite to TEPs, we identified the source and

target nodes of link 5© that occur at timepoint 21, link 71->24.

This is an advantage of IES and MSVs since links are drawn in

full length, irrespective of how long they persisted. In IES, due

to the interleaving, links end-points are not perfectly aligned in

time. While the start point corresponds to the timepoint where

the link occurs, the end point is shifted in time, depending on

the stripe width. This could be misleading sometimes.

V. REAL-WORLD EXAMPLE: SOFTWARE CALL GRAPH

DATASET

Several real-world networks, such as neural networks or

power grids, are not scale-free networks [7]. In this section,

we further assess the capabilities of TEPs by visualizing a

242

real-world network that does not share the scale-free property.

The software call graph dataset is the dynamic method calls

of an open-source Java system called JHotDraw [25]. We

chose to visualize the dynamic method calls resulting from a

drawing scenario done by Beck at al. [10] using the JHotDraw

graphical editor (JavaDrawApp). The test scenario was to start

the program, create a new file, draw a rectangle, draw a circle,

and write a text into the circle. The resulted dynamic method

calls from this scenario were used to evaluate different dynamic

graph visualization techniques [1], [10], [12]. The dataset

contains 787 vertices and 1077 timepoints, and has an average

edge density ≈ 0.91.

start

new file

select rect.

drag

drop

select circle

drag

drop

select text exit

1 1 12 2 2 23 3 34 4

Fig. 11. Software call graph dataset visualized using TEPs. Four different
temporal patterns can be identified.

Figure 11 shows the dynamic method calls of the drawing

scenario visualized using TEPs. For the resulting images of

MSVs and IES, please refer to the supplementary materials.

At the top of the figure, we annotated the timeline with the

corresponding user actions. By inspecting the resulted graph, we

can clearly distinguish between four different temporal patterns.

Each of the identified patterns depicts functions calls that are

triggered as a reaction to the user command. Beck at al. [10]

provided some interpretations for these patterns. For example,

Pattern 1 reflects the function calls that are triggered when the

user moves the mouse over the toolbar. Pattern 2 and Pattern 3

reflect the mouse movement over the drawing canvas. In Pattern

2, the mouse moves over an empty canvas, while in Pattern 3,

it moves over the drawn objects. Pattern 4 reflects the function

calls when the user draws (drags) the object. In this way, one

can tell the drawing scenario by visually following the user

actions and function calls patterns, as depicted in Figure 11.

Each of the user actions annotated in Figure 11 at the top

results in a dense timepoint, where many function calls occur.

A typical example is the first timepoint when the program starts.

These are probably functions calls related to the program’s

initialization process. Another example is when the user creates

a new file. From a graph point of view, these timepoints are

Fig. 12. Zooming in the timepoints allows us to obtain more information
without losing the context information such as edge direction or slope.

considered outliers compared to the whole graph sequence.

We use the zoom-in lens to magnify these timepoints without

losing the context information such as edge direction or slope.

In Figure 12, we show a zoomed-in version of the outlier

timepoints correspond to the mouse-drop action performed

by the user after drawing the rectangle and the circle. By

inspecting both timepoints, we can see that they are sharing

the same set of function calls. However, we notice some of the

edges appear in different spatial locations in both timepoints,

since TEPs does not preserve the shape of the graphs’ structural

pattern over time. This requires an additional effort to trace

the edges by following their slopes.

VI. CONCLUSION

In this paper, we introduced time-aligned edge plots (TEPs),

a representation of dynamic graphs that is scalable in the time

and edge dimensions. The graph vertices are mapped to two

vertical parallel axes representing the source and destination

vertices. The time dimension is horizontally embedded between

the two axes, resulting in a two-dimensional layout. Edges

are depicted by lines connecting the source and destination

vertices, through time, while the line-based graphical primitives

are used to encode the time-varying attribute(s). This allows us

to significantly reduce the number of pixels used to depict the

edges at the individual timepoints, and, therefore, obtaining a

less cluttered representation.

To evaluate our approach, we compared it against massive

sequence views (MSVs), and interleaved edge splatting (IES)

using dynamic graphs of varying complexities. We showed that

TEPs obtain good results in identifying edge-related events and

graphs’ temporal patterns. However, due to the partial drawing

of edges, it might be hard to determine the source and target

nodes of certain events. Nevertheless, the technique provides

a less-cluttered overview of the temporal changes, which is

lacking in the other approaches. This suggests that TEPs

can serve as an entry point for analyzing networks’ temporal

features, while other traditional visualization approaches could

be integrated to obtain detailed insights.

243

ACKNOWLEDGMENT

We thank Wladimir Ponomarenko for implementing and

testing earlier proof-of-concept versions of the visualization

technique. We also thank the Deutsche Forschungsgemeinschaft

(DFG, German Research Foundation) for supporting this

work under Germany’s Excellence Strategy – EXC 2120/1

– 390831618.

REFERENCES

[1] M. Abdelaal, M. Hlawatsch, M. Burch, and D. Weiskopf, “Clustering
for stacked edge splatting,” in Proceedings of the Conference on Vision,
Modeling, and Visualization (VMV), 2018, pp. 127–134.

[2] J. Ahn, C. Plaisant, and B. Shneiderman, “A task taxonomy for network
evolution analysis,” IEEE Transactions on Visualization and Computer
Graphics, vol. 20, no. 3, pp. 365–376, 2014.

[3] D. Archambault, H. C. Purchase, and B. Pinaud, “Animation, small
multiples, and the effect of mental map preservation in dynamic graphs,”
IEEE Transactions on Visualization and Computer Graphics, vol. 17,
no. 4, pp. 539–552, 2011.

[4] B. Bach, N. Henry-Riche, T. Dwyer, T. Madhyastha, J.-D. Fekete, and
T. Grabowski, “Small MultiPiles: piling time to explore temporal patterns
in dynamic networks,” Computer Graphics Forum, vol. 34, no. 3, pp.
31–40, 2015.

[5] B. Bach, E. Pietriga, and J. Fekete, “Visualizing dynamic networks
with matrix cubes,” in Proceedings of Conference on Human Factors in
Computing Systems (CHI), 2014, pp. 877–886.

[6] B. Bach, C. Shi, N. Heulot, T. Madhyastha, T. Grabowski, and
P. Dragicevic, “Time curves: Folding time to visualize patterns of
temporal evolution in data,” IEEE Transactions on Visualization and
Computer Graphics, vol. 22, no. 1, pp. 559–568, 2016.

[7] A.-L. Barabási, Network Science. Cambridge: Cambridge University
Press, 2016.

[8] A.-L. Barabási and R. Albert, “Emergence of scaling in random networks,”
Science, vol. 286, no. 5439, pp. 509–512, 1999.

[9] F. Beck, M. Burch, S. Diehl, and D. Weiskopf, “A taxonomy and survey
of dynamic graph visualization,” Computer Graphics Forum, vol. 36,
no. 1, pp. 133–159, 2017.

[10] F. Beck, M. Burch, C. Vehlow, S. Diehl, and D. Weiskopf, “Rapid serial
visual presentation in dynamic graph visualization,” in Proceedings of the
IEEE Symposium on Visual Languages and Human-Centric Computing
(VL/HCC), 2012, pp. 185–192.

[11] I. Boyandin, E. Bertini, and D. Lalanne, “A qualitative study on the
exploration of temporal changes in flow maps with animation and small-
multiples,” in Computer Graphics Forum, vol. 31, no. 3, 2012, pp.
1005–1014.

[12] M. Burch, M. Hlawatsch, and D. Weiskopf, “Visualizing a sequence of
a thousand graphs (or even more),” Computer Graphics Forum, vol. 36,
no. 3, pp. 261–271, 2017.

[13] M. Burch, C. Vehlow, F. Beck, S. Diehl, and D. Weiskopf, “Parallel edge
splatting for scalable dynamic graph visualization,” IEEE Transactions
on Visualization and Computer Graphics, vol. 17, no. 12, pp. 2344–2353,
2011.

[14] M. Burch, C. Vehlow, N. Konevtsova, and D. Weiskopf, “Evaluating
partially drawn links for directed graph edges,” in Graph Drawing, M. van
Kreveld and B. Speckmann, Eds. Berlin, Heidelberg: Springer, 2012,
pp. 226–237.

[15] W. S. Cleveland and R. McGill, “Graphical perception and graphical
methods for analyzing scientific data,” Science, vol. 229, no. 4716, pp.
828–833, 1985.

[16] C. S. Collberg, S. G. Kobourov, J. Nagra, J. Pitts, and K. Wampler, “A
system for graph-based visualization of the evolution of software,” in
Proceedings ACM 2003 Symposium on Software Visualization, 2003, pp.
77–86, 212–213.

[17] C. Cooper, A. Frieze, and J. Vera, “Random deletion in a scale-free
random graph process,” Internet Mathematics, vol. 1, no. 4, pp. 463–483,
2004.

[18] S. Diehl and C. Görg, “Graphs, they are changing,” in Proceedings of
the Symposium on Graph Drawing, 2002, pp. 23–30.

[19] Y. Frishman and A. Tal, “Dynamic drawing of clustered graphs,” in
Proceedings of 10th IEEE Symposium on Information Visualization,
2004, pp. 191–198.

[20] T. M. J. Fruchterman and E. M. Reingold, “Graph drawing by force-
directed placement,” Software: Practice and Experience, vol. 21, no. 11,
pp. 1129–1164, 1991.

[21] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness. New York: W. H. Freeman, 1979.

[22] G. Ghoshal, L. Chi, and A.-L. Barabási, “Uncovering the role of
elementary processes in network evolution,” Scientific Reports, vol. 3,
no. 2920, 2013.

[23] C. G. Healey and J. T. Enns, “Attention and visual memory in
visualization and computer graphics,” IEEE Transactions on Visualization
and Computer Graphics, vol. 18, no. 7, pp. 1170–1188, 2012.

[24] T. Isenberg, P. Isenberg, J. Chen, M. Sedlmair, and T. Mller, “A systematic
review on the practice of evaluating visualization,” IEEE Transactions on
Visualization and Computer Graphics, vol. 19, no. 12, pp. 2818–2827,
2013.

[25] “JHotDraw Start Page,” http://www.jhotdraw.org/, 2018, accessed on
03/22/2018.

[26] T. Kamada and S. Kawai, “An algorithm for drawing general undirected
graphs,” Information Processing Letters, vol. 31, no. 1, pp. 7–15, 1989.

[27] P. Kovesi, “Good colour maps: How to design them,” arXiv preprint
arXiv:1509.03700, 2015.

[28] J. Mackinlay, “Automating the design of graphical presentations of
relational information,” ACM Transactions on Graphics, vol. 5, no. 2,
pp. 110–141, 1986.

[29] G. Melancon, “Just how dense are dense graphs in the real world?: A
methodological note,” in Proceedings of the 2006 AVI Workshop on
BEyond Time and Errors: Novel Evaluation Methods for Information
Visualization (BELIV), 2006, pp. 1–7.

[30] K. Misue, P. Eades, W. Lai, and K. Sugiyama, “Layout adjustment and
the mental map,” Journal of Visual Languages and Computing, vol. 6,
no. 2, pp. 183–210, 1995.

[31] M. Newman, “The structure and function of complex networks,” SIAM
Review, vol. 45, no. 2, pp. 167–256, 2003.

[32] M. Okoe, R. Jianu, and S. Kobourov, “Revisited experimental comparison
of node-link and matrix representations,” in Graph Drawing and Network
Visualization, F. Frati and K.-L. Ma, Eds. Cham: Springer International
Publishing, 2018, pp. 287–302.

[33] A. Perer and J. Sun, “MatrixFlow: temporal network visual analytics to
track symptom evolution during disease progression,” in AMIA Annual
Symposium Proceedings, vol. 2012. American Medical Informatics
Association, 2012, pp. 716–725.

[34] G. Robertson, R. Fernandez, D. Fisher, B. Lee, and J. Stasko, “Ef-
fectiveness of animation in trend visualization,” IEEE Transactions on
Visualization and Computer Graphics, vol. 14, no. 6, pp. 1325–1332,
2008.

[35] C. Schulz, A. Nocaj, M. El-Assady, S. Frey, M. Hlawatsch, M. Hund,
G. K. Karch, R. Netzel, C. Schätzle, M. Butt, D. A. Keim, T. Ertl,
U. Brandes, and D. Weiskopf, “Generative data models for validation
and evaluation of visualization techniques,” in Proceedings of the Sixth
Workshop on Beyond Time and Errors on Novel Evaluation Methods for
Visualization, BELIV 2016. ACM, 2016, pp. 112–124.

[36] B. Tversky, J. B. Morrison, and M. Betrancourt, “Animation: can it
facilitate?” International Journal of Human-Computer Studies, vol. 57,
no. 4, pp. 247–262, 2002.

[37] S. van den Elzen, D. Holten, J. Blaas, and J. J. van Wijk, “Reordering
massive sequence views: Enabling temporal and structural analysis
of dynamic networks,” in Proceedings of IEEE Pacific Visualization
Symposium, 2013, pp. 33–40.

[38] ——, “Reducing snapshots to points: A visual analytics approach to
dynamic network exploration,” IEEE Transactions on Visualization and
Computer Graphics, vol. 22, no. 1, pp. 1–10, 2016.

[39] C. Ware, Information Visualization: Perception for Design. San
Francisco: Morgan Kaufmann, 2004.

244

