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Abstract—Level-based tree drawing is a common algorithm
that produces intuitive and clear presentations of hierarchi-
cally structured information. However, new applications often
introduces new aesthetic requirements that call for new tree
drawing methods. In this paper, we propose an indented level-
based tree drawing algorithm for visualizing parse trees of
English language. This algorithm displays a tree with an aspect
ratio that fits the aspect ratio of the newer computer displays,
while presenting the words in a way that is easy to read. We
discuss the design of the algorithm and its application in text
visualization for linguistic analysis and language learning. An
efficient and practical implementation of the algorithm is also
presented.
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I. INTRODUCTION

A tree drawing algorithm consists of a set of rules for

placing the nodes and drawing the edges. Some tree drawing

rules are introduced to address the characteristics of the

structure of the data. Some tree drawing rules are aesthetic

rules for the efficient use of space and clarity of presentation.

The most important aesthetics of tree drawings include area,

aspect ratio, subtree separation, closest leaf, and farthest leaf,

etc. A new application may introduce new aesthetic rules that

lead to new tree drawing algorithms.

We are developing a text analysis and visualization pro-

gram for linguistic studies and language learning. One of the

main features is the visualization of the parse tree for each

sentence. A parse tree is a rooted tree showing the syntactic

structure of a sentence or a string. Visualizing the parse trees

can help researchers or students analyze the structure of the

sentence and its complexity. The typical drawing of a parse

tree is a top-down, level-based tree (Fig. 1). This type of

drawing is intuitive and clear. But the drawback is that the

aspect ratio of the tree does not fit the aspect ratio of newer

computer displays. The tree grows vertically. The height of

the parse tree visualization is usually larger than its width,

particularly when the sentence is structurally sophisticated.

However, the standard aspect ratio of computer displays after

2012 is 16:9, with the width larger than the height. With a

dual monitor setup, the display is even wider. Therefore a

traditional parse tree visualization does not make optimal

use of the screen space. When multiple parse trees need to

be displayed in a sequence, this problem becomes even more

obvious.

Fig. 1: The traditional level-based parsed tree of the sentence

“Emily show me a newly bought skirt with a blue flower

image on it.”

Therefore, in our application and many similar cases, it is

more desirable to display the parse tree horizontally with the

root node on the left for the optimal use of space. In addition,

the leaf nodes (i.e. the words) should be placed in such a way

that they can still be read from left to right as a sentence.

This becomes a new aesthetic rule for tree drawing. Simply

drawing a tree horizontally with a level-based algorithm is

not user friendly because readers have to read the sentence

vertically. A simple modification of the existing level-based

tree algorithm to create an indented display of words also

does not work because line crossings make the tree difficult

to read.

To address this issue, we propose a new indented level-

based tree drawing algorithm that preserves the grammatical

structure of the parse tree but also allows users to read the

sentence from left to right. The resulting tree visualization
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fits the aspect ratio of most computer displays better than the

traditional parse tree visualization. We also analyze the time

complexity of this algorithm and discuss the implementation

of this algorithm using JavaScript and d3.js.

II. RELATED WORK

A. Level-Based Tree Drawing Algorithms

The level-based tree drawing (also called layered tree

drawing) is the most popular tree drawing algorithm. The

five main aesthetic rules for level-based tree drawing include

:

Aesthetic rule #1: Nodes of a tree at the same height

should lie along a straight line, and the straight lines defining

the levels should be parallel.

Aesthetic rule #2: A left child should be positioned to the

left of its ancestor and a right child to the right.

Aesthetic rule #3: A father should be centered over its

children.

Aesthetic rule #4: A tree and its mirror image should pro-

duce drawings that are reflection of one another; moreover,

a subtree should be drawn the same way regardless of where

it occurs in the tree.

Aesthetic rule #5: Small, interior subtrees should be

spaced out evenly among larger subtrees. Small subtrees at

the far left or far right should be adjacent to larger subtrees.

A tree drawing algorithm needs to calculate the position

of each tree node in a way so that the resulting tree is

aesthetically pleasing and conserves space.

Knuth first published an algorithm for drawing binary

trees [1]. In 1979, Wetherell and Shannon [2] presented an

O(n) algorithm that satisfies aesthetic rules #1–3 while at

the same time minimizes width. A similar algorithm was

developed by Sweet [3]. In 1981, Reingold and Tilford [4]

presented an algorithm that was inspired by the Wetherell

and Shannon algorithm and addressed its flaws by satisfying

aesthetic rule #4. Then in 1990, Walker [5] presented an

improved method that satisfies aesthetic rule #5 for trees of

unbounded degree. In 2002, Buchheim et al. [6] improved

Walker’s algorithm so that drawing trees of unbounded

degree can be run in O(n) instead of O(n2) in Walker’s

algorithm. For a recent survey on tree drawing algorithms,

please refer to [7].

Our proposed algorithm falls into the category of level-

based tree drawing. In this algorithm, we introduce a new

aesthetic rule:

Aesthetic rule #6: A tree should be draw from left to right,

with the leaf nodes indented in such a way that they can be

read from left to right as a sentence.

B. Non-Layered Tree Drawing Algorithms

The level-based tree drawing algorithms assume that

nodes in the tree have uniform size. However, in many

practical applications, these tree nodes may have varying

sizes. Non-layered tree drawing algorithms are therefore

designed to generate a more vertically compact drawing

which places child nodes at a fixed distance from the parent

nodes. Miyadera et al. present an O(n2) algorithm [8] for

non-layered trees that horizontally positions parent nodes

at a fixed offset from their first child, instead of centering

above the children. Many other algorithms, such as Bloesch

algorithm [9], Stein and Benteler algorithm [10] and Li

and Huang algorithm [11], Marriot et al. algorithm [12]

and Ploeg algorithm [13], employ the similar idea. After

preprocessing such as discretizing, they run the extended

Reingold and Tilford algorithm [4] to draw the non-layered

trees.

III. DEFINING INDENTED LEVEL-BASED TREE

DRAWING PROBLEM

The indented level-based tree drawing (see Fig. 2 for

example) algorithm has the following properties:

1) A left child and a right child should be positioned on

the right of their parent node.

2) The root node is the leftmost node of the tree. The

tree is displayed horizontally.

3) The horizontal coordinates of the leaf nodes should be

indented in such a way that, starting with the top leaf

node, the leaf nodes are sorted horizontally from left

to right. In other words, the leaf nodes can be read

from left to right as a sentence.

A

B

C

D

E

F

G

DIST DIST DIST

Fig. 2: An example of the indented tree drawing. The leaf

nodes are sorted from left to right horizontally.

The indented tree drawing, due to its third property, will

first sort leaf nodes horizontally from left to right, and then

vertically from top to bottom. Therefore the tree drawing

problem is then reformulated as follows: given an input tree

structure, calculate the horizontal and vertical coordinates

for each node of the tree so that the drawing is compact and

satisfies the properties as listed above.

IV. REINGOLD AND TILFORD ALGORITHM

Reingold and Tilford Algorithm is one of the most impor-

tant and influential algorithms in the area of tree drawings,

and serves as the basis for our tree drawing algorithm. In this

section, we discuss its basic ideas and the major challenges

it has addressed.
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The brief description of the algorithm is as follows:

two tree traversals are used to produce the final horizontal

coordinates of nodes while their vertical coordinates can

be pre-determined with their levels. The first post-order

traversal assign the preliminary horizontal coordinates and

modifier fields for each node. The second pre-order traversal

compute the final horizontal coordinates for each node by

summing its preliminary horizontal coordinates and modifier

fields of all of its ancestors. In the post-order tree traversal,

starting from leaf nodes (the smallest subtrees), smaller

subtrees are positioned from left to right, and are combined

with their parents to form greater subtrees. Parent nodes are

placed in the center of their children. This process continues

recursively until the root is reached.

V. INDENTED REINGOLD AND TILFORD TREE DRAWING

ALGORITHM

Our tree drawing algorithm is based on Reingold and

Tilford algorithm [4] but with significant change, mainly

because of the third property listed in Section III. Namely

the leaf nodes need to be sorted horizontally. This property

is in conflict with the Aesthetic rule #1 in the Reingold and

Tilford algorithm. The underlying assumption in Reingold

and Tilford algorithm is that the vertical coordinates of each

node is determined by its level. In our case, this is no

longer valid. Therefore, our algorithm needs to compute both

horizontal and vertical coordinates recursively.

Here we still use a vertical tree for easier explanation. In

the implementation, the tree is draw horizontally.

The algorithm requires three traversals of a tree. The

first traversal is described in firstWalk procedure (See Al-

gorithm 1). Starting from the leaves that we consider the

minimal subtrees till the root of the whole tree, the algorithm

recursively computes and stores the relative positions of the

subtree root relative to their children (if they have any) and

the relative positions of the subtrees relative to their sibling

subtrees, respectively. The second tree traversal aggregates

these relative positions, and compute the final position for

each node. This process is described in secondWalk proce-

dure (See Algorithm 2). The last tree traversal redistributes

the vertical positions of nodes in order to make it look more

pleasant while still maintaining the properties of the indented

tree drawing (See Algorithm 3).

Like other positioning algorithms, our algorithm also uses

two separate fields for the positioning of tree nodes. For a

non-leaf leave, the prelimX or prelimY field of the node

denotes its relative horizontal or vertical position to its

children while the modX or modY field denotes the relative

horizontal or vertical position that the subtree root node is

from its sibling subtree. The position value in the modX or

modY field of a node is assigned based on the entire subtree

rooted at the node, and will be applied to all of its offspring

nodes when calculating their final coordinates. For a leaf

node, only the prelimX or prelimY is needed to denote its

Algorithm 1 firstWalk procedure

1: procedure FIRSTWALK(TreeNode v)

2: TreeNode w � v’s left sibling

3: List<TreeNode> nodes � child of v
4: int mid � center of child

5: int len ← nodes.length

� Line 6-11 horizontal coordinates

6: if v is a non-leaf node then
7: mid=(nodes[0].prelimX+nodes[len-

1].prelimX)/2

8: v.prelimX = mid;

9: else if w exists then
10: v.prelimX=w.prelimX+SS � SS: const

11: end if
� Line 12-19 vertical coordinates

12: if v is a non-leaf node then
13: v.prelimY=nodeY .prelimY+nodeY .modY-

DIST;

� DIST: const

� nodeY is v’s child with the smallest vertical

coordinates

14: if w exists then
15: v.modY=w.modY+DIST*w.l;

� w.l denotes the number of its offspring

leaves

16: end if
17: else if w exists then
18: v.prelimY=w.prelimY+DIST;

19: end if
20: if w exists then
21: Positioning v on the right of w
22: end if
23: end procedure

Algorithm 2 secondWalk procedure

1: procedure SECONDWALK(TreeNode v)

2: v.modX += v.parent.modX;

3: v.x = v.prelimX + v.modX;

� Line 2-3 Compute final horizontal coordinates

4: v.modY += v.parent.modY;

5: v.y = v.prelimY + v.modY;

� Line 4-5 Compute final vertical coordinates

6: end procedure

relative horizontal or vertical position to its leftmost siblings.

We assume in this paper that the coordinate system has its

original point at the top-left corner. That is, if the height of

a node is greater than that of another node, then the node

has a smaller vertical coordinate.

In order to decrease the complexity of computation, the
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algorithm is designed to decouple the horizontal and vertical

positioning of nodes. There are three major steps that will

change the positions of the nodes. The first one is the initial

assignment of both horizontal and vertical positions to nodes

in accordance to the rules in the first tree traversal. The next

step is the subtree positioning, which adjusts the horizontal

positions of nodes. The third step is the node redistribution

step in the third tree traversal, which tunes the vertical

positions of nodes. We discuss these three steps in more

details in the coming sub-sections.

A. Assigning initial positions to nodes

We have defined rules for the assignment of horizontal

and vertical positions. For horizontal positioning, the rules

state that (1) if a node is a non-leaf node, then place it in

the center of its children; (2) if a node is a leaf with no

sibling, assign 0 to prelimX field. (3) if a node is a leaf with

a left sibling, then place it to the right of its left sibling at

a pre-defined distance. The pseudo codes for these rules are

listed in line 6-11 in Algorithm 1.

The rules for assigning vertical positions to nodes are

more complicated:

Rule 1: If a node is a leaf with no left sibling, assigns 0
to its prelimY field.

Rule 2: If a node is a leaf with a left sibling, in order

to satisfy the third property of indented tree drawings, the

algorithm assigns w.prelimY+DIST to the node’s prelimY
field where w is the node’s left sibling and DIST is the

pre-defined distance.

Rule 3: If a node is a non-leaf node with no left sibling, in

order to guarantee that a node is higher than any of its chil-

dren, the algorithm assigns nodeY .prelimY+nodeY .modY-

DIST to the node’s prelimY field where nodeY is the child

which has the greatest height.

Rule 4: If a node is a non-leaf node with left siblings, not

only should this node be higher than any of its children, but

the entire subtree rooted on this node is also moved upwards

by DIST*w.l where w.l represents the number of leaf node

in its sibling subtrees. This is so because in order to satisfy

the third property of indented tree drawings, the leftmost

leaf of the current subtree should be DIST*w.l higher than

the leftmost leaf of its sibling subtree.

The pseudo codes for the above rules are listed in line

12-19 in Algorithm 1.

B. Positioning subtrees

The horizontal positioning discussed above only calcu-

lates the relative position of a node to its siblings or children.

The task of positioning subtree aims at computing the

relative position of the current subtree to its sibling subtree

(Line 21 in Algorithm 1). Positioning a subtree on the right

of its sibling subtree in the level-based tree drawing is a

complicated process since the algorithm has to travel the

sequence of right-most nodes in the left subtree and the

sequence of leftmost nodes in the right subtree in order to

determine the minimal shifting distance that can separate

two subtrees at a pre-defined distance. (We have discussed

this process in Section IV.) However, positioning subtrees

in our tree drawing algorithm is greatly simplified and can

be achieved in O(1) time.

For a given subtree, we argue that its leftmost node is its

leftmost leaf. The proof is as follows: Assume the above

statement is not correct. In other words, the leftmost node

of a subtree is a non-leaf node. Since this is a non-leaf node,

its offsprings contain at least one leaf node, and according

to the second property of our tree drawing algorithm it is

centered among its children. If the non-leaf node has only

one leaf node, then it has the same horizontal coordinates as

its leaf node. This can prove that the leftmost of a subtree

is a leaf node. Otherwise, it must have a leaf node that is

positioned on its left. This is a contradiction. So we prove

that for any given subtree, its leftmost node is its leftmost

leaf. With similar method, we can also prove that a subtree’s

rightmost node is its rightmost leaf.

A

B

C

D

E

F

GH

I

J

SS

Fig. 3: Node D is the rightmost node in subtree B. Node H

is the leftmost node in subtree E. The task of positioning

subtree E is equivalent to separating Node D and Node H

horizontally at a distance of SS (a pre-defined constant).

This property makes the task of positioning subtrees quite

simple. Traveling the left/right contour of right/left subtrees

is unnecessary because if the rightmost leaf in the left

subtree and the leftmost leaf in the right subtree are properly

separated, then other nodes in these two subtrees will be

well separated. In Fig. 3, for example, if node D and node

H are well separated, then nodes within subtree B and nodes

within subtree E are also well separated. The distance that

a subtree is moved is equivalent to the distance that the

subtree’s leftmost leaf is moved so that the leaf is properly

separated from the rightmost leaf of its left sibling subtree.
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C. Redistributing nodes

In our algorithm, left sibling subtrees are gradually lifted

up in order to line up the leaf nodes from left to right.

In most cases this would not cause problems. However,

in some cases where the left subtree contains many more

nodes than the right subtree, the resulting tree drawing may

look less pleasant since nodes within the right subtree are

not vertically distributed evenly. In Fig. 4, the tree drawing

on the left does not look good as node A and node C is

unnecessarily distant. The tree drawing on the right looks

more pleasant after node C is repositioned between node A

and node D.

A

B

C

A

B

C

D D

Fig. 4: The left tree drawing is less pleasant. The right tree

drawing is more pleasant after node C is repositioned.

The task of node redistribution is to carry out another

tree traversal and redistribute the vertical positions of nodes

recursively so that the nodes within subtrees are vertically

more evenly distributed.

Algorithm 3 thirdWalk procedure

1: procedure THIRDWALK(TreeNode v)

2: for each child u of v do
3: spots ← (u.y-v.y)/DIST-1;

� spots: # of vertical positions between v and

u.

4: level ← u.level

� for a leaf node, its level is 1

� for a non-leaf node, its level is 1 plus the max

of its child’s level

5: ave ← spots/level
� ave: # of vertical positions u will be pulled

toward its parent.

6: u.y ← u.y-ave*DIST

7: end for
8: end procedure

To implement the node redistribution, the algorithm re-

quires another pre-order tree traversal. For any visited node,

the algorithm recalculates the vertical coordinate for each of

its children. The calculation is based on the idea that nodes

at different levels within the visited node’s subtree should

be vertically and evenly positioned between the visited node

and the leaf. As described in Algorithm 3, the thirdWalk
procedure computes the allocatable space between the node

and its child, evenly splitting the space among different

levels of the subtree rooted on the child. It then determines

the new vertical coordinate of the child node.

VI. IMPLEMENTATION AND USAGE

We have implemented the indented level-based tree draw-

ing algorithm in JavaScript and integrated it into D3.js [14],

a popular JavaScript library for data visualization. The Lay-
outs package in D3.js library provides efficient implemen-

tation of layout algorithms for various structures including

the classic level-based tree. It also offers helper functions to

facilitate the implementation of new layout algorithms.

Based on D3.js, we have added new APIs for quick

construction of the indented tree drawing. We explain some

of the APIs in Table I:

APIs Description
d3.layout.indentedtree Creates a new indented tree layout.

indentedtree.size Sets the available layout size.

indentedtree.sort Sets the sort order of sibling nodes.

indentedtree.separation Sets separation between nodes.

indentedtree.nodes Computes the tree layout.

indentedtree.links Returns edge positions.

Table I: APIs for the indented tree drawings

With these APIs, Web application developers only need

to write a few lines to draw indented trees and embed them

in their Web pages. The code snippet in Listing 1 provides

a showcase for drawing a simple indented tree.

1 / / Cr ea t e a t r e e l a y o u t
2 var t r e e = d3 . l a y o u t . i n d e n t e d t r e e ( ) ;

3 t r e e . s i z e ( [ height , width ] ) ;

4 / / Compute nodes ’ p o s i t i o n s
5 / / r o o t : i n p u t da ta
6 var nodes = t r e e . nodes ( roo t ) ;

7 / / R e t r i e v e edges p o s i t i o n s
8 var edges = t r e e . l i n k s ( nodes ) ;

9 / / Draw t r e e s w i t h above o b j e c t s

Listing 1: Sample code for drawing an indented tree

Line 2 creates an instance of indented tree. Then in Line

3 the size of the tree drawing is specified. The positioning

algorithm is invoked in Line 6, and tree nodes’ horizontal

and vertical coordinates are returned. The positions of tree

edges are computed by pairing parent nodes and child nodes

in Line 8. Once the position of tree nodes and edges are
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Fig. 5: The indented level-based parsed tree of the sentence “Emily show me a newly bought skirt with a blue flower image

on it.”

specified, then other D3 drawing routines can be used to

draw the indented tree. Fig. 5 shows an example of the

indented level-based tree drawing created with our new

APIs. We can see that our drawing has a wider aspect ratio

that fits better with newer computer displays. It also places

the words from left to right for easy reading, while clearly

presenting the syntactic structure of the sentence.

VII. CONCLUSION

In this paper, we propose a new indented level-based tree

drawing algorithm. This is a modified Reingold and Tilford

algorithm that satisfies a new aesthetic rule – make the tree

fit the wider aspect ratio of the newer computer display

while preserving the order of the leaf nodes in a sentence.

This is motivated by the need of visualizing parse trees in

a text visualization application. The new algorithm creates

a parse tree drawing that makes optimal use of the space

while maintaining the word order for easy reading. The new

algorithm also solves the problems of line crossings for tidy

presentation.

The proposed tree drawing algorithm is a useful comple-

ment to the traditional level-based tree drawing algorithms.

In addition to drawing parse trees, it can be applied to any

tree structure where the leaf nodes need to be horizontally

sorted.
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