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Abstract—The integrated cyber-physical systems in Smart
Manufacturing generate continuously vast amount of data. These
complex data are difficult to assess and gather knowledge about
the data. Tasks like fault detection and diagnosis are therewith
difficult to solve. Visual Analytics mitigates complexity through
the combined use of algorithms and visualization methods that
allow to perceive information in a more accurate way. Thereby,
reasoning relies more and more on the given situation within
a smart manufacturing environment, namely the context. Cur-
rent general Visual Analytics approaches only provide a vague
definition of context. We introduce in this paper a model that
specifies the context in Visual Analytics for Smart Manufacturing.
Additionally, our model bridges the latest advances in research
on Smart Manufacturing and Visual Analytics. We combine and
summarize methodologies, algorithms and specifications of both
vital research fields with our previous findings and fuse them
together. As a result, we propose our novel industry 4.0-ready
Visual Analytics model for context-aware diagnosis in Smart
Manufacturing.

Index Terms—Visual Analytics, Smart Manufacturing, Cyber-
Physical Systems, Reasoning, Outlier Detection, Data Science.

I. INTRODUCTION

Through the digital transformation, smart factories turned

into highly complex interconnected environments, where anal-

ogous machines and cyber-physical systems exists side-by-

side. Each cyber-physical system (CPS) consists of software

and hardware modules [1] that produces large amounts of

data. Observed outages, failures and misbehavior are hard to

detect in the mass of raw data, which makes fault diagnosis

or predictive maintenance difficult.

Visual Analytics (VA) can mitigate complexity and speed

up problem solving in such complex environments through

the interconnection between algorithms, visualizations and

cognition. VA is an evolving research field, that combines the

visualization with machine learning methods [2, 3]. The goal

is to provide insights, that in return lead to a better supervision

and deduct better decisions. Especially, big data analysis bene-

fits from VA. Today the general model provided by Keim et al.

[2] is broadly adopted, its broad applicability were shown [3]

and it was meaningful extended over the recent decade [4, 5].

Furthermore, Sacha et al. [4] extended the general model by

clarification of the knowledge generation process and human

cognitive activities. To complement the work Andrienko et

al. [5] recently concretize the outcome of the visual analytics

process. Over the time the general model is well-defined [2–

7], but a weak spot persists and it is not directly covered

by previous work, the context. In VA the word context is

a vague periphrasis, where the domain expert comes into

play [4] and try to deduct new insights. The recent attempts

towards context-awareness by Zhou et al. [8] and Wu et al. [9]

emphasize the need for a generalizable VA-model for Smart

Manufacturing (SM). To our best of knowledge, there exist no

VA-model that defines the context and the upcoming diagnosis

within the smart manufacturing domain. To overcome the

circumstances we adhere our industry 4.0-ready VA-model for

context-aware diagnosis in smart manufacturing (TAOISM).

Our TAOISM VA-model successfully couples VA and SM. In

order to provide a novel model we specify each area of a VA-

model. Therefore, we start with a definition of data within SM

and list potential data-sources. In addition, we define a first

set of models for context-aware diagnosis in SM. Especially,

we provide a first draft of a context definition and propose an

integration in a VA-model. We also name the requirements for

visualizations in SM that arise from our model and provide a

first draft of visualizations. To complete our model, we identify

and define the main tasks in Smart Manufacturing that are

significant for our model. In brief our main contribution is

three-fold: (1) We provide an overview about current trends

and tendencies for Visual Analytics and Smart Manufacturing;

(2) we formalize, construct and compose the context-aware

diagnosis in SM through our model and (3) we propose a

model that combines VA and SM through the definition of

context and the context creation process.

II. RELATED WORK

General VA-models build the foundation of our model.

Furthermore, first advances exist in Smart Manufacturing

(SM) that try to contextualize SM-processes involving human

perception or computational models. At the end, there will

be multiple visualizations systems that cover similar steps to

achieve similar goals in SM that have traces of an underling

VA-model. We cover these systems to connect the traces and

develop a concrete VA-model for SM.
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A. General Visual Analytic Models

Visual Analytics is a vibrant area of research and has been

the foundation for the creation of multiple models over the

past years [10, 11]. Keim et al. [2] with their model provoke

one of the first general approaches, which was detailed later

[3]. As an extension, Sacha et al. define the knowledge

generation process [4] and human cognitive activities. Another

well thought-out extension, given by Andrienko et al., who

characterize the outcome of Keim’s VA-model [5]. We use

Keim’s Visual Analytics model as a foundation, specify and

refine it for the SM-domain. Additionally, we add a first draft

of context definition and how the context can be used in the

Smart Manufacturing domain. Context is rather vague term,

that already was mentioned by Sacha et al. [4], where a domain

expert is mandatory. As a consequence, contexts are enclosed

by a domain, for our model in the SM-domain. Besides Sacha

et al. [4], there are also data-driven approaches to enlighten the

context term. Ceneda et al. [7] characterize guidance within a

Visual Analytics to complement Keim’s model. Munzner [12]

provides a framework to specify tasks as a tuple of action

and target. We use their framework to characterize our Visual

Analytics model.

B. Context-awareness in Smart Manufacturing

A first step towards context-awareness was done by Em-

manouilidis et al. [13]. Their conceptual model integrates

the knowledge of domain experts as a single entity. Their

ideas to contextualize machinery symptoms by integration

of human perception are an inspiration and can be seen as

an early predecessor of the proposed model in this paper.

In addition to context-awareness Zhou et al. [8] define a

novel situational awareness model incorporating qualitative

(temperature sensor data) and quantitative (temperature zones

with boundaries) measures. Their situational awareness model

is split into an index part (rules for temperature zones) and

a computational model, that utilizes the measurements; in

their case temperature. In addition, the computational model

deducts a value from multiple measurements, which represents

the state of the production line (low, guarded, elevated, high,

severe). To the best of our knowledge, that is the first model

that formalizes a context in a SM-process and calculates the

severity of that context. We adapt the principle to take not only

the production line itself as the single source of information,

but the surrounding variables as well. In contrast to Zhou et

al. [8] that relies only on temperature data and cannot be

applied in scenarios with complex multivariate data, we are

aware of that situation and employ a data transformation step

to even cover complex cases. Additionally, we leverage other

production related systems (e.g. MES, ERP) to enhance the

scope of context beyond the production line.

C. Visualization for Maintenance and Production

The SM-domain is difficult to assess due to concerns about

security, rights of intellectual properties or data sovereignty.

Nevertheless, Zhou et al. managed to publish a thorough

survey of current visualizations in this domain [14]. They

structured the visualizations using the concepts of creation

and replacement. Visualizations in the replacement concept

free people from dull work through implacement of intelligent

devices (e.g. replacing monitoring personnel through online

fault diagnosis) or virtualize dangerous work environments

where people are able to learn the needed skills [14]. Creation

encompasses the design phase (creation of products), the pro-

duction phase (ideology to physical forms), the testing phase

(guarantee established standards), the service phase (insights

from usage) [14]. In order to gain insights in manufacturing

data Xu et al. [15] combination of extended Marey-graph and

station graph to exploit production flow and spatial awareness

and provide insights to uncover anomalies. Jo et al. [16]

provide an aggregated view of ongoing tasks in the production

line with an extended Gantt-chart. Where Post et al. [17] use

flow, workload and stacked graph to provide a user-guided

visual analysis of a production line. Most impact for the

proposed model had the work of Arbesser et al. [18] and

Zhou et al. [8]. Arbesser et. al. developed a visual data quality

assessment for time series data with integrated plausibility

checks. Plausibility checks are simple rules that apply on

given meta-information (e.g. sensor type, position) and observe

for example out of range values. Thus, these are similar to

our foreknown case models, which can be initialized before

installation, on bases of manufacturers cyber physical system

(CPS) documentation. Their well-thought overview contains

information with different levels of granularity (from overview

to detail) with employment of the checks to color the severity

of the anomaly based on the checks. Wu et al. [9] set up a

novel VA-pipeline to manually combine and pick features for

the machine learning models and visualize the effectiveness in

a training set view to act accordingly if results do not match

observations. Additionally, they added a system overview with

an extended theme river and a radial layout with a multifaceted

pane for details on demand. Where Wu et al. preference

is more manually configured, is our model more driven by

automation protocols such as the de facto communication

standard OPC-UA [19]. OPC-UA comes with machine models

in place, which combine sensors to groups for different aspects

of the CPS. The manual selection of individual sensor values

for the generation of feature vectors is inefficient, our small

learning smart factory already has about 17.000 values to

choose from [20]. Additionally, the determination on machine

learning can be an issues in hybrid scenarios, where the smart

factory already has statistical models in place. Our model

solves this issues by including also statistical models.

III. TAOISM VA-MODEL

Our proposed TAOISM VA-model (Figure 1) consists of

four main layers (data, models, visualization, knowledge)

and a cross-sector meta-layer (trigger). Originating in the

established general VA-model by Keim et. al [2], depends

each layer on another with multiple cross-sector relationships.

All layers are involved to provide a context-aware diagnosis.

Starting at the data layer, which acquires and transforms the

data and provides information. The models layer observes the

351



Fig. 1. Proposed contextualized TAOISM VA-model for Smart Manufacturing embedded in the established general VA-model [2]. The four main areas align
with the general VA-model, extended with a new meta-layer. (1) Data encompasses all accessible information within a SM-environment. Visualized information
sources should be seen as an example and may vary. (2) Models comprise either active models (triggers) or passively build models (context-related). Context
Infused Cases (CIC) are generated by human, and stored and used actively again. (3) Visualization assists the users in their tasks and help to narrow down
the underlying reason for an event. (4) Knowledge is where the users build hypotheses based on new insights, driven by their daily tasks. We also identified
four main tasks within the process of concept creation [14]. (5) Finally, we extend the model with a cross-sector meta-layer (the trigger) used to combine all
instances which can enforce a context creation build, such as machine entities (machine fault events, case models), observer models (outlier detection) or the
user himself. Given instances are examples and may vary.

available information and triggers a context fetch (snapshot

of the current situation) to construct Context Infused Cases
(CICs). CICs are build with human perception by transforming

presented information into a case with a description and a

derived error model. Next, the visualization, which plays a

crucial role in providing a meaningful representation of the

data collected and supporting the tasks performed by the ana-

lyst, learning, exploring, analyzing and reasoning. Knowledge

is the area, where the insights thrive new hypothesis and

vice-versa. We identified four tasks, knowledge acquisition,

exploration, analysis and reason as part of the process phase

[14]. We use Munzner’s Framework [12] to characterize our

VA-model. A smart factory is a complex environment that

yields vast amounts of data [1]. As a matter of fact, it is

impossible to capture all data in real-time concerning e.g.

low-bus speeds, where the actual process instructions and

safety features has to be delivered as well. For this reason,

we employ the asynchronous process of context creation. The

process of context creation fetch the data in question one-by-

one accordingly to a defined time frame without overloading

the system. As a result, the analyst is able to reason over the

current adjacent values and the current situation. We introduce

the cross-sector meta-layer (trigger), where all instances are

combined that are able to start the context creation process.

Before we introduce each layer in detail, we name the involved

entities, state the triggers, describe the human part in the

equation and provide an example use case of error inference

with our TAOISM VA-model. Our TAOISM VA-Model is

based upon knowledge found through our various preliminary

studies [1, 21].

A. Involved Entities
Multiple entities are involved in a SM-environment; tasks

as error reasoning or predictive maintenance are complicated

to fulfill in such an environment. Through the mass amount of

log data [1] it is hard to gain insights and find the underlying

fault for an occurring error. Schriegel et al. [22] have analyzed

the standard industry 4.0 architecture with its entities on a

technical level. We align with their actor definition, but use the

bundle of sensors, PLCs and SCADA-Systems as synonym for

a CPS. We also add the human as equal-worth entity and add

IIoT as synonym for small cheap devices or device bundles

within the smart factory. Our definition of actors is as follows:

• CPS. Cyber-physical systems are the source of process

information. Process Information summarizes all infor-

mation about the working process or the information

which each machinery provides about the manufacturing

process itself. This information may thrive also infor-

mation about the health status of the machinery and its

components or not (considered here as CPS information).

• IIoT. The Industrial Internet of Things encompasses

devices that enhance current non-smart machines with

the capabilities of a CPS. Alternatively, used as pre-

and post-processing units to gather additional information

about the production process and its CPSs. As well as the

CPS, the IIoT devices deliver Process Information or CPS
information.
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• ERP. Enterprise Resource Planning software contains

information about the overall production capacity and

provide higher information in terms of planned output,

real output, estimated revenue etc. These information

become valuable in reasoning, where reasoning is implied

to visualize a first estimation about the failure costs. The

ERP system provides Procedure Information.

• MES. Manufacturing Execution System holds informa-

tion about the overall manufacturing process. Which

product is manufactured at which machinery and where

the process will be continued, what steps are left for the

finished product. These information are useful because of

the visible chain of commands (manufacturing protocol)

and the possibility of backtracking the relationships. Con-

sequently, the MES also provides Procedure Information.

• Environment. The environment of the manufacturing

process itself is getting not much attention by the research

community yet. But in some cases, even in a smart

factory, parts of the process chain may be fail. The

injection modeling process is vulnerable to environmental

influences, and they are recognized as uncontrollable fac-

tors [23–25]. Such information can be gathered through

environmental sensors, providing Environment Informa-
tion.

• Human. The personnel involved in the manufacturing

process, such as operation, maintenance, repair or moni-

toring. The human provides information about certain sit-

uations, such as conditions, concerns or upcoming faults.

With this situation awareness she ties the loosely coupled

ends of information provided through the visualization.

Each of the involved entities provide information that are use-

ful for a context-aware diagnosis. The sources of information

may vary from the technical side from factory to factory and

should be taken as an extensible list, with a bottom line for

discussion.

B. Triggers

Triggers in the cross-sector meta-layer observe the provided

information either automatically or manually and start the

context creation process if the observations are subject to

suspicion. We define four triggers:

• Outlier Detection. The unsupervised outlier detection,

that consists of statistical and machine learning methods

will give a hint on abnormal behavior through an event as

previously proposed [1]. These models can be re-trained

either by reinforcement learning or by annual, monthly

or weekly wither manual or automatic updates to cover

the latest developments within the surveyed CPSs.

• Machine Fault Events. In critic cases the machine itself

will throw an event on faulty components.

• Case Models. A case contains known issues enriched

with context information and a pre-built error model that

activates the trigger for observation.

• Human. In rare cases, where none of the automatic

triggers will be activated, the human can force a con-

text creation process, if the observations look suspicious

from his perspective. A typical situation is that quality

assessment reported faulty products, while each system

operates normal.

Each context creation process ends in a derived view of the

current situation presented to the user. The visualization in

multiple views presents the aggregated interconnected blended

information in an understandable sustainable manner. Assist-

ing the personnel in the situation.

C. The Human as Valuable Source of Expertise

The role of the human is vital and considered as human-

interactive systems within cyber-physical systems [26]. There-

fore, the concepts in Smart Manufacturing can be combined

with Visual Analytics, where the human is also indispensable

[2–7, 27]. The human interprets the presented information and

draw a conclusion towards the goal of a task, e.g. take error in-

ference (analysis task). The presented information encompass

actual process information, paired with procedure information,

CPS information and enriched with higher information coming

from ERP- and MES-systems. Furthermore, the presented

information is used to create a context infused case (CIC). We

define a CIC as a case of abnormal behavior, that contain the

annotated context information and where the human impose an

error model through e.g. a rule-based approach to trigger the

case. It differs from earlier introduced case models. The CIC

is based upon a formerly unknown issue, incorporate more

information about the state (context of the production process

and a human-validated error model). Whereas case models

are initialized with known problems of the machinery, that

operates context-independent referring maintenance schedules

or CPS documentation. These simple cases are supplied at

the installation step of the machinery. Therefore, the CICs are

the contextual opposite. As a result, CICs can be trained and

learned in production compromising information relationships

between on-site machinery and interactions to fuel the error

model. In addition, these CICs are composable, learnable and

transferable to other production systems, enabling a smarter

start of similar production lines. As error inference is only

one analysis task, we identified also knowledge acquisition,

exploration and reasoning as primary tasks within a Smart

Manufacturing production setup. For Munzner [12] a task

can be separated in an action and target (goal). Countless

combinations exists in Munzner’s Framework e.g. between the

analysis of a current situation and the investigation of all data,

attributes, network data or spatial data using a defined search

or query. The integration of Munzner’s framework enables

our model to be extensible for new tasks in the future. We

emphasize the current task list as a first draft and may subject

to change in further research.

D. Use-Case: The Error Inference Procedure

Error inference is quite difficult in vast amounts of industrial

log data, as our previous work shows [1]. For that reason its

an ideal use case scenario for our TAOISM VA-model. In a

situation where the CPS reports a normal behavior and our em-

ployed outlier detection models observe some anomaly within
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the provided information. The observation can encompass a

single source, or multiple sources, as well as multivariate

high dimensional data. Next, the observation triggers the asyn-

chronous context creation process. The process gather data

from all available sources to provide contextual information

around the suspicious observation. After the gathering, the

analyst is given access to all the information in multiple

views with different visualizations. Now, the analyst can self

search, annotate and set boundaries for e.g. thresholds to him

presented similarity and correlation analysis and highlight the

data that led him to the decision which event may cause the

issues. The output will be compressed within a CIC and an

error model is created using all the features discovered by

the domain expert, e.g. a rule set. Furthermore, the analyst

can alter captured CICs, add additional information or rules

or add more contextual information. In addition, the CICs can

be composed to higher level CICs to react on more complex

error situations. In the end, the CIC will be used to train new

unsupervised outlier detection models or adjust current once

in place. The error model of an CIC also leverage similarity

and correlation measurements to also react in more noisy

environments, where hard set thresholds are not sufficient. The

CICs are also stored within the case models leading to more

accuracy in terms of error detection over time.

IV. DATA

Many sources for data exist for Smart Factories (see Sec-

tion III-A). Schriegel et al. [22] structure the entities within an

automation pyramid from a few instances such as ERP to many

instances such as sensors. Applied to our previous definition,

we change the pyramid to ERP, MES, CPS, IIoT and at the

bottom sensors. Starting at the bottom line of the pyramid,

the following section outlines the available data types in a

smart factoring environments. For this reason, we released a

first dataset [20] to provide a hint about the complexity of an

Industry 4.0 Smart Factory. The data-set of the smart factory

already consists of 17.464 columns and 11.455 rows. Each

column, besides the first, correspond to an OPC-UA endpoint

within one of many OPC-UA models. The data-set contains

numeric and categorical values and include data structures like

arrays. Simons et al. [28] describe the testbed in detail. The

Smart Factory consists of a high-bay storage, a six-axis robot

for assembly, a pneumatic press, an inspection unit proofing

optical and weight parameters, an electrical inspection unit

and everything is interconnected by a shuttle system. That

testbed produces complex log data that is hard to analyze and

consists only on pure Process Information. We conduct a study

with more system data included such as data from ERP, MES,

Environment and IIoT devices. The following example shows

an excerpt of the released log data (see Table I).

The excerpt contains numeric and categorical values and

include data structures like arrays. This further increases the

complexity of possible values and makes a transformation step

mandatory (as shown in Figure 1). An additional layer of

complexity is that OPC-UA has 25 data types [29] that can

be arranged in arrays, structures and unions, which can be

TABLE I
EXCERPT OF THE SMART FACTORY DATA [20]

Columns Data
Timestamp 2019-03-13

14:27:25.277000

- 2019-03-13

14:27:25.964000
[...].ACK EF False

[...].ActPosPercCtrlOutp -0.2084[...]1067

[...].readWriteData b’\x02\x00 [...]

[...].Betriebszustand 5

[...].RT DATA
.EXEC BITS

[ False, False,

True, [...] ]
[...].DB 333.textlist b’Station 60

\x00index.html [...]’

also extended in the future. Stepping the pyramid upwards

to CPS level, each CPS is typically bundled with an OPC-

UA model, which is shipped with the machinery itself. The

model is a list of references, which hold information about

the integrated sensors and routines. Each reference can be

subscribed to in order to retrieve changing values. A PLC as

part of a CPS for example has access to multiple sensors and

has software routines, which can also emit messages. In order

to handle such variety of data types we already published some

transformation steps [1, 21]. In order to access the Information,

we follow these steps:

• Parse incoming data into a standardized format

• Use complex event processing (CEP) to infer higher level

events

• Transform events and values to specific formats for the

used algorithms

Especially, the last step is mandatory in order to utilize

multiple algorithms, from rule-based approaches to neural

networks. In our study [1] we had to transform incoming

data to a numerical format. Furthermore, the challenge was

to maintain the data characteristics within the new format.

Multiple transformation strategies are necessary for multiple

algorithms, that strategies differ based on the input types of

the involved algorithms.

All strategies in common is the fact, that a transformation

step needs to maintain the characteristics of a data-set. For

that reason, our TAOISM VA-model add a transformation

step (Figure 1) for each data source. The complexity of the

information within the presented smart manufacturing environ-

ment add additional requirements towards the visualization, in

terms of complexity reduction and information highlighting.

Concluding this section, the data has to be transformed per

algorithm that usage is planned.

V. MODELS

Our TAOISM VA-model consists of five models: outlier

detection (Equation (4)), machine fault events (Equation (5)),

case models (Equation (7)), context models (Equation (3)) and

Context Infused Cases (CIC, Equation (8)). As denoted, the

named models should be taken as an example and are subject

to further research, additional models may be added in the
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P = {t ∈ TO}, TO ⊆ TA (1)

Wn = {t ∈ TA | p ∈ P ∧ x ∈ X ∧ pn − x ≤ t ≤ pn + x},Wn ⊆W,n ∈ [ 1, |P |] ⊆ N (2)

Cn = {pim, cim, prim, em | pi ∈ PI ∧ ci ∈ CI ∧ pri ∈ PRI ∧ e ∈ Env ∧min(Wn) ≤ m ≤ max(Wn)}, Cn ⊆ C (3)

future. The following section outlines the formal definition

of each of our employed models. In addition, the formal

definition helps to differentiate between the individual models

and enables models, algorithms and methods that have already

been published to be classified, assigned or segregated to our

models.

We differentiate two types of models either active models,

which cause a context creation, or passive models, which will

be build automatically or with user interaction. Active models,

that actively trigger a context creation are the outlier detection

models, machine fault events and the case models.

The outlier detection models (OD) are a composition of

different algorithms (A), classical approaches such as ARIMA

[30] or neural networks such as autoencoder [31]. These meth-

ods can also be applied in ensembles to cover the weakness

of one algorithm with the strength of an another [32, 33].

OD = {a1, a2, ..., an | a ∈ A} (4)

Nowadays, most machinery have some sort of report system,

that automatically reports on faulty components or throw

events on incoming issues. Consequently, the machine fault

events (MF ) consist of multiple events (E) with a mapping

function (F (CO) : (co1, .., con) → E), where components

(CO) trigger the events directly.

MF = {(e1, f1), (e2, f2), .., (en, fn)) | e ∈ E ∧ f ∈ F} (5)

The machine fault event model cover those trivial cases and

help the professional by starting the fetch of context related

data for the visualization after an event is caught.

The case models (CM ) build the bridge between the initial

setup and the operation phase of the CPS. Meanwhile, the

setup of the CPS standard cases (see Equation (7)) that where

known upfront are employed in the case models. A basic case

(CA) consists of an Error Model (EM ) and a description (D).

CA = {D,EM} (6)

CM = {ca1, ca2, .., can | ca ∈ CA} (7)

Those cases can encompass rule-based approaches that

incorporate CPS-related logic. We already published a rule-

based approach to fuse documentation and incoming machin-

ery events [21].

The context model (C) (see Equation (3)) fuses process in-

formation (PI), CPS information (CI), procedure information

(PRI) and environment information (Env) together utilizing

one or more windows (W ). The fuse points (P ) are the times-

tamps of the outliers (TO), which are a subset of all available

timestamps (TA). A window (W ) spans around an outlier

timestamp (P ) and configurable range (X). Furthermore, the

earliest and latest timestamp will than be used to build the

context and fetch the data within the interval. As a result,

the context can be seen as a current snapshot or joint of the

situation, that will provide a fine-grained overview around a

timestamp of a suspicious observation.

A CIC is a combination of both the context (C) and the

case (CA), with additional historical information (H):

CIC = {C,CA,H} (8)

The process information is part of the context (CO), the

analyst (Figure 1) employs domain knowledge within the

exploration task to find patterns that can be connected to cover

the case and build an error model. Additionally, it is possible

to add historical data to strengthen the error model and refine

the trigger. After everything is in place the CIC is saved to the

case models as an additional extended case. The now annotated

information, current and historical data is also used for training

of the different outlier detection algorithms, e.g. to also cover

noisy cases.

VI. VISUALIZATION

We integrate multiple layers in our TAOISM VA-model

(Figure 1) that have an effect on the visualization e.g. data

or models. Each layer has several implications that result

in requirements for the visualizations. The following section

outlines the requirements for visualizations that intend to use

our TAOISM VA-model. Additionally, we add a first draft of

three user interfaces (overview, configuration, analysis), which

arose from the given requirements. These drafts depend on

each other and are ordered from overview to detail to provide

broad first hint about the impact between the relationships of

the requirements. The key requirements that emerge from our

model are:

• Unified System Integration (1). Through the extendable

automated transformation process, we provide a way

to interconnect and integrate new system components

(e.g. sensors). The visualization has to be extendable

and universal to adapt to new elements and provide an

overview about the involved systems (CPSs, Env, ERP,

MES etc.).

• Configurability (2). Our model is configurable. We put

the analyst in charge to change the transformation process

and the models (outlier detection, case, machine events).

Additionally, the analyst can limit the information pro-

vided by the different visualizations. Consequently, the
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visualization has to allow a modular configuration of each

component within the model and provide an ability to

slice the granularity of information.

• Surveillance of Mass Information (3). We do not hide

information in our model. We employ ways to provide the

analyst with distilled information with details on demand.

As a result, the visualization has to implement intelligent

aggregation strategies to cope with the vast amount of

information.

• Highlight important Information (4). Our visualiza-

tions highlight outlier and use context information to

project and compose different data sources to provide

deeper insights. Therefore, the visualization must contain

several ways to highlight information without overwhelm-

ing and interrupting human perception.

• Context Creation and User Integration (5). Upon event

notification the build context information are automat-

ically provided and visualized. The analyst is able to

compose problem related data, enrich the data by rules

and infuse historically data to enhance old cases or create

new cases. For this reason, the visualization has to allow

the user to mark important information and additionally

chain the found information and multiple observations

together to generate new error models.

The first overview draft (Figure 2) shows a fusion of different

hard- and software models and is part of the unified system

integration (1). A smart manufacturing production line consists

of different CPSs and data sources (Section IV). We are

able to acquire a lot of data through OPC-UA and other

manufacturing protocols. OPC-UA machine models provide

information about all the available data from process data to

a single sensor. Each available model is used to automatically

generate an overview about the production line (Figure 2). The

draft in Figure 2 shows the output of the generation process.

Currently, we are in a transition between loosely coupled

interconnected production plants towards the fully-automated

smart factory. In this hybrid state there is also the need to add

production plants manually to the shown graph in Figure 2.

For this reason, the overview is editable.

The generation process of the overview draft is started after

one or more OPC-UA endpoints are added through the UI

or automatically found due to used standard OPC-UA ports

(spared to save space). Each found model is drawn as a

orange square, containing their OPC-UA namespace in order

to cover its name. An ontology is used to find an icon fitting

the name for each model. The icons are interchangeable and

are in place in favor of distinctness and perception. An icon

together with a name is more recognizable as a single string.

In addition, the visual layout supports the perception of the

process sequence. The more advanced part of the visualization

is the automatic information flow annotation. In order to get

the information all models will be subscribed to and through

the presence and absence of activity within the models sensors

the directed graph is computed and added to the visualization.

Every automatism has its flaws, so the user can change the

Fig. 2. Generated overview based on the incoming Information, validated
using profound OPC-UA models (left). Additionally, the current severity levels
(right).

automatically build graph, afterwards. Each visualized node

has an additional field in right upper corner. Here, the current

health status of the plant is visualized, the health status of

the machine aggregates the different information sources to

its highest level. That square creates a space for a visual

placement of the results through a context algorithm, such as

the situation value formula invented by Zhou et al. [8]. In our

model, the status contains information about current machine

load, process flow, outlier models and prediction models, case

models and machine fault events. Each event occur in different

severity levels, visualized from green (everything ok) to black

(faulty machine).

Figure 2 shows also the different severity levels. Thereby,

green indicates a normal running system, yellow stands for

most severe situation and red is completely wrong if nothing

is changed. The scale ends with black if the production line is

forced to pause and the worst case situation has occurred e.g. a

machine fault. The elements within the overview are movable

to ensure that it is adjustable to visually map the outline of

the production line into the dashboard.

Next, we propose a visualization draft for the configurability

(2) of the different transformation steps and the configuration

of different algorithms. We name our approach visual orches-

tration of methods, because we align different transformation

steps with parametrization of different data models (outlier

detection, case, machine fault events). Figure 3 shows the

configuration dashboard. The view is split into two areas,

the available nodes and the configuration view. Each available

node can be used to create a configuration graph. All found

sensors or different layers of machine abstraction delivered

through OPC-UA can be selected in a source node. The views

(Figure 2, Figure 3) depend heavily on each other. Every

time a node is added either on the overview page or on the

configuration layer the models are updated. After a source
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Fig. 3. Visual orchestration of methods: Dashboard configuration view

node is added, one of the information sources Section IV

can be selected. Multiple nodes can be joined together within

a transformation node. A menu emerges on a node hover

(Figure 3) to visualize the output of the given node e.g. the

transformation step, to either inspect or explore the trans-

formed data. As shown, different visualization techniques are

available to the user (selected node is colored orange). A click

on edit, enables the analyst to tweak the parameters for actual

transformation steps.

It is shown that e.g. each outlier detection model has its

own node, where again the parameters of the given model can

be tweaked through the UI and the domain expert. Each node

is mapped directly to an output node which in return results

in a new visualization in the downstream visualization views

of our model. Multiple outputs of different transformation

steps or models can be joined again to operate e.g. on a

preprocessed data stream. Some used algorithms may process

massive amounts of data slower, which would delay the anal-

ysis. A reduced data stream resolves such a bottleneck. Each

configured pipeline can be stored by a name. That enables the

analysis of different user-created pipelines. Clustering between

simple and advanced users or domain experts is examined in

a future study. The study will encompass if AI models are

able to assist the basic user to build an optimal pipeline for a

given problem. As a result, an automated prefabrication of a

pipeline based on user feedback may be possible in the future.

The last visualization draft is the system performance

overview (Figure 4), which serves as gateway to observe mass

information (3), highlight important information (4) and be the

port for context creation and user interaction (5). Each output

element of the previous visualization layer is given its own

visualization, where the output is visualized e.g. as a graph.

Hereby, the visualization is based on both, rules and prediction.

The estimation of the current trend or value range is visual-

ized as bright blue and for each point a min and max value is

shown, leading to an advanced river chart. Reported outliers

are represented by circles and the color reflects its severity

or its probability e.g. in case of a neural network. Cases

that are triggered are visualized with a plus, again colored

to their severity. Furthermore, the context is visualized on a

click on either a case or an outlier. On the downstream view

(ditched in favor of the other views) the analyst can explore

the underlying context and mark suspicious observations. For

this reason the analyst can mark areas on the graph with a plus

for a case or a circle to explicit save the area for the training

process of one of the employed supervised outlier detection

algorithms. Multiple pluses and circles can be connected to

create fuzzy rule chains to trigger the case. In addition, the

analyst describes each case and set a proper name. All data,

including the context, is stored in a database as an annotated

corpus for the unsupervised outlier detection algorithms. The

database leads to an adoptable system that becomes better over

time on the detection of different quirks of the CPS. As a result

of a centralized storage, the database, with stored contexts and

cases can be interchanged with other production lines with

similar machines. In return, a database migration may provide

a way to integrate a new production line in the future.

VII. KNOWLEDGE

Knowledge is used ambiguously, therefore we define this

term in this section. We use Munzner’s work [12] as founda-

tion for formalizing and characterizing tasks. Munzner formal-

izes tasks as action and target [12]. Accordingly, we classify

for our model within SM as an action (A) and a target (Tr):

T = (A, Tr) (9)

These actions are used to analyze, search or query data. This

can be done for all data, attributes, network or spatial data

in order to achieve different goals such as trend or outlier

detection. The formal definition (Equation (9)) will lead in a

future work to a fine granular task definition. In the meanwhile,

we use the work of Zhou et al. [8] on visualizations in SM

to illustrate the most wide-spreaded tasks and include them

in our model. For this, we identified four main tasks for our

model:

• Knowledge Acquisition. Knowledge acquisition is the

task, where the user gets familiar with the SM-

environment. It is mandatory to acquire an understanding

of the complex CPSs to handle upcoming incidents. The

Fig. 4. Distilled system performance zoomed overview backed by predictions
with marked outliers and triggered cases.
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task is essential for trainee programs, advisory or recov-

ery from a crisis to mitigate losses in domain knowledge

through employee exchange. We assist the knowledge

acquisition due our prefabricated case models with de-

scriptions and different levels of information granularity

to assess the systems and its internals.

•
Exploration. Exploration is defined as a task after the

user gets familiar with the system through knowledge

acquisition. The process of exploration leads to new

defined insights and correlations without a certain pre-

defined task in the user’s mind. Therewith is a self-

driven knowledge acquisition process without a main

goal. Exploration is part of the day-to-day work in form

of surveillance and maintenance of the production line.

The exploration process is mainly supported through our

interactive visualizations.

•
Analysis. Analysis is the process of investigating deeper

insights in particular to detect a certain pattern or solve

a complex analytical task, e.g. detecting and solving an

outlier. We enable the analysts to investigate outliers

and search the system for possible correlations. Outlier

Detection and Predictive Maintenance are part of the

analysis task. Already acquired knowledge is used to

examine the system to search for possible reasons or

causing effects.

•
Reasoning. Finally, the reasoning task is the inference of

a reason for a specific issue. It builds upon the acquired

knowledge and vast exploration during an analysis. We

support the analysts to reason outliers providing the

tooling for recording, annotation and interaction with the

data and the process throughout the visualization. The

CIC creation and a Fault Recovery is part of the reasoning

task. Our proposed VA-model provides the tool chain to

put data into a perspective.

The Knowledge Acquisition tasks is a prerequisite to the

other task in order. CPSs are complex interconnected systems

with networks and process schedules. Furthermore, the knowl-

edge about the systems, system architecture and common

events has to be acquired upfront, in order to use exploration,

analysis and reasoning. Our model provides the tools to assess

the system simplified. In addition, the case models database

provides the opportunity to browse through common already

known events. A trainee, professional or analyst that want to

get familiar with the CPSs starts with browsing the delivered

data. They want to get to know the topology of the CPSs and

the paths of the information flow. We introduced a general

process overview (Figure 2) and the configuration dashboard

(Figure 3) to visualize the information flow in the system. In

addition, information are delivered in different zoom levels

(Figure 4). Figure 4 is also an example, how to compare

between sensor values and summarize events according to

each case or outlier. In the exploration task, the users are

already familiar with the CPSs and the user interfaces. They

want to discover more aspects of the production process.

Meanwhile, the exploration tasks the analyst wants to discover

new insights through exploration. The case models (Figure 1)

provide information in a centralized point. The search field

(Figure 2) help to query the database of recent or historically

known cases. If available, all cases are delivered with more

information such as contexts (process information, procedure

information etc.). The provided information is visualized in

already known views (detail view, Figure 4), in order to keep

the user’s perception consistent. Now, after a basic under-

standing of the production process is established, attributes are

additionally in focus. The analyst is able to survey different

distortions, extremes or similarities (Figure 4). The obtained

knowledge is than utilized in the analysis task. An analysis of

an outlier or a new fault is a complex task. Our model supports

this tasks by providing the visualizations to annotate, record,

derive data in order to locate or identify information that are

useful in that scenario. In Section VI we describe an analysis

scenario. The analysts can review data and annotate outliers

or cases to the found suspicious observations. Furthermore,

the saved context and its values are transferred to the case

models database. Different kinds of algorithms derive the data

in order to observe e.g. minima or maxima. Additionally,

estimations are also visualized in the performance overview

(Figure 4). The analyst is also enabled to configure each

algorithm for the analysis task (Figure 3). Mature processes

can be edited and altered to get extended and varied to match

new conditions of historic events. As a result, the analyst is

capable of the final task, the reasoning. Besides the analysis

tasks, the reasoning task involves more data. New insights and

hypothesis have to be proven, in order to get the underlying

reason. Hawkins postulates a definition that an outlier is ”an

observation which deviates so much from other observations

as to arouse suspicions that it was generated by a different

mechanism” [34, p. 1]. The reasoning task tries to find these

different mechanisms and to provide a kind of rule that can be

recognized. No matter whether it is just an outlier, a machine

event or a faulty component.

VIII. CONCLUSION

In this paper we presented an industry 4.0-ready VA-model

for context-aware diagnosis in Smart Manufacturing which

we call TAOISM. We combined and summarized method-

ologies, algorithms and specification to form a novel model.

Additionally, we gave a first draft of a context-definition for

Visual Analytics in Smart Manufacturing. Equally important,

we specify the process of context creation and gave an example

how the context can be handled and used within a Visual

Analytics system. Moreover, we specified a list of possible

information sources and models for VA. Our model is also

industry 4.0-ready, because we utilize the latest smart factory

protocol OPC-UA and with our already published transfor-

mation strategy [1] we are able to support more protocols

in the future. Furthermore, we derived a first set of require-

ments for visualizations in Smart Manufacturing and provided

visualization drafts, which implement the given requirements.

Finally, we identified four main tasks and classified them under

utilization of Munzner’s Framework [12]. Which is to the best
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of our knowledge a novelty and firstly used for knowledge task

classification within a VA-model. Further, our TAOISM VA-

model open opportunities for additional research. We plan for

further studies on transformation strategies to cover additional

data sources for SM. A current limitation is the focus on OPC-

UA only for the overview generation process, other protocols

will be covered in future studies. A plan is conducted to

develop and implement different algorithms for the overview

generation process. Multiple studies are planned for our vi-

sual orchestration of methods. The visual orchestration of

methods carry certain opportunities. A study was conducted

to analyze basic, advanced and professional users and their

build pipelines to build an AI to assist inexperienced users

in the building procedure for given problem. An automatic

approach to pipeline building could be possible as well to

automatically build a processing pipeline for a new observation

based on veteran feedback. A study is planned to examine this

opportunity.

To conclude our work, we provided a novel VA-model for

context-aware diagnosis in Smart Manufacturing. It should be

seen as a living model open to future research. We proposed

a first revision of our model based on our previous findings.
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