
Evaluating Query Strategies for Different Feedback
Types in Interactive View Recommendation

Xiaozhong Zhang Xiaoyu Ge Panos K. Chrysanthis
Department of Computer Science, University of Pittsburgh

xiz151@pitt.edu, xig34@pitt.edu, panos@cs.pitt.edu

Abstract—Existing visualization recommendation approaches
introduced an overwhelmingly large number of utility functions
(UFs) to rank the visualizations (i.e., views). In order to discover
the ideal UF and their tunable parameters that are most suited
for a particular analysis context, recent works have proposed
Interactive View Recommendation (IVR). IVR identifies the ideal
UF by learning from the interactions with the user during the
analysis process. We claim that the user is usually unable to
provide an accurate real number between 0 and 1, indicat-
ing the view interestingness, and in this work, propose three
alternative feedback types: binary, Likert scale, and pairwise
comparison. We further developed ranking algorithms for the
three feedback types. Finally, we propose different example
selection strategies, and experimentally evaluate them on the
three feedback types. We found that uncertainty-based and
hybrid-based strategies usually outperforms the random strategy
in terms of recommendation accuracy across all feedback types,
while the interestingness-based strategy usually performs worse
than the random strategy.

I. INTRODUCTION

The ubiquitously available information sources and the
advancements in data storage and acquisition techniques have
led to an unprecedented increase in the data volumes available
for data analysis tasks. One major challenge in utilizing
these abundantly available data is discovering insights from
them effectively and efficiently. Examples of an “insight”
include the structure, patterns, and causal relationships. To
explore these massive and structurally complicated datasets,
data analysts often utilize visual data analysis tools, such
as Tableau, Qlik, Lyra, Amazon Quicksight, Google Fusion
Tables etc. [17]. However, the effectiveness of these tools
depends on the user’s expertise and experience. Coming up
with a visualization that shows interesting trends/patterns is a
non-trivial issue.

To address the shortcomings of the current visual analysis
tools, several methods for recommending visualizations have
recently been proposed (e.g., [21], [10], [16], [9], [4], [14],
[12], [22]). These methods automatically generate all possible
views of data, and recommend the top-k interesting views,
according to some utility function (UF) (e.g., deviations, data
variance, usability) that measures the interestingness of data.
Even though each UF might be suitable for specific scenarios,
identifying the ones that are most suitable for the current
analysis context, is still a challenge for both expert and non-
expert users.

A new paradigm in view recommendation, called Interactive
View Recommendation (IVR) [25] aims to discover the ideal
UF, i.e., the combination of UFs and their tunable parameters
that are most suitable for the current analysis context by
learning from the interactions with the user during the analysis
process. Current IVR works [25], [23], [24] usually require the
user to provide feedback for selected example views in the

form of a real number between 0 and 1, indicating the view
interestingness and use machine learning models to learn the
UF based on the feedback.

In this paper, we claim that the user is usually unable to
provide an accurate real number feedback between 0 and 1,
due to the infinite number of choices that the user faces in
this kind of feedback type. Motivated by the above issue, we
propose three alternative feedback types in this work, to which
the user is more likely to provide accurate answers. We also
design and experimentally evaluate different example selection
strategies (i.e., query strategies) for the three feedback types.

Below are the main contributions of this paper:

1) We propose three new feedback types, namely, binary,
Likert-scale, and pairwise comparison to be used in
the interactive view recommendation, and design their
corresponding ranking algorithms. (§III)

2) We propose different query strategies to effectively
leverage each feedback type for interactive view explo-
ration. (§IV)

3) We experimentally identify the effectiveness of our
query strategies with different feedback types using real-
world datasets. (§V-VI)

II. BACKGROUND

In this section, we present the necessary background details
of our work. Specifically, we discussed view construction in
the database context, the traditional view recommendation
problem, and the interactive view recommendation problem.

A. Views & Data Visualization

In the context of structural databases, a view (i.e., histogram
or bar chart) essentially represents an SQL query with a group-
by clause over a database D [21], [4].

Under the typical multi-dimensional data models, data can
be modeled as a set of measure attributes (i.e., numerical
attributes) M = {m1,m2,m3, ...} and a set of dimension
attributes (i.e., categorical attributes) A = {a1, a2, a3, ...}.
The measured attributes are a set of attributes that contain
measurable values and can be aggregated. The dimension
attributes are the set of attributes on which measured attributes
are viewed. An SQL query with a group-by clause need to have
a set of aggregation functions F = {f1, f2, f3, ...}. Thus, each
view vi is the visualization of the query result of applying an
aggregation function.

Two example views are shown in Figure 1. The two views
are both comparing the average test results of female and male
patients, and are constructed by applying the Average function
on the Result attribute, and grouping the aggregate values by
the Test attribute for female and male patients.

397

2020 24th International Conference Information Visualisation (IV)

978-1-7281-9134-8/20/$31.00 ©2020 IEEE
DOI 10.1109/IV51561.2020.00070

(a) View A (b) View B

Fig. 1: Example Views

It can be seen that, the View Space (VS), i.e., the total
number of possible views is:

V S = |A| × |M | × |F | (1)

where | · | is the attribute count. Clearly, View Space can be
very large, especially for high-dimensional data.

B. Traditional View Recommendation
In order to recommend the set of k most interesting views

from a large number of views, traditional view recommen-
dation approaches [21], [4], [14], [22], [12] have proposed a
variety of utility functions (UFs) to rank the views. A UF maps
a view to a real number indicating the interestingness of the
view.

Definition 1: (Traditional View Recommendation Problem)
Given a database D, a user-specified query Q, a set of results
R produced by Q, a UF u(), and the size of the preferred
view recommendations k. Find the top-k views v1, v2, ...,
vk constructed from R that have the highest interestingness
according to u() among all possible views.

From the above definition, one can clearly see that in the
traditional view recommendation approaches, the UF u() is
defined a priori and cannot adapt to different analysis contexts
such as the user, and the analysis task.

C. Interactive View Recommendation
A new paradigm in view recommendation called Interactive

View Recommendation (IVR) was proposed to support analysis
context adaptability [25].

Definition 2: (The IVR Problem) Given a database D, a
user-specified query Q, a set of results R produced by Q,
a set of n possible UFs U = {u1(), u2(), ..., un()}, and the
size of the preferred view recommendations k. Find the top-k
views v1, v2, ..., vk constructed from R that have the highest
interestingness according to u() among all possible views,
where u() can be any combination of the functions in U , and
is most suitable for the current analysis context.

In IVR paradigm, the view recommendation system inter-
acts with the user during the analysis process to automatically
learn the UF u() that is most suitable for the current analysis
context. For example, current IVR approaches ask the user
to label selected example views with a score indicating the
interestingness of the views and use different learning methods
to learn the UF based on user labels.

The labels for the example views in current IVR approaches
are usually in the form of a real number between 0 and 1, with

Algorithm 1 The ViewSeeker
Require: The raw data set D and subsets R specified by user queries
Ensure: The view utility estimator UE

1: Unlabeled view set U ← generateV iews(D,R)
2: Labeled view set L← obtain initial set of view labels
3: InfoEst← initialize view informativeness estimator InfoEst

using L
4: InterestEst ← initialize view utility estimator InterestEst

using L
5: loop
6: Choose one x from U using InfoEst
7: Solicit user’s label on x
8: L← L ∪ {x}
9: U ← U − {x}

10: InfoEst← refine InfoEst using L
11: InterestEst← refine InterestEst using L
12: T ← recommend top views using InterestEst
13: if the user is satisfied with T or the user wants to stop then
14: Break
15: end if
16: end loop
17: Return the most recent InterestEst

0 being not interesting and 1 being most interesting. However,
we claim that the user is usually unable to provide accurate
real number labels as the feedback for the example views, and
propose three alternative feedback types (i.e., binary, Likert-
scale, and pairwise comparison), which are much easier for
the user to label, and more likely to have accurate labels.

III. VIEW FEEDBACK TYPES

In this section, we will first introduce our IVR framework
ViewSeeker [25] in terms of how it selects example views,
learns from user feedback, and generates view recommenda-
tions. Then we will introduce the three proposed feedback
types and how they can be used in ViewSeeker.

A. The ViewSeeker Framework
As shown in Algorithm 1, ViewSeeker takes in a raw dataset

and user queries, then generates all possible views (line 1) in
two steps: ViewSeeker first generates the grouped aggregated
values for each view as mentioned in Section II-A. ViewSeeker
then uses the scores from the set of individual utility functions
u1(), u2(), ..., un() on each view as the learning representation
for it. Next, ViewSeeker acquires a couple of initial user la-
bels to initialize the view informativeness estimator InfoEst
and the view interestingness estimator InterestEst (line 2-
4). Then, in each user-interaction iteration, ViewSeeker uses
InfoEst to select example views with the highest informa-
tiveness scores, solicits user labels on the example views, and
refines InfoEst and InterestEst using the updated labeled
set (line 6-11). At the end of the iteration, ViewSeeker uses
the latest InterestEst to estimate the interestingness of all
the views to provide recommendations (line 12). ViewSeeker
repeats the above steps until the user is satisfied with the
recommendation, and then returns the latest InterestEst as
the exploration terminates.

B. Binary Feedback
The first feedback type is the binary. Given an example

view, the binary feedback asks the user to indicate if the view
is interesting or not interesting. For example, for the two views
in Figure 1, if the user is interested in the test result difference

398

between the genders, then she will likely mark View A as not
interesting and View B as interesting.

The labeled views are used to train and refine the
InterestEst in the form of a binary classifier. For view rec-
ommendation, we propose to use the positive class probability
of the classifier as the interestingness estimation, because the
positive class probability reflects the model’s belief of the
example’s relevance (i.e., interestingness).

C. Likert-Scale Feedback

The second type of feedback is the Likert-scale feedback.
We propose to use the scale from 1 to 5, which is a commonly
used scale, and is also recommended by [18]. Given an
example view, the Likert-scale feedback asks the user to
indicate the interestingness of the view on a scale of 1 to
5, with 1 being not interesting and 5 being most interesting.
For example, for the two views in Figure 1, the user could give
a score of 2 to View A, because there is a small difference
between the test results of the two genders; and a score of
4 to View B, because the difference between the genders is
large but not extreme, which prevents View B from receiving
a score of 5.

Similar to the binary feedback, the user’s labels are used
to train and refine the InterestEst in the form of a 5-class
classifier. For view recommendation, we propose to use the
weighted sum of the model’s predicted probability and the
class weight for each class as the interestingness estimation
as shown in Equation 2:

I =
5∑

i=1

(αi × pi) (2)

where I is the interestingness estimation, αi and pi are the
weights and predicted probability for each class.

We use linear spacing to define the class weights, such that
the 5 classes have weights 0, 0.25, 0.5, 0.75, and 1.0 for class
1 to 5, respectively. It can be seen that the interestingness
estimation will be a real number between 0.0 and 1.0. Sim-
ilar to binary feedback, our definition of the interestingness
estimation changes in the same direction as the model’s belief
of the example’s relevance. For example, if the probability
of class 3 decreases and the probability of class 4 increases,
it means that the model’s belief of the example’s relevance
increases, and so does our interestingness estimation.

D. Pairwise Comparison Feedback

The third proposed feedback type is the pairwise compari-
son between a pair of views. Given a pair of example views,
the pairwise comparison feedback asks the user to indicate
which of the two is more interesting. For example, for the
two views in Figure 1, the user could label View B to be
more interesting because there is a larger difference between
the test results of the two genders.

The partial order information obtained from the comparison
feedback can be used to train and refine the InterestEst in
the form of a learning-to-rank (L2R) model [11]. An L2R can
provide predicted ranking of a list of views, and we use this
ranking as the view recommendation for this feedback type.

Fig. 2: Committee disagreement calculation for pairwise com-
parison feedback

IV. QUERY STRATEGIES

We refer to the example selection strategy in ViewSeeker
as query strategy in accordance with active learning literature
[19]. Below we will discuss the details of each query strategy.

Random Strategy This is the vanilla query strategy. When
using this strategy, ViewSeeker will randomly select example
views based on a uniform distribution. In other words, each
unlabeled view will have a probability of 1/|U | to be selected,
where |U | is the size of the unlabeled view set.

Uncertainty-based Strategy This strategy from active
learning selects the example views whose labels the current
model is most uncertain about, and uses the uncertainty of
an example view as its informativeness. We have adopted the
query-by-committee (QBC) algorithm [19] as the uncertainty-
based strategy. QBC builds a committee of learners and
selects the example views on which the committee has the
largest disagreement. The disagreement among the committee
members is the informativeness measure for the InfoEst
under this query strategy.

We define different disagreement metrics for different feed-
back types. For binary and Likert-scale feedback, we use the
standard deviation of the interestingness estimations from the
committee members as the disagreement measure. For pair-
wise comparison feedback, we use the difference in the relative
interestingness estimation among the committee members as
the disagreement measure. An example of the disagreement
calculation is shown in Figure 2. For a pair of view v1 and v2,
I(v2)−I(v1) is the relative interestingness estimation between
them. Assume that we have a committee of three members
C1, C2, and C3, and the three points represent the estimations
from them. The disagreement D is measured as the distance
between the highest point and the lowest point. Besides, if the
three points are on the same side of the zero line, we set the
disagreement to zero, because in such a case, there would be
no ranking inversions among the committee members.

Interestingness-based Strategy A different kind of query
strategy selects the example views with the highest estimated
interestingness. This strategy is also called active search [6].

For this query strategy, the InterestEst of ViewSeeker also
serves as the InfoEst, such that the views with the highest
estimated interestingness by the InterestEst are regarded as
the most informative and are selected. Specifically, for binary
and Likert-scale feedback, the informativeness score is the

399

TABLE I: Ideal Utility Functions
(D: Deviation, V: Diversity, C: Conciseness)

Ideal Utility Function

1 0.6×D + 0.2× V + 0.2× C

2 0.2×D + 0.6× V + 0.2× C

3 (D + 0)× (V + 1)× (C + 1)

4 (D + 1)× (V + 0)× (C + 1)

estimated interestingness of the view; and for the pairwise
comparison feedback, the informative score is the sum of the
estimated interestingness of the views in the pair.

Hybrid-based Strategy This query strategy takes into ac-
count both the uncertainty and interestingness of the example.
For this query strategy, we first calculate the uncertainty score
(i.e., committee disagreement) and the interestingness score
(i.e., estimated interestingness) of the example, and multiply
the two scores to form the final informativeness score.

V. EXPERIMENTAL TESTBED

Dataset: We use two datasets in our experiments. The DIAB
dataset contains clinical care data of patients with diabetes.
The CENSUS dataset [5] contains microdata from the U.S.
labor force survey.

Analysis Task: We created two analysis tasks. For the DIAB
dataset, we perform analysis by comparing clinical data be-
tween female and male patients, and for the CENSUS dataset,
we compare the microdata between female and male labor
force. To generate views, we create a data subset for each
gender, generate all possible views for each subset, and
combine each view with the corresponding view from the
opposite gender to form a comparison view.

Ideal Utility Functions: There are three individual utility func-
tions involved in our experiments, each measuring a different
aspect of the views. They are Deviation [21], Diversity [8],
and Conciseness [8]. From the individual utility functions, we
create composite UFs that are most suitable for each analysis
context, which are called Ideal Utility Functions (IUFs). We
have simulated four IUF’s in our experiments, as shown in
Table I. It can be seen that IUFs 1 and 2 are in linear form as
suggested by the current IVR work [25], and IUFs 3 and 4 are
in non-linear form as suggested by work [24]. Besides, IUFs
1 and 3 simulate the situation when the user has more interest
on Deviation in the current analysis context, while IUFs 2
and 4 simulate the situation when the user has more interest
on Diversity in the current analysis context.

Query Strategies: We experimented with all three query strate-
gies proposed in this work and compared them with a random
baseline. We use the following abbreviations for the query
strategies: Uncertainty-based (U-Based), Interestingness-based
(I-Based), and Hybrid-based (UI-Based).

User Simulation: The simulated user gives her feedback ac-
cording to the IUF. For binary feedback, we use 70 percentile
of the interestingness of all views calculated under the current
IUF as the decision boundary for the user. We assume that
70 percentile as the decision boundary can achieve a balance
between the quantity and quality of the relevant views. For
Likert-scale feedback, we use 5 bins with boundaries at 20,
40, 60, 80 percentiles of the interestingness of all views
calculated under the current IUF, and map the view’s score into

TABLE II: Testbed Parameters

Total number of records 100K (DIAB), 100K (CENSUS)
Dimension attribute count 6 (DIAB), 4 (CENSUS)
Measure attribute count 8 (DIAB), 7 (CENSUS)
Aggregation function count 5
All possible view count 240 (DIAB), 140 (CENSUS)
Individual utility measure count 3
Query strategy count 4
Query view count per iteration 1
Performance measurement Top-k accuracy
Recommend view count (k) 5,10,15,20
Runs for each configuration 5

the corresponding bin as the user’s choice. For the pairwise
comparison feedback, we calculate the scores of the two views
based on the current IUF, and use the comparison result of the
two scores as the user’s feedback.

Learning Methods: We use XGBoost [2] with linear boosters
for all three feedback types. Specifically, we use XGBoost
Classifier for the binary and Likert-scale feedback types and
XGBoost Ranker for the pairwise comparison feedback type.

Recommendation Accuracy: Assuming that the top-k views
ranked by the IUF is V ∗ and the top-k views ranked by the
learner are V , then the recommendation accuracy (or accuracy
for short) is |V ∗ ∩ V |/k.

VI. EXPERIMENTAL RESULTS

Binary Feedback The experimental results for the DIAB
dataset for the binary feedback are shown in Figures 3–6.
We can see all four query strategies have similar accuracy
at the early stage of the exploration at 10 labels. U-Based
and UI-Based strategies outperform the baseline at 20 labels
and more, with an average accuracy improvement of 15.5%
for U-Based and 17.2% for UI-Based against the Random
strategy. In contrast, I-Based performs consistently worse than
the baseline.

Similar observations are made for the CENSUS dataset,
whose results are shown in Figures 7–10.

Likert-scale Feedback The experimental results for the
DIAB dataset for the Likert-scale feedback are shown in
Figures 11–14. These are similar to Binary feedback: all four
query strategies have similar accuracy at the early stage of
the exploration at 10 labels; U-Based and UI-Based strategies
outperform the baseline at 20 labels and more, with an
average accuracy improvement of 14.1% for U-Based and
10.4% for UI-Based against the Random strategy; and I-Based
consistently performs worse than the baseline.

The corresponding results for the CENSUS dataset are
shown in Figures 7–10. We have made similar observations for
the CENSUS dataset, with the difference that the advantage
of the U-Based strategy and the disadvantage of the I-Based
strategy against the baseline only shows after 20 examples.

Pairwise Comparison Feedback The experimental results
for the DIAB dataset for the pairwise comparison feedback
are shown in Figures 19–22. Similar to other feedback types,
U-Based and UI-Based strategies outperform the baseline at
20 labels and more, while the I-Based strategy consistently
performs worse than the baseline. However, the advantage
of the former two and the disadvantage of the later against
the baseline are smaller compared to those of the other two

400

Fig. 3: DIAB, binary feedback,
10 labeled examples.

Fig. 4: DIAB, binary feedback,
20 labeled examples.

Fig. 5: DIAB, binary feedback,
30 labeled examples.

Fig. 6: DIAB, binary feedback,
40 labeled examples.

Fig. 7: CENSUS, binary feed-
back, 10 labeled examples.

Fig. 8: CENSUS, binary feed-
back, 20 labeled examples.

Fig. 9: CENSUS, binary feed-
back, 30 labeled examples.

Fig. 10: CENSUS, binary feed-
back, 40 labeled examples.

Fig. 11: DIAB, Likert feedback,
10 labeled examples.

Fig. 12: DIAB, Likert feedback,
20 labeled examples.

Fig. 13: DIAB, Likert feedback,
30 labeled examples.

Fig. 14: DIAB, Likert feedback,
40 labeled examples.

Fig. 15: CENSUS, Likert feed-
back, 10 labeled examples.

Fig. 16: CENSUS, Likert feed-
back, 20 labeled examples.

Fig. 17: CENSUS, Likert feed-
back, 30 labeled examples.

Fig. 18: CENSUS, Likert feed-
back, 40 labeled examples.

Fig. 19: DIAB, pairwise compar-
ison, 10 labeled examples.

Fig. 20: DIAB, pairwise compar-
ison, 20 labeled examples.

Fig. 21: DIAB, pairwise compar-
ison, 30 labeled examples.

Fig. 22: DIAB, pairwise compar-
ison, 40 labeled examples.

401

Fig. 23: CENSUS, pairwise com-
parison, 10 labeled examples.

Fig. 24: CENSUS, pairwise com-
parison, 20 labeled examples.

Fig. 25: CENSUS, pairwise com-
parison, 30 labeled examples.

Fig. 26: CENSUS, pairwise com-
parison, 40 labeled examples.

feedback types. Similar trends are found for the CENSUS
dataset, whose results are shown in Figures 23–26.

VII. RELATED WORKS

View Recommendation techniques automatically generate
all possible views of data, and recommend the top-k interesting
views, according to some utility function (UF) (e.g., [21], [4],
[14], [12], [22], [16]). The key difference between our work
and all prior work is that all previous works use predefined
view UFs and do not discover the UF that best matches an
individual user’s intention and exploration task.

Interactive Visualization Tools have been studied exten-
sively for the past few years [9], [13], [20], [10], [1]. Unlike
visualization recommendation tools such as ViewSeeker that
recommend visualization automatically by searching through
the entire views spaces, traditional interactive visualization
tools require the user to manually specify the views to be
generated. Recently, a few interactive visualization tools have
attempted to automate part of the data analysis and visualiza-
tion process. The work [1] also uses user feedback to steer
the view exploration. However, the user feedback is only used
to make binary relevance decisions, which is not capable to
estimate the ideal UF and get the top-k view rankings.

Data Exploration techniques that aim to efficiently extract
knowledge from data [15] are complementary to our work.
In particular, example-driven data exploration approaches [7],
[3] assume minimum prior knowledge of the data and share
the same underlying approach as ViewSeeker. These works
aim to iteratively construct the exploratory query through user
interactions as ViewSeeker iteratively discovers the UF using
user feedback. ViewSeeker is well suited to such situations
and can enhance example-driven data exploration by creating
visualizations that illustrate interesting patterns during the
construction of the exploratory queries.

VIII. CONCLUSION

In this work, we first claim that, in interactive view recom-
mendation (IVR), the user is usually unable to provide accurate
real number feedback, and propose three alternative feedback
types for an IVR setting: binary, Likert-scale, and pairwise
comparison. We further developed ranking algorithms for
these three feedback types. Finally, we propose four different
example selection strategies, and experimentally evaluate them
on the three feedback types.

Our experimental results using two real datasets suggest the
use of Uncertainty-based or Hybrid-based query strategies, and
discourage the use of Interestingness-based query strategy in
IVR, especially for the binary and Likert-scale feedback types.

REFERENCES

[1] M. Behrisch, F. Korkmaz, L. Shao, and T. Schreck. Feedback-driven
interactive exploration of large multidimensional data supported by
visual classifier. In IEEE VAST, pp. 43–52, 2014.

[2] T. Chen and C. Guestrin. Xgboost: A scalable tree boosting system. In
ACM SIGKDD, pp. 785–794, 2016.

[3] K. Dimitriadou, O. Papaemmanouil, and Y. Diao. Explore-by-example:
an automatic query steering framework for interactive data exploration.
In ACM SIGMOD, pp. 517–528, 2014.

[4] H. Ehsan, M. A. Sharaf, P. K. Chrysanthis. Efficient recommendation
of aggregate data visualizations. IEEE TKDE, 30(2):263–277, 2018.

[5] S. Flood, M. King, R. Rodgers, S. Ruggles, and R. Warren. Integrated
public use microdata series, current population survey: Version 7.0
[dataset]. In Minneapolis, MN: IPUMS, 2020.

[6] R. Garnett, Y. Krishnamurthy, X. Xiong, J. G. Schneider, and R. P.
Mann. Bayesian optimal active search and surveying. In ICML, 2012.

[7] X. Ge, Y. Xue, Z. Luo, M. A. Sharaf, and P. K. Chrysanthis. REQUEST:
A scalable framework for interactive construction of exploratory queries.
In IEEE Big Data, pp. 646–655, 2016.

[8] L. Geng and H. J. Hamilton. Interestingness measures for data mining:
A survey. ACM Comput. Surv., 38(3):9, 2006.

[9] S. Kandel, R. Parikh, A. Paepcke, J. M. Hellerstein, and J. Heer.
Profiler: integrated statistical analysis and visualization for data quality
assessment. In ACM AVI, pp. 547–554, 2012.

[10] A. Key, B. Howe, D. Perry, and C. R. Aragon. Vizdeck: self-organizing
dashboards for visual analytics. In ACM SIGMOD, pp. 681–684, 2012.

[11] T. Liu. Learning to Rank for Information Retrieval. Springer, 2011.
[12] Y. Luo, X. Qin, N. Tang, and G. Li. Deepeye: Towards automatic data

visualization. In IEEE ICDE, pp. 101–112, 2018.
[13] J. D. Mackinlay, P. Hanrahan, and C. Stolte. Show me: Automatic

presentation for visual analysis. IEEE TVCG, 13(6):1137–1144, 2007.
[14] R. Mafrur, M. A. Sharaf, and H. A. Khan. Dive: Diversifying view

recommendation for visual data exploration. In ACM CIKM, pp. 1123–
1132, 2018.

[15] D. Mottin, M. Lissandrini, Y. Velegrakis, and T. Palpanas. New trends
on exploratory methods for data analytics. PVLDB, 10(12):1977–1980,
2017.

[16] B. Mutlu, E. E. Veas, C. Trattner. Vizrec: Recommending personalized
visualizations. ACM Trans. Interact. Intell. Syst., 6(4):31:1–31:39, 2016.

[17] X. Qin, Y. Luo, N. Tang, and G. Li. Making data visualization more
efficient and effective: a survey. VLDB J., 29(1):93–117, 2020.

[18] M. A. Revilla, W. E. Saris, and J. A. Krosnick. Choosing the number of
categories in agree–disagree scales. Sociological Methods & Research,
43(1):73–97, 2014.

[19] B. Settles. Active learning literature survey. Technical report, University
of Wisconsin-Madison Department of Computer Sciences, 2009.

[20] C. Stolte and P. Hanrahan. Polaris: A system for query, analysis
and visualization of multi-dimensional relational databases. In IEEE
INFOVIS, pp. 5–14, 2000.

[21] M. Vartak, S. Rahman, S. Madden, A. G. Parameswaran, and N. Poly-
zotis. SEEDB: efficient data-driven visualization recommendations to
support visual analytics. PVLDB, 8(13):2182–2193, 2015.

[22] K. Wongsuphasawat, D. Moritz, A. Anand, J. D. Mackinlay, B. Howe,
and J. Heer. Voyager: Exploratory analysis via faceted browsing of
visualization recommendations. IEEE TVCG, 22(1):649–658, 2016.

[23] X. Zhang, X. Ge, and P. K. Chrysanthis. Leveraging data-analysis
session logs for efficient, personalized, interactive view recommendation.
In IEEE CIC, pp. 110–119, 2019.

[24] X. Zhang, X. Ge, and P. K. Chrysanthis. Interactive view recommenda-
tion with a utility function of a general form. In HILDA, 2020.

[25] X. Zhang, X. Ge, P. K. Chrysanthis, and M. A. Sharaf. Viewseeker: An
interactive view recommendation tool. In BigVis Workshop, 2019.

402

