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Abstract—In the current era of big data, a huge amount of data 

has been generated and collected from a wide variety of rich data 
sources. Embedded in these big data are useful information and 
valuable knowledge. An example is healthcare and 
epidemiological data such as data related to patients who suffered 
from epidemic diseases like the coronavirus disease 2019  
(COVID-19). Knowledge discovered from these epidemiological 
data helps researchers, epidemiologists and policy makers to get a 
better understanding of the disease, which may inspire them to 
come up ways to detect, control and combat the disease. As “a 
picture is worth a thousand words”, having methods to visualize 
and visually analyze these big data makes it easily to comprehend 
the data and the discovered knowledge. In this paper, we present 
a big data visualization and visual analytics tool for visualizing and 
analyzing COVID-19 epidemiological data. The tool helps users to 
get a better understanding of information about the confirmed 
cases of COVID-19. Although this tool is designed for visualization 
and visual analytics of epidemiological data, it is applicable to 
visualization and visual analytics of big data from many other 
real-life applications and services. 

Keywords—big data, visualization, visual analytics, COVID-19, 
epidemiological data 

I. INTRODUCTION 
As we are living an era of big data, big data are everywhere. 

To elaborate, with advances in technology, a huge amount of 
data has been easily generated and collected from a wide variety 
of rich data sources at a rapid rate. These big data can be of 
different levels of veracity (e.g., precise data, imprecise and 
uncertain data [1-3]). Examples of big data include social 
network data [4-8], financial time series [9-11], omic data (e.g., 
genomic data) [1, 12], disease reports [13, 14], as well as 
epidemic data and statistics.  

Embedded in these big data are useful information and 
valuable knowledge. This calls for data science, which aims to 
discover knowledge from these big data via data mining 
algorithms, machine learning tools, mathematical and statistical 
models, data analytics, and visual analytics. The discovered 
knowledge is useful. For instance, knowledge discovered from 
these epidemiological data helps researchers, epidemiologists 
and policy makers to get a better understanding of the disease, 
which may inspire them to come up ways to detect, prevent, 
and/or control diseases such as viral diseases. Examples of viral 
diseases include: 

• severe acute respiratory syndrome (SARS), with 
outbreak in 2002–2004; 

• Middle East respiratory syndrome (MERS), with 
outbreak in 2012–2015; and 

• coronavirus disease 2019 (COVID-19), with outbreak 
started in 2019 and became pandemic in 2020. 

Due to the COVID-19 pandemic, many researchers have 
focused on different aspects of the COVID-19 disease. These 
include clinical and treatment information [15, 16], as well as 
drug discovery [17], related on research medical and health 
sciences. In contrast, as computer scientists, we focus on other 
aspects of COVID-19 data—namely, epidemiological data. 

As “a picture is worth a thousand words”, having methods to 
visualize and visually analyze these big data makes it easily to 
comprehend the data and the discovered knowledge [18]. A 
majority of the existing visualizers on the COVID-19 
epidemiological data focused on showing the numbers of 
confirmed cases and mortality spatially and/or temporally. In 
other words, they show 

• spatial differences among different continents, countries, 
regions, or sovereignties; and/or  

• temporal differences among weeks or days along the 
timeline—e.g., to show the effects of public health 
strategies and mitigation techniques such as 
social/physical distancing or stay-at-home orders in 
“flattening the (epidemic) curve”. 

As the numbers of inhabitants and tests both play roles in the 
data and their analyses, they help in the computation of figures 
like (a) the numbers of confirmed cases and mortality per 
thousand/million inhabitants and (b) the number of tests per 
thousand inhabitants. 

However, in addition to the number of cases or mortality, 
there are other important knowledge that can be discovered from 
the epidemiological data via data mining. For instance, frequent 
pattern mining finds relationships among attributes (or features) 
associated with confirmed COVID-19 cases. Moreover, a visual 
representation of this discovered knowledge gives a more 
comprehensive representation, which in turn leads to a better 
insight and understanding of the data and discovered knowledge. 
Hence, in this paper, we present a tool for big data visualization 
and visual analytics of COVID-19 epidemiological data. Due to 
the nature of these data, it is not unusual to have NULL values 
for some of the attributes (e.g., unstated transmission methods 
of disease). We tool provides users with flexibility to visualize 
the data with and without stated values for attributes. 
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Our key contributions of this paper include our design and 
development of a visualization and visual analytics tool for 
COVID-19 epidemiological data. Our tool incorporates (a) data 
analytics (especially, frequent pattern mining), (b) data 
visualization, and (c) visual analytics (especially, visualization 
and analysis of frequent patterns). Moreover, although the tool 
is designed for visualization and visual analytics of the COVID-
19 epidemiological data, it is applicable to visualization and 
visual analytics of big data from many other real-life 
applications and services. 

The remainder of this paper is organized as follows. Next 
section discusses some related work. Section III presents our 
visualization and visual analytics tools. Section IV shows 
evaluation results, and Section V draws the conclusions. 

II. RELATED WORKS 

A. COVID-19 Visualizers 
Due to the COVID-19 pandemic, many visualizers and 

dashboards have been developed over the past few months. 
Some of them [19-21] visualized literatures related to COVID-
19 research, and some others [22] visualized economic impact 
of COVID-19. However, a majority of them [23] focused on the 
actual COVID-19 cases. Globally notable visualizers include 
(a) World Health Organization (WHO) Coronavirus Disease 
2019 (COVID-19) Dashboard [24], (b) COVID-19 Dashboard 
by the Center for Systems Science and Engineering (CSSE) at 
Johns Hopkins University (JHU)1, and (c) COVID-19 dashboard 
by European Center for Disease Prevention and Control 
(ECDC)2. In addition, Government of Canada3, provincial and 
territorial governments, major news channels/media/networks 
(e.g., TV4, newspaper), and Wikipedia5 capture data and provide 
dashboards on information about the COVID-19 pandemic 
situations in Canada. There are several commonality among 
these visualizers and dashboards. For instance, they mostly 
focused on the total numbers of new cases, confirmed cases, and 
deaths.  

The spatial information about the total of numbers of 
confirmed cases and deaths in different countries (or 
regions/sovereignties) is usually represented by (a) the bubble 
map or (b) the choropleth map. To elaborate, in a bubble map, 
the total number of confirmed cases for each country is indicated 
by the radius of the bubble representing the country. See Fig. 1. 
Similarly, the bubble map can also show the number of new 
cases or deaths, in an absolute value (e.g., N1 newly reported 
cases) or a relative figure with respect to population (e.g., 
N2 deaths per one million population). See Fig. 2. 

While the severity of COVID-19 in many countries can be 
representing by the sizes or radii of the bubbles representing 
these countries, many bubbles overlap. The overlapping and/or 
containment of bubbles makes it challenging to visualize the 
severity of the disease in countries in dense regions such as 
Eastern Caribbean and Southeastern Europe as shown in Fig. 2. 

                                                           
1 https://coronavirus.jhu.edu/map.html 
2 https://qap.ecdc.europa.eu/public/extensions/COVID-19/COVID-19.html 
3 https://www.canada.ca/en/public-health/services/diseases/2019-novel-coronavirus-infection.html 
4 https://newsinteractives.cbc.ca/coronavirustracker/ 
5 https://en.wikipedia.org/wiki/COVID-19_pandemic_in_Canada, https://en.wikipedia.org/wiki/Template:COVID-19_pandemic_data/Canada_medical_cases 

 
Fig. 1. A snapshot of a bubble map [24] showing the total number of 
confirmed cases among different countries in the world as of August 07, 2020. 

 

Fig. 2. A zoom-in view of a bubble map [24]—with overlapping bubles 
(especially in Eastern Caribbean and Southeastern Europe)—showing the total 
number of deaths per 1M population among different countries in the world as 
of August 07, 2020. 

 
Fig. 3.  A snapshot of a choropleth map [24] showing the total number of 
confirmed cases among different countries in the world as of August 07, 2020. 

As an alternative, a choropleth map uses differences in 
shading, coloring, or the placing of symbols within predefined 
areas to indicate the average values of a property or quantity in 
those areas. For instance, Fig. 3 shows a choropleth map for the 
COVID-19 epidemiological data, in which differences in 
shading to represent the total number of confirmed cases. The 
darker the shading, the more severity is the COVID-19 situation, 
which means the higher is the number of confirmed cases. Note 
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that the choropleth map in Fig. 3 shows the same information as 
the bubble map in Fig. 1 but with an alternative representation. 

While the use of choropleth map solves the problems 
associated with the overlapping and containment of bubbles, it 
leads to another problem. For example, small countries in terms 
of geographic areas or sizes (e.g., Monaco, San Marino, 
Liechtenstein) may not be easily visible on the map. See Fig. 4. 

 
Fig. 4. A zoom-in view of a choropleth map [24]—covering some small 
countries (e.g., Monaco, San Marino, Liechtenstein) that may not be easily 
spotted—showing the newly reported cases in last 7 days among different 
countries in the world as of August 07, 2020. 

 
Fig. 5. A column chart showing the total number of tested per 
100,000 inhabitants among provinces and territories in Canada as of August 06, 
2020. 

Moreover, column charts also provide spatial information 
from the COVID-19 epidemiological data. For example, Fig. 5 
shows a column chart for comparing regional testing rates 
among the 10 provinces and 3 territories of Canada. 

Besides spatial information, temporal information from the 
COVID-19 epidemiological data is also important as it shows 
the trends. Temporal information (e.g., daily or cumulative 
numbers of new cases, confirmed cases and deaths) is usually 
represented by line graphs, column charts (or stacked column 
charts), and areas under curve (or stacked areas under curve). 
Examples are shown in Figs. 6-7. 

 
Fig. 6. A line graph showing the daily new confirmed cases in Canada from 
January 25 (for the first confirmed case in Canada) to August 04, 2020. 

 
Fig. 7. A stacked area under curve showing the cumulative cases in Canada 
and their breakdown (i.e., active cases, recoveries, and deaths) from January 25 
to August 04, 2020. 

To a further extent, combined spatial and temporal 
information from the COVID-19 epidemiological data can be 
represented by line graphs. For example, daily new cases over 
time for all provinces and territories can be represented by a line 
graph with 13 lines, and each represents the trend of a province 
or territory. 

B. Frequent Pattern Visualizers 
In addition to the aforementioned attributes or features (e.g., 

numbers of new or active cases, recoveries, deaths), there are 
other attributes that are also important. These include 
administrative information, case details, symptoms, clinical 
course and outcomes, as well as exposures. Occasionally, some 
of this information (e.g., gender and age of confirmed cases) is 
available and reported in textual form. As “a picture is worth a 
thousand words”, having a visual representation of this 
information can be helpful. Moreover, knowing the 
relationships among them can also be useful. This calls for data 
mining and visual analytics. For instance, the data-mining task 
of frequent pattern mining [25, 26] discovers frequently 
occurring attribute, value -pairs and reveals relationships 
among these pairs.  

Several platforms and visualizers [27-29] have been built to 
visualize knowledge discovered from different data mining 
tasks. Among them, some [30, 31] were designed and developed 
to visualize the discovered frequent patterns. For example, 
FIsViz [32] displays each frequent pattern containing k items 
(i.e., k-itemset) in the form a polyline that connects k nodes in a 
2-dimensional space. Crucial information about any frequent  
k-itemset is captured by its associated (x, y)-coordinates in this 
space. As another example, observing that polylines in FIsViz 
may not be easily distinguishable from one another due to their 
potential bending and crossing-over for frequent patterns, 
FpVAT [33] displays each frequent k-itemset in a horizontal line 
that connects k nodes in a 2-dimensional space in a wiring-type 
diagram (i.e., orthogonal graph). See Fig. 8. 

As an alternative to frequent pattern visualization via 
polylines or orthogonal wires, PyramidViz [34] visualizes 
frequent patterns in a hierarchical layout—namely, a building 
block layout. To elaborate, short patterns are put on the bottom 
of the pyramid, whereas longest related patterns (which are 
extensions of short patterns) are put on the top of the pyramid. 
In contrast to PyramidViz (which visualizes frequent patterns 
with a side-view of the pyramid), FpMapViz [35] visualizes 
frequent patterns with a top-view. To elaborate, short patterns 
are put on the background, whereas longest related patterns 
(which are extensions of short patterns) are put on the 
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foreground. See Fig. 8. However, these visualizers were not 
designed for visualizing COVID-19 epidemiological data. 

 
Fig. 8. Frequent pattern visualizers: (a) FIsViz [32], (b) FpViz [33], 
(c) PyramidViz [34], and (d) FpMapViz [35]. 

III. OUR VISUALIZER FOR ANALYZING COVID-19 
EPIDEMIOLOGICAL DATA 

To help users and researchers to get a better understanding 
of COVID-19 disease, we design and develop a big data 
visualization and visual analytics tools for COVID-19 
epidemiological data. In this section, we illustrate our idea on 
COVID-19 epidemiological data for Canada [36]. 

A. Data Collection 
Our tool first collects different categories of big COVID-19 

epidemiological data from different sources (e.g., federal and 
provincial/territorial governments). These include: 

• administrative information, which includes an unique 
privacy-preserving identifier for each case, its region and 
episode week (i.e., symptom onset week or its closest 
week); 

• case details, which include gender, age group, and 
occupation of the cases (e.g., health care workers, school 
or daycare workers, long-term care residents);  

• symptom-related data, which include additional 
information for the case who is not asymptomatic (i.e., 
symptomatic case) such as onset week of symptoms, as 
well as a collection of symptoms (e.g., cough, fever, 
chills, sore throat, runny nose, shortness of breath, 
nausea, headache, weakness, pain, irritability, diarrhea, 
and other symptoms);  

• clinical course and outcomes, which include hospital 
status (e.g., hospitalized in the intensive care unit (ICU), 
non-ICU hospitalized, not hospitalized, unstated). For 
recovered case, it also includes additional information 
such as the recovery week. For the case who has not 
recovered, it indicates that the case died while infected 
by COVID-19; as well as 

• exposures, which include transmission methods (e.g., 
domestic acquisition via contact of COVID-19 case or 
contact with traveller; international travel). 

B. Data Preprocessing 
After gathering related data from heterogeneous sources, our 

tool preprocesses the data. Given the nature of these cases, it is 
not unusual to have missing, unstated or unknown information 
(i.e., NULL values). For example, for some “Boolean” attributes 
(e.g., attribute “asymptomatic”), we observed three values: 
asymptomatic, symptomatic, and unstated (i.e., NULL value). 
Our tool links all values (including NULL) for each attribute. 
Moreover, our tool also detects and flags any data inconsistency. 

C. Visualization of Frequent Patterns of Cardinality 1 
Once the data are preprocessed, we integrate the data mining 

capability into our tool. Specifically, via frequent pattern 
mining, our tool first discovers frequently occurring domain 
attributes (i.e., 1-itemsets). Our tool uses a pie chart or sunburst 
diagram to represent values for each frequently occurring 
domain attribute. 

 Recall that existing frequent pattern visualizers mentioned 
in Section II-B display all frequent patterns. In contrast, our tool 
displays frequent patterns one-by-one. For a frequent 1-itemset, 
we show not only the frequent attribute, value -pair but also 
pairs associated with other values for that attribute. This enables 
users to get insight about the portion of that value for the 
attribute.  

 Example 1 As a preview, when applying our tool to the 
COVID-19 epidemiological data for Canada up to August 06, 
2020, our tool finds a frequent 1-itemset transmission, domestic 
acquisition -pair with a frequency of 97,052 out of 
107,916 cases (90%). Our tool also displays other pairs for 
attribute “transmission” in the pie chart: transmission, 
international travel  (4%) and transmission, NULL  (6%). 

In addition, our tool gives users an option to ignore the 
NULL value for any attribute. If the user select this option, our 
tool displays not only the frequent attribute, value -pair but also 
pairs associated with other non-NULL values for that attribute. 
This enables users to get insight about the portions of all  
non-NULL values for the attribute.  

 Example 2 Continue with our preview, without NULL 
values, our tool finds a frequent 1-itemset transmission, 
domestic acquisition -pair with a frequency of 96% of cases 
with stated transmission methods. Our tool also finds and 
displays another pair with a non-NULL value for attribute 
“transmission”: transmission, international travel  (4%). 

D. Visualization of Frequent Patterns of Higher Cardinality 
In addition to showing each frequent 1-itemset attribute, 

value -pair and its related pairs for other values of the attribute 
one-by-one, our big data visualization and visual analytic tool 
also shows each frequent k-itemset—i.e., frequent pattern of 
higher cardinality k (where k > 1)—by using a sunburst diagram. 
The diagram consists of k rings, one for each attribute (i.e., item) 
within the k-itemset. Again, our tool gives users an option to 
ignore the NULL value for any attribute. 

 Example 3 As another preview, our tool finds a frequent  
3-itemset { transmission, domestic acquisition , { death, no , 
{ hospital status, not hospitalized } with a frequency of 51,523 
out of 107,916 cases (48%). Our tool also displays its related 
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itemsets: (a) { transmission, domestic acquisition , { death, no , 
{ hospital status, value3 }’s where value3 ∈ {non-ICU 
hospitalized, ICU, NULL}, (b) { transmission, domestic 
acquisition , { death, value2 }’s where value2 is “yes” or NULL, 
and (c) { transmission, value1 }’s where value1 is “international 
travel” or NULL, in the sunburst diagram.  

Example 4 Continue with our preview, without NULL 
values, our tool displays the frequent 3-itemset transmission, 
domestic acquisition -pair in Example 3 with a frequency of 
74% of cases with stated transmission methods, death status and 
hospital status.  

IV. EVALUATION 

A. Functionality Check with Related Works 
To evaluate our tool, we applied it to different COVID-19 

epidemiological data including the Canada cases from Statistics 
Canada [36]. In terms of functionality, as recall from  
Section II-A, many existing COVID-19 visualizers or 
dashboards mostly focus on single attribute (e.g., numbers of 
cases, recoveries, deaths) at any instance. In contrast, our big 
data visualization and visual analytics tool reveals relationships 
among different attributes related to epidemiological data.  

Moreover, as recall from Section II-B, existing frequent 
pattern visualizers aim to display all and only frequent  
k-itemsets. In contrast, our tool visualizes not only each frequent 
k-itemset one-by-one but also its related attribute, value -pairs 
within the k-itemset to give users an insight about the 
relationships (e.g., percentage) of the frequent k-itemset with 
respect to its related itemsets. 

Furthermore, our tool provides users with options to include 
or exclude NULL values (which are common in COVID-19 data 
and many other datasets). By doing so, the users could get a 
better understanding of the distribution of the data and the 
discovered patterns, with respect to all values (including NULL) 
and all known/stated values (i.e., non-NULL values). 

B. Case Study with Real-Life COVID-19 Epidemiological 
Data 
To further evaluate our tool, we applied it to COVID-19 

epidemiological data for Canada [36] captured by Public Health 
Agency of Canada (PHAC) and Statistics Canada. The data 
contain administrative information, case details, symptom-
related information, clinical course and outcomes, as well 
exposure methods, for all 107,916 captured cases from 
January 25 (when the first case confirmed in Canada) to 
August 06, 2020. 

Our tool conducts visual analytics on the data to discover 
frequent patterns and visualizes the discovered knowledge by 
displaying interesting information in the form of a pie chart for 
each frequent 1-itemset (and its related information) and a 
sunburst diagram for each frequent k-itemset (and its related 
information, for k > 1). As previewed in Example 1, our tool 
discovers that 90% of cases were transmitted through domestic 
acquisition (i.e., community exposures). See Fig. 9(a), which 
also shows that, among the remaining 10% of cases, 4% were 
transmitted through international travel (i.e., travel exposures) 
and 6% were unstated transmission (i.e., NULL). 

To avoid distraction from NULL values, our tool provides 
users with flexibility of visualizing non-NULL values. See 
Fig. 9(b), which focuses on the 90%+4% = 94% of cases (i.e., 
those with stated/known values). As previewed in Example 2, 
our tool reveals that 90/94 ≈ 96% of cases with stated/known 
transmission methods were transmitted through domestic 
acquisition, whereas the remaining 4/94 ≈ 4% were transmitted 
through international travel. 

 
Fig. 9. Our visualization and visual anlytics tool shows a frequent 1-itemset 
{ transmission, domestic acquisition } and its related values for attribute 
“transmission” by (a) inlcuding and (b) excluding the NULL value.  

As previewed in Examples 3 and 4, our tool displays that 
48% of cases who were transmitted through domestic 
acquisition recovered without being hospitalized. See Fig. 10(a), 
which also shows that, 5% required non-ICU hospitalization, 
1% admitted to ICU, and 20% with unstated hospitalization 
status, for a total of 48+5+1+20 = 74% of cases survived. 
Unfortunately, 7% of cases deceased and 9% with unstated 
death status, for a total of 74+7+9 = 90% of cases transmitted 
through domestic acquisition. The remaining 4% and 6% were 
transmitted through international travel exposures) and with 
unstated transmission. By ignoring NULL values, Fig. 10(b) 
reveals that, among cases with known transmission methods, 
death status and hospitalization, 74% of them were transmitted 
through domestic acquisition recovered without being 
hospitalized. 

 
Fig. 10.  Our visualization and visual anlytics tool shows a frequent 3-itemset 
{ transmission, domestic acquisition , death, no , { hospital status, not 
hospitalized }} and its values for related attributes by (a) inlcuding and 
(b) excluding NULL values.  

V. CONCLUSIONS 
Over the past few months, there have been works on 

visualizing and analyzing different aspects of big data related to 
COVID-19. However, a majority of existing visualizers focus 
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4%
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Transmission
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travel
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on showing the temporal and/or spatial trends on the numbers of 
cases and mortality. In this paper, we focus on epidemiological 
aspects of COVID-19 data. Our key contributions include our 
design and development of a big data visualization and visual 
analytics tool for COVID-19 epidemiological data. By 
incorporating big data mining and data analytics into our tool, 
we discover frequent patterns, together with their related 
patterns. We provide users with flexibility to include or exclude 
NULL values. Evaluation results show benefits of our tool in 
providing a comprehensive and effective visual representation 
of these important patterns, which in turn helps researchers to 
get a better understanding of the COVID-19 disease and thus 
enables them to combat the disease. Moreover, our tool can be 
applicable to other real-life applications with NULL values. As 
ongoing and future work, we explore possibility to incorporate 
other techniques [37-40] into our tool. 
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