
POSTER: Variable Sized Cache-Block Compaction
Sayantan Ray, Student Member, IEEE

Department of Computer Science and Engineering
Indian Institute of Technology Madras, Chennai, India

raysayantan07@gmail.com

Madhu Mutyam, Senior Member, IEEE
Department of Computer Science and Engineering

Indian Institute of Technology Madras, Chennai, India
madhu@cse.iitm.ac.in

Abstract—Data blocks compressed to different sizes can be
stored together inside a single cache-block to increase space
utilization. However, the lack of a common size offset makes
it challenging to locate individual blocks without additional tag
overhead. We propose Variable Sized Cache-Block Compaction
(VSCC) that allows us to store variable sized compressed blocks
together and locate them inside a cache-block by using their
compression encodings – available inside the tag metadata. We
introduce a novel read/write scheme and a new BDI compres-
sion encoding, which reduce the necessary operations by 50%.
Experimental results reveal that VSCC outperforms state-of-the-
art techniques from the performance and energy point of view
while keeping the storage overheads within acceptable limits.

Keywords-cache, compaction, energy efficiency, performance.

I. INTRODUCTION

Compression exploits recurring patterns in data and rep-
resents it using fewer bits. Consequently, the space saved
inside a cache-block can be utilized by storing additional
compressed blocks. A compaction scheme tracks multiple
compressed blocks of data stored into a single cache-block
with minimal storage overhead. Recent compaction tech-
niques [1], [2] have adopted sectoring [3] – which uses a
single tag to track multiple neighbouring blocks (collectively
known as sectors) with some additional metadata. Uniformly
compressed neighboring data stored inside a cache-block can
be tracked using a common size offset. However, if two
such blocks are compressed to variable sizes, we can no
longer maintain such an offset to determine their locations.
Decoupled compressed cache (DCC) [1] stored variable-sized
blocks together with the help of additional tag structures, while
yet another compressed cache (YACC) [2] compromised on
the overall performance to eliminate the storage overhead.
We propose Variable Sized Cache-Block Compaction (VSCC),
which compacts neighboring blocks of variable sizes inside a
cache-block without a significant storage overhead. VSCC lo-
cates a compressed block by using the compression encodings
of the pre-existing adjacent compressed data. This eliminates
the need for any additional tag structures. VSCC strikes the
right balance between high cache utilization and low storage
overheads and provides better system performance at lower
energy cost as compared to previous works.

II. MOTIVATION

Storing uniformly sized compressed blocks inside a cache-
block to have a common size offset restricts us from fitting
variable-sized neighboring blocks into a cache-block even if

SECTOR TAG BITS
CS0
+
V0

COMP0
CS1
+
V1

COMP1
CS2
+
V2

COMP2
CS3
+
V3

COMP3

Sector
member #0

Sector
member #1

Sector
member #2

Sector
member #3

coherence state + valid bits (4 bits) Compression encoding (4 bits)

Fig. 1: Tag Structure of VSCCS4.

0th byte 63rd byte

 A0 A1 A2 A3 A7 A6 A5 A4

EMPTY SPACE (48 B)A0 (8B) A5 (8B)

EMPTY SPACE (32 B)A0 (8B) A4 (16B)A5 (8B)

A5 shifted
 A4 (16B)

Fig. 2: Read/Write Scheme.

there is sufficient space. This leads to internal fragmentation.
Previous works have used additional tag structures to identify
the location of individual compressed blocks of variable sizes
inside a cache block. This adds to the access latency, storage
overhead, and energy consumption of the cache.

III. VARIABLE SIZED CACHE-BLOCK COMPACTION

VSCC compacts neighboring blocks of variable sizes inside
a cache-block, as long as there is sufficient space. The starting
byte of a block is obtained by adding the compression sizes
of other blocks present inside the cache-block preceding the
requested block in order. As the compression sizes are already
available inside the tag itself, VSCC does not require any
additional tag structures.

Tag Structure: A sector tag tracks all the members of the
corresponding sector. Figure 1 shows the tag structure of
VSCC using a sector of 4 neighboring blocks (denoted as
V SCCS4). As multiple blocks share the same sector tag, a
sector tag hit on a request for one of the blocks is followed by
checking its corresponding valid bit. We determine the block
position by adding the compression encoding of all the blocks
that precede the requested block in order.

Read/Write Scheme: The first half of the sector members
(A0-A3) are stored in the cache-block starting from the 0th

byte (left to right). Blocks belonging to the latter half of the

470

2019 28th International Conference on Parallel Architectures and Compilation Techniques (PACT)

978-1-7281-3613-4/19/$31.00 ©2019 IEEE
DOI 10.1109/PACT.2019.00050

bz
ip2

ca
ctu

sA
DM

Ge
msF

DT
D

gr
om

ac
s

hm
mer lbm

les
lie

3d mcf
milc

sje
ng

ze
us

mp
ap

sp bc bf
s

co
mmun

ity
pa

ge
ra

nk
ss

sp
Ge

oM
ea

n

Benchmarks

0.0

0.5

1.0

1.5

No
rm

al
ize

d
M

iss
 R

at
e

Benchmarks vs Normalized Miss Rate
DCC_S4 DCC_S8 VSCC_S4 VSCC_S8 YACC

(a) Normalized Miss-rates.

bz
ip2

ca
ctu

sA
DM

Ge
msF

DT
D

gr
om

ac
s

hm
mer lbm

les
lie

3d mcf
milc

sje
ng

ze
us

mp
ap

sp bc bf
s

co
mmun

ity
pa

ge
ra

nk
ss

sp
Ge

oM
ea

n

Benchmarks

0.0

0.5

1.0

1.5

No
rm

al
ize

d
IP

C

Benchmarks vs Normalized IPC
DCC_S4 DCC_S8 VSCC_S4 VSCC_S8 YACC

(b) Normalized IPCs.

Fig. 3: Results for a 2MB 16-way LLC.

TABLE I: Modified BDI Encoding.

Base ∆ Size Code Base ∆ Size Code Base ∆ Size Code
1B N/A 1B 1001 8B N/A 8B 0001 8B 1B 16B 0010
8B 2B 24B 0011 8B 4B 40B 0101 4B 1B 20B 1011
4B 2B 36B 1101 2B 1B 34B 1101 N/A N/A 64B 1000

sector (A4-A7) are stored from 63rd byte (right to left). This
reduces the number of additions required in the worst case
(A7) for S8 from six to two. For S4, addition operations are no
longer necessary. As seen in Figure 2, this technique ensures
that the empty spaces inside a cache-way exist as one in the
middle, which can be filled from either side.

New BDI encoding: To avoid fetching multiple compression
sizes for determining the position of a block, we introduce a
new base-delta-immediate (BDI) encoding (refer to Table I).
We allocate 3-bit encoding to consequent multiples of 8 (8B
= 001, 16B = 010, etc). Thus a compressed block with an
encoding 001 means that it occupies 8B (or 1 sub-block). For
a cache-block containing two compressed blocks of size 8B
(001) each, the starting byte for the third compressed block
can be determined by simply adding the two encodings: 001+
001 = 010, which corresponds to the 16th byte of the cache-
block. We use the 4th bit (MSB) to differentiate between two
compression sizes requiring the same number of sub-blocks.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

By considering a single-core system with 2MB 16-way
LLC, we evaluate and compare VSCC with recent works
DCC [1] and YACC [2]. Both DCC and YACC use BDI [4]
compression scheme. We consider benchmarks from SPEC
CPU 2006 [5] and CRONO [6] running on GEM5 simu-
lator [7]. The results presented are normalized to that of a
conventional cache without any compression scheme.

Effective Cache Capacity: V SCCS8 on average, holds 2×
the data of a typical cache, with only 10% increase in
the physical cache space. Though DCCS8 achieves better
effective cache capacity, it incurs high storage overhead.

Miss-Rate: Holding more data in the LLC reduces capacity
misses. We see from Figure 3a that DCC provides the lowest
miss-rate (normalized to a conventional cache), due to DCC’s
ability to store a block anywhere across a set, irrespective of

TABLE II: Results Summarization (geometric mean).

DCCS4 DCCS8 V SCCS4 V SCCS8 Y ACCS4

Storage Overhead 16% 25.5% 4.8% 10.5% 1.8%
Eff. Cache Capacity 1.83 2.36 1.67 2.03 1.55
Miss-Rate Reduction 30.6% 42% 27.6% 33.8% 18.2%

IPC Improvement 7.6% 9.3% 6.7% 10.7% 4.4%
Energy Reduction 9.7% 12.8% 9.3% 13.9% 3%

its size and parent sector. By storing blocks of variable sizes
together, VSCC obtains a lower miss-rate than YACC.

Performance and Energy: Reduced miss-rate leads to higher
Instructions Per Cycle (IPC). Figure 3b shows the normalized
IPCs for all the three techniques. Irrespective of a lower miss-
rate, DCC suffers from lower IPC due to a longer run-time –
attributed by the accesses made to its additional tag structure.
A longer run-time and additional accesses increase the overall
energy consumption of DCC. Owing to a significantly lower
miss-rate, VSCC outperforms YACC as well. We observe that
on an average (geometric mean), VSCC provides the great-
est IPC improvement, and consequently is the most energy-
efficient of the three. The results are summerized in Table II.

V. CONCLUSION

We proposed VSCC to compact variable-sized blocks to-
gether. Compared to a typical cache, VSCC holds 2× the data
while YACC holds only 1.5× the data. Lack of any additional
tag structure allows VSCC to outperform DCC in terms of
IPC and energy, in spite of DCC having lower miss-rate. Thus
VSCC achieves the right balance between overall performance
and the associated overheads.

REFERENCES

[1] S. Sardashti and D. A. Wood, “Decoupled compressed cache: Exploiting
spatial locality for energy-optimized compressed caching,” in MICRO,
2013, pp. 62–73.

[2] S. Sardashti et al., “Yet another compressed cache: A low-cost yet
effective compressed cache,” TACO, vol. 13, no. 3, pp. 27:1–27:25, 2016.

[3] A. Seznec, “Decoupled sectored caches: Conciliating low tag implemen-
tation cost,” in ISCA, 1994, pp. 384–393.

[4] G. Pekhimenko et al., “Base-delta-immediate compression: Practical data
compression for on-chip caches,” in PACT, 2012, pp. 377–388.

[5] “SPEC CPU2006 benchmark suite,” https://www.spec.org.
[6] M. Ahmad et al., “CRONO: A benchmark suite for multithreaded graph

algorithms executing on futuristic multicores,” in IISWC, 2015, pp. 44–55.
[7] N. Binkert et al., “The gem5 simulator,” ACM SIGARCH Computer

Architecture News, vol. 39, no. 2, pp. 1–7, 2011.

471

