2019 28th International Conference on Parallel Architectures and Compilation Techniques (PACT)

POSTER: Precise Capacity Planning for Database
Public Clouds

Ningxin Zheng*, Quan Chen*, Yong Yang?, Jin Li*, Wenli Zheng*, Minyi Guo*
*Department of Computer Science and Engineering, Shanghai Jiao Tong University
*Alibaba Cloud
{ningxinzheng,lijin} @sjtu.edu.cn, {chen-quan,zheng-wl,guo-my}@cs.sjtu.edu.cn, zhiche.yy @alibaba-inc.com

I. INTRODUCTION

Platform-as-a-service (PaaS) is a type of Cloud computing o o : |
in which a service provider delivers a platform to tenants. | Clusering |y Model
Within the PaaS category, the fastest-growing segment is the L:I:,\ Li - ! Y Y
database platform as a service (dbPaaS). Tenants rent Cloud }) 7‘ { Symmﬂ 7\
instances to ensure the good performance of their database | Sees || vl | O
workloads empirically. However, the empirical method often LTJ L?FJ Syf,‘:;;‘;‘g“l
lead to the excessive purchase of resources. Prior work [1] has Ir— Typical workloadsset (| | Monitor fareads. 7}

shown that more than 90% of Cloud applications apply for 5x
more resources than their actual demands. Capacity planning
that identifies the smallest resource specification (number of
cores, size of memory space) required by an application while
its performance requirement can be satisfied is profitable for
both tenants and Cloud providers.

There are several challenges in achieving the above goals.
First of all, Cloud providers have to identify appropriate
resource specification for a database workload online quickly,
because tenants would not provide their workloads for offline
profiling due to privacy reason. Second, only hardware event
statistics and system-level indexes are available to plan the
capacity, because workloads are in black boxes for Cloud
providers. We propose a runtime system named URSA to
address the above challenges.

II. DESIGN OF URSA

While planning capacity, URSA first predicts the performance
scaling surface (as shown in Figure 1) of the target workload
based on the hardware events and system-level indexes. Then,
URSA plans capacity according to the predicted performance
scaling surface.

(4C,12G) (6C,8G) (8C,6G)

paads pazijewioN

0.0

1445 10 g

12
s 10
Memop,

6
4 Cores

Fig. 1: Performance scaling surface of workload w.

A. Philosophy in URSA

The insight of URSA is that some system-level indexes and
performance event statistics of a workload, such as instruction
per cycle (IPC), can reflect its scale characteristic. [IPC can
be used to determine whether a workload is CPU-bound or

*Quan Chen is the corresponding author of this paper.

Offline\ /Online

Fig. 2: Design of URSA.

memory-bound. The performance of the CPU-bound work-
load is positively related to the number of allocated cores.
Therefore, if the indexes and performance event statistics of
two workloads are close, then these two workloads tend to
have similar scale characteristics. Although URSA is proposed
for real system dbPaaS Clouds that only host databases (e.g.,
Alibaba RDS), it can be generalized for Clouds that host
general applications as long as more training samples are
collected from them to capture their scaling characteristics.

B. Identifying Correlated Features

We use Lasso regression [2] to identify the features related to
the workload’s performance. Accurately, URSA first collects
various hardware counter events and system-level indexes
from the representative workloads. Then, URSA uses Lasso to
filter out the most relevant system-level indexes and hardware
counters of the workload’s performance. The filtered system-
level indexes and hardware counter events are used as input
feature of the online classifier of URSA.

C. URSA Construction

Figure 2 shows the design of URSA. First, URSA collects
the scaling surfaces and the selected indexes of a set of
representative workloads in a specified configuration region
offline. Second, URSA clusters a set of scaling patterns
according to the collected scaling surfaces. To build the
training set of the online classifier, URSA aggregates the
system indexes and event statistics of the applications that
have the same ClusterID. Specifically, the training set is
built as (SystemIndexes, ClusterID) where ClusterID
is the clustering result of the application’s scaling surface.
SystemIndexes is the average values of the performance
statistics of the workload for each time period (such as 10
seconds) during the execution. Each cluster’s center scaling
surface is the mean vector of the other scaling surfaces and
is used as the representative scaling surface of this cluster for
specification searching. Finally, URSA uses SystemIndexes

978-1-7281-3613-4/19/$31.00 ©2019 IEEE
DOI 10.1109/PACT.2019.00043

456

IEEE
computer
psouety

as input, ClusterID as output to train the classification
model.

URSA has one or more base configurations, and each base
configuration corresponds to a classifier. The SystemIndexes
used to train the classifier are collected under the corre-
sponding base configuration. For the scenario in which the
workloads’ resource configuration cannot be changed during
the capacity planning, URSA can train a classifier for each
configuration in the configuration region. Then, URSA se-
lects the current configuration of the target workload as the
base configuration and uses the corresponding classifier to
predict its performance scaling surface. In this case, URSA
can perform capacity planning without customers’ perception.
It is worth noting that training a classifier for each base
configuration will not introduce more data collection overhead,
because the System Indexes can be collected at the same time
while collecting the scaling surface.

When URSA performs capacity planning for an online
workload, the monitor thread collects the system-level indexes
and hardware counter statistics of the workload under the
base configuration and passes them to the trained classifier.
The classifier classifies the workload into a scaling surface
cluster according to the collected indexes. URSA returns the
representative scaling surface of the cluster as the predicted
scaling surface of the target workload.

III. EVALUATION OF URSA

To simulate real-system database workloads, we generate 55
database workloads using two widely-used workload gener-
ators: Sysbench [3], and OLTP-Bench [4]. The 55 work-
loads have different read-write ratios, compute densities, and
database operating transactions, thus simulate a spectrum of
real-system workloads. We evaluate URSA using these 55
workloads in the configuration region: [1 core-12 cores, 2GB-
16GB]. The workloads set is randomly divided into a training
set containing 44 workloads and a validation set containing
11 workloads. We use the transaction per second (TPS) as the
performance indicator of the workloads. Specifically, the K-
means is used to cluster the scaling surfaces and the Multilayer
Perceptron is used as the classifier in URSA. Equation 1
defines the error between the predicted scaling surface and
the actual scaling surface of the target workload. In this
equation, N¢o,y is the number of resource configuration in
the configuration region, Speedup; is the predicted speedup
of the configuration i relative to the base configuration, and the
Speedup), represents the actual speedup of the configuration i
relative to the base configuration.

Neong

Z o —

Speedup;

]-‘/Nconf (1)

Errsurface = S’peedup

A. Prediction Accuracy

Figure 3 shows the prediction errors of the workload in
validation set when the (6C, 8G) is selected as the base config-
uration and the number of clusters in K-means is 20. Observed
from Figure 3, the maximum prediction error of validation
workloads equals to 5.88%. Thus, the capacity planner can
accurately predict the scaling surface of the workload based
on the hardware counter events and the system-level indexes.

457

0.10

0.08
£ 0.06
oS

5 0.04
0.02
0.00

4 8 13 16 20 24 29 38 41 47 52
Workload IDs in the validation set

Fig. 3: Prediction errors of the capacity planner.

3 Rec
[Optimal Core

Core B Rec ded Memory

EEm Optimal Memory

* URSA
¥ Optimal

2P
o N

s

The sizes of resources
Normalized throughput

o N B O ®

4 8

13 16 20 24 29

Workload IDs
Fig. 4: Specifications recommended by URSA and the optimal
specifications for reducing rent cost.

38 41 47 52

B. Reducing Rent Cost

In this experiment, URSA recommends a smaller specification
that has the same performance with the current specification.
To emulate the scenario that tenants over-rent resources for en-
suring high performance, we assume the origin resource spec-
ification of each workload in the validation set is (12C,16G)
that consists of 12 cores and 16GB memory.

Figure 4 shows the specification recommended by URSA
and the optimal (i.e., the smallest) specification identified by
searching through all the possible resource specifications. If
there are multiple local optimal specifications, the specification
with the least number of cores is selected as the optimal
configuration. Observed from the figure, URSA identifies
the optimal resource specifications for 5 out of 11 requests.
For the other requests, the specifications recommended by
URSA only has 1 more core and/or 4GB memory. For the 11
workloads, the specifications recommended by URSA reduces
43.6% cores and 65.5% memory compared with the original
specifications without degrading the original performance, and
uses 7.7% more cores and 3.4% more memory than the
optimal specifications. Meanwhile, Figure 4 also shows that
the specifications recommended by URSA do not hurt the
performance of all the workloads in the validation test.

IV. ACKNOWLEDGEMENT

This work is partially sponsored by the National R&D
Program of China (No. 2018YFB1004800), the Na-
tional Natural Science Foundation of China (NSFC)
(61602301,61632017,61702328).

REFERENCES

[1] C. Delimitrou and C. Kozyrakis, “Quasar: resource-efficient and qos-
aware cluster management,” ACM SIGPLAN Notices, vol. 49, no. 4, pp.
127-144, 2014.

R. Tibshirani, “Regression shrinkage and selection via the lasso,” Journal
of the Royal Statistical Society. Series B (Methodological), pp. 267-288,
1996.

A. Kopytov, “Sysbench: a system performance
http://sysbench. sourceforge. net/, 2004.

D. E. Difallah, A. Pavlo, C. Curino, and P. Cudre-Mauroux, “Oltp-
bench: An extensible testbed for benchmarking relational databases,”
Proceedings of the VLDB Endowment, vol. 7, no. 4, pp. 277-288, 2013.

[2]

[3]
[4]

benchmark,”

