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Abstract—Optimizing a multilayer cache hierarchy involves
a careful balance of data placement, replacement, promotion,
bypassing, prefetching, etc. to capture the various properties of
access streams. Often getting good performance involves aggres-
sively orchestrating the movement of the data to be available
at the appropriate layers of the cache hierarchy at appropriate
times. However, it has been popularly recognized that aggressive
movement of data results in high energy consumption. State-
of-the-art caching policies such as Hawkeye and MPPPB yield
excellent performance but incur more data movement compared
to policies such as CHAR, and Flexclusion. Considering the
energy cost of data movement, we architect a FILtered Multilevel
(FILM) caching policy, which yields good performance with
reduced levels of data movement. It achieves this by identifying
appropriate cache layers for each block of data using a bloom fil-
ter and table based predictors. The bloom filter helps to overcome
the challenges associated with capturing PC-based information
in exclusive caches in an efficient manner. When there is free
space in the bypassed cache layer, FILM overrides the initial
prediction and allows cache block installation into the cache
level achieving more low latency hits. FILM also incorporates an
explicit mechanism for handling prefetches, which allows it to
train differently for data from demand requests versus prefetch
requests. By incorporating quick detection and correction of
stale/incorrect bypass decisions, FILM significantly reduces cache
block installations and data movement, resulting in up to 10%
reduction in dynamic energy at the LLC and DRAM compared
with Hawkeye EX or MPPPB EX. Considering energy-delay
product as a metric, FILM is 10%, 11%, and 5% better than
Hawkeye EX, MPPPB EX, and CHAR respectively.

I. INTRODUCTION

Performance and power consumption are usually at odds

while designing circuits and systems. Microprocessor perfor-

mance scaling in recent years has been achieved by scaling

throughput, i.e. by processing more threads concurrently

using increased core counts and by employing techniques

like Simultaneous Multithreading (SMT) and SIMD. While

performance gains from such scaling can serve the increasing

demand on computational power, the number of cores and

threads are limited by the restricted power and energy budget.

A large consumer of this energy budget is the memory

hierarchy. Often caches account for more than 50% of on-

chip die area and consume a significant fraction of static

and dynamic power. Therefore, increasing the efficiency of

caches becomes crucial. The number of threads (and cores) in

modern microprocessor SoCs has been steadily increasing as

exemplified in 48 thread Arm based solutions [1] and recently

announced 36 thread Intel solutions [2]. This has caused the

cache capacities to reach the limits of power and die-area

constraints. From the the first generation of Intel Core i7 chip

to the most recent Intel Core i9 design, the Last Level Cache

(LLC) capacity per core has been held near constant at around 1

to 2MB during the past ten generations of chips. At the capacity

limits, caches are often still under-provisioned for data-intensive

workloads and under-utilized for cache-insensitive workloads.

Regardless of whether the large cache is fully utilized by

workloads or not, the energy and power cost is always too

high to be ignored.

To improve the performance of data-intensive workloads,

prior research has looked at redistributing the available SRAM

capacity across the various levels in the cache hierarchy and

shows that many emerging workloads benefit from a larger

L2 size [3]–[5]. Several recently announced microprocessor

products appear to have conformed to this recommendation [6],

[7]. Opting for larger L2 sizes however, implies that there

would be greater overhead to maintain the inclusive property.

In prior work, relaxing the inclusion requirement of LLCs

has been shown to be beneficial with 3-12% improvements

reported [3], [8]. We also observe that out of all dynamic

blocks in SPEC CPU2006 suite, more than 70% never get

reused at L2 and more than 50% never get reused at the LLC.

In Figure 1, we categorize dynamic cache blocks into four

groups based on whether it gets reused in L2 or L3 after it

gets evicted out of L1. We see that only 20% of dynamic

blocks get reused in both L2 and L3. The remaining 80% of

the dynamic blocks have an optimal cache location. Insertion

of these blocks into other cache levels uses up critical cache

space and consumes energy without bringing any performance

benefit. This observation motivates exclusive L2 caches.

While trying to optimize the aforementioned types of cache

hierarchies, there are many choices in policies for replacement

and/or bypassing. We compare the performance and data move-

ment of three bypass and insertion algorithms for exclusive

last level caches, CHAR [5], MPPPB EX [9] and Hawk-

eye EX [10], using workload mixes from SPEC CPU2006 suite.

Hawkeye EX and MPPPB EX are PC-correlated algorithms

and were originally designed for inclusive caches. PC-correlated

algorithms are popular and yield high-performance in the field

of inclusive or near-inclusive cache design. The PCs used in

such algorithms correspond to those instructions that cause the
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Fig. 1: Percentage of L1 evicted cache blocks getting reused

at L2 and L3 in SPEC CPU2006 (average)

cachelines to be fetched from memory. For inclusive caches this

PC also corresponds to the instruction that installs the line in

the LLC. It is convenient to maintain this PC signature in just

the LLC because in inclusive caches any given cacheline has

its longest residence in the LLC. There are no PC-correlated

algorithms tailored for exclusive caches because the required PC

information is not available in exclusive caches. For exclusive

caches, where lines are inserted into the lower level caches upon

eviction, the PC information gets lost unless it is passed along

with the cacheline across all the levels in the hierarchy. This

can lead to inefficient use of space and also further exacerbate

the problem of data movement.

Exclusive cache adaptations of the three PC-correlated

algorithms mentioned are devised by allowing unlimited

hardware overhead to store training data. The comparison result

is shown in Figure 2, with IPC and LLC traffic normalized

over TC-UC [8]. We see that MPPPB EX and Hawkeye EX

show better performance compared to CHAR, whereas CHAR

generates less LLC traffic than MPPPB EX and Hawkeye EX.

Specifically, Hawkeye EX demonstrates a 9% performance

improvement compared to CHAR in mix-d by exploiting the

data locality of lbm workload, whereas CHAR shows as large

as 50% less LLC traffic than Hawkeye EX and MPPPB EX

in mix-e due to reduced data movement from L2 to LLC

(i.e., L2 eviction installed in LLC) of the bwaves workload.

The high-performance of MPPPB EX and Hawkeye EX are

certainly desirable, but the low data traffic of CHAR is also

advantageous. Prior art [11] shows that data movement energy

is orders-of-magnitude larger than computation energy and

the energy dissipation of future systems will be dominated by

data movement. Energy-efficient architectures are required to

reduce the amount of data movement and exploit data locality

to reduce the distance of moving data. The objective of this

paper is to create a new algorithm that gives both the high

speedup and low data traffic (low data movement and hence

low energy).

In this paper, we present a replacement and bypassing

algorithm which yields the performance of state-of-the-art

caching schemes, but with much reduced data movement, data

traffic and energy.

Aimed at addressing these issues and to devise an effective

predictor for an efficient and scalable multi-level exclusive

cache hierarchy, this paper makes the following contributions:

• FILM, a locality filtering mechanism utilizing a bloom

(a) Performance (b) LLC traffic

Fig. 2: Normalized performance and LLC traffic of state of the

art caching schemes over TC-UC. mix-a: libquantum, bwaves,

gcc, milc; mix-b: GemsFDTD, bwaves, gcc, xalancbmk; mix-c:

GemsFDTD, libquantum, leslie3d, xalancbmk; mix-d: lbm, gcc,

gobmk, wrf; mix-e: GemsFDTD, bwaves, perlbench, wrf

filter and predictors to capture PC-based guidance in

a multi-level exclusive cache hierarchy with minimal

hardware overhead.

• A method to learn about the correctness of bypass

decisions and to adaptively guide data placement into

appropriate cache layers based on data reuse patterns.

• Explicit incorporation of prefetch logic, with FILM differ-

entiating prefetch and demand requests and with prefetch

aware training/learning of bypass/placement decisions.

• Adopt state-of-the-art work to exclusive caches and

show results for multicore multi-programmed system,

demonstrating significant energy efficiency improvements

and reduction in on-chip data movement. FILM improves

overall energy efficiency by 9%, compared to the second

highest of 4% from CHAR.

The rest of this paper is organized as follows. Section II

discusses the background of exclusive cache hierarchies.

Section III describes the design details of the proposed FILM

scheme. We describe our evaluation methodology in Section IV

and show the performance and energy result of FILM in

Section V. Section VI summarizes prior research in the domain.

Finally we summarize our paper in Section VII.

II. BACKGROUND

While exclusive caches bring high-performance as suggested

above, data movement in exclusive hierarchies is different

as compared to inclusive hierarchies. In contrast to inclusive

hierarchies, only the top level cache of the multi-level exclusive

caches is filled with LLC miss data, and the remaining levels

serve as victim caches [12], which get filled upon evictions

from the upper cache level regardless of cacheline dirty status.

If a cacheline in the lower level receives a hit, the cacheline

is promoted to the top level and gets invalidated from the

383



current level to maintain uniqueness. This policy is referred to

as “invalidate on hit”.

In this work, we use the RRIP [3] optimized for exclusive

caches as our replacement policy. The “invalidate on hit policy”

poses challenges on replacement policies that are not designed

with exclusive hierarchies in mind. For example, the RRIP [13]

replacement policy learns re-reference behavior by attaching an

RRPV per cacheline. However, such re-reference information

is lost as the cacheline is invalidated on hit. To address this

challenge, Jaleel et al. [3] presented modifications required

for RRIP to be applied to exclusive LLC by adding an SFL3

(Serviced From L3) bit per cacheline and condensing the re-

reference information into the SFL3 bit. Specifically, the SFL3

bit is set when a cacheline gets hit at L3. On LLC insertion,

if the line was originally served from memory (SFL3 is zero),

it is predicted as reuse in the distant future; if the line was

originally served from L3 (SFL3 is one), it is predicted as

reuse in the near future. This paper extends this idea to both

exclusive L2 and exclusive LLC by adding an SFL2 (Serviced

From L2) bit. SFL2 and SFL3 are set when a cacheline sees

a hit and serves the data request from L2/L3, and are reset

when the cacheline is evicted from L2/L3 to make room for

new blocks.

III. DESIGN

In this section, we introduce the design of FILM. FILM

predicts the reuse of cache blocks at each cache level, and

guides evicted cache blocks to insert into the right level rather

than trickle down through the various layers in the cache

hierarchy.

Figure 3 illustrates how FILM is integrated into the cache

hierarchy and how it closely interacts with all levels. Although

FILM is a single centralized component, it is not on the critical

path. The training process of FILM, which does not require

instant feedback, is also off the critical path. FILM’s training

process is triggered by the three types of cache activities shown

in the Figure 3, 1© data block installs from main memory to

the top level cache due to LLC misses, 2© data block hits at

lower level caches, and 3© unused data evictions from lower

level caches. By leveraging cacheline address and cacheline

reuse behavior, FILM trains its prediction model to get the

optimal cache insertion decision. On LLC misses (activity 1©),

apart from receiving training information, FILM also sends

L2 and LLC bypass hints to data blocks. The bypass hints are

stored along with the cacheline at the cost of 2-bit overhead.

The access latency of FILM is orders-of-magnitude lower than

the long DRAM access latency and thus can be overlapped

with DRAM access latency.

FILM is composed of two hardware structures, a Prediction
Learning Table and a Result Table. The Prediction Learning

Table learns data locality of an individual memory instruction

by observing the history of past data accesses, and uses this

learning to make bypass decisions for future accesses. FILM

uses a centralized structure to store the locality of memory

instructions. This centralized structure is more space-efficient

in comparison to holding the memory instruction locality

Fig. 3: Overview of the proposed FILM system

along with cachelines in all the levels of the cache hierarchy.

FILM achieves good learning accuracy with a reasonably small

number (16) of entries in this table.

To avoid information loss, when a trained entry is evicted

from the Prediction Learning Table, its learning is captured in

the Result Table to inform future bypass decisions. The Result

Table also provides an initial value for the Prediction Learning

Table when an instruction is reallocated back to the table. The

Result Table is indexed using a hash of the memory instruction

PC. This hash is stored in the Tag field of the Prediction

Learning table. Each entry in the Result Table is just 2 bits,

much smaller than Prediction Learning Table Entry. Therefore,

we can maintain a lot of (2048) entries in this table. Thus,

with judicious allocation of available resources, we combine

the benefits of a wide but shallow learning table and a narrow

but deep result table. This helps with optimizing the solution

while maintaining a tight overall hardware budget. FILM can

be applied together with other cache replacement policies as

FILM only provides bypass/insertion hints.

FILM adapts PC-correlated locality filtering approaches for

exclusive cache hierarchies. We select PC as the training

heuristic because we observe a good correlation between a

memory instruction and the locality of the data accessed by

the instruction. Figure 4 shows that the majority of active

instructions which make intensive data requests in the SPEC

CPU2006 workloads have stable data locality behavior at L2

and L3 of exclusive caches. We define a memory instruction to

have stable data locality at a specific cache level if more than

90% of data blocks accessed by the instruction are within the

same range of reuse distance (e.g., always hit or always miss

in the cache). This observation suggests that if historical data

accesses made by an instruction do not benefit from caching at

a given level, then future accesses from the same instruction can

bypass that cache. In section III-A we discuss how this intuition

is applied to train FILM for demand requests. Although PC-

correlated algorithms have been proposed in prior work [9],

[10], [14], they focus on inclusive cache hierarchies, where the
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Fig. 4: Percentage of memory instructions with stable data

locality

memory instruction information is available during the data

block insertion. A direct adaptation of prior art requires storing

memory instruction PC along with cachelines, which introduces

a significant amount of storage overhead. We present how FILM

overcomes this challenge of building the one-to-one relationship

between a data block and its instruction using bloom filters

in the section III-A2. In section III-B we present how we can

train FILM for prefetch requests by adding only one entry per

prefetcher. Further, we bring out that these prefetcher entries

do not even require a bloom filter.

A. Handling demand request

FILM leverages the observation that data blocks touched

by the same memory instruction tend to have similar caching

behavior. Thus, by learning the caching behavior of a memory

instruction through access history, the caching behavior of

future data blocks from the same instruction can be predicted.

Building this one-to-one relationship between a data block and

its instruction is challenging for exclusive cache hierarchies.

Storing the PC information in the cache along with the tag/data

blocks for a sampled set (training set) is not viable for exclusive

caches as the overhead for just a sampled set can be dramatic.

We end up having to store the PC information across all the

levels in the hierarchy. This is because every cache-line in an

exclusive cache hierarchy has only one unique location across

all the cache levels. If we store the PC information in just the

last level, we lose the ability to track reuse behavior when a

cache-line is promoted to the upper levels (L1, L2). Further,

unless the PC information is stored in the L1 when the line is

first brought in from memory, it will not be available when the

cache-line eventually reaches the exclusive LLC. Increasing

the size of L1 tag structures to store additional meta-data will

likely have effects on its cycle-time and therefore adversely

impact performance. Additionally, ferrying the bypass related

meta-data along with data across the various levels in the

hierarchy further impacts the critical path and worsens the

problem of data movement. To circumvent these challenges

FILM employs centralized training and inference structures

that are off the critical path of the cache hierarchy. We describe

the key components of FILM in the subsections below.

1) Prediction Learning Table: The Prediction Learning

Table forms the core of FILM’s bypass mechanism. It is a

multiported table based training structure, where each entry

corresponds to one memory instruction. FILM selects data

blocks mapped to a few LLC sampled sets as its training

set. Once FILM is able to retrieve the memory instruction

information of a training data block, it trains bypass heuristics

for this memory instruction at all cache levels except for L1.

Due to constrained training storage budget, the Prediction

Learning Table keeps track of a limited number (e.g.,16) of

memory instructions. When reaching the Prediction Learning

Table entry limit, the instruction with the least frequent memory

accesses would be evicted to make room for new instruction.

As illustrated in Figure 5, each table entry contains a Tag field

which is a hash of the memory instruction PC and is used to

index the Result Table, a Footprint Container, ReuseCnt fields

for L2 and L3 respectively, and Fill fields to record current L2

and L3 insertion decisions. The footprint container represents

the cache footprint of the associated memory instruction. An

entry in this table learns the reuse behavior for cache-lines

fetched from DRAM by the memory instruction associated with

the entry. As cachelines move across the hierarchy, we capture

their re-use behavior to the learning table entry that is identified

by the footprint container of the entry. The ReuseCnt fields are

used to track the number of cache reuses encountered by the

data blocks fetched by one memory instruction. The ReuseCnt

fields are fixed width saturating counters(e.g., 3-bit), which

get incremented on data hit, or get decremented on unused

data eviction. L2Fill and L3Fill fields record the latest training

result, a bypass/insert hint. They are initialized according to

the value in the Result Table. An L2ReuseCnt/L3ReuseCnt

value reaching the maximum value triggers the L2Fill/L3Fill

field to change to “Insert”, whereas value decreasing to zero

triggers changes to “Bypass”. When a new entry is allocated,

the initial value of a ReuseCnt field is set based on the status

of the corresponding Fill hint, i.e., set to maximum value if the

Fill hint is “Insert” and to zero if the Fill hint is “Bypass”. The

initial status of a Fill hint is determined by the Result Table,

which will be introduced in Section III-A4. Before training

starts, all entries in the Result table are initialized to ‘Insert”.

Therefore, for a first-time trained memory instruction, its Fill

hints are initialized to “Insert” and the ReuseCnt fields are

initialized to the maximum value.

2) Footprint Container: Each entry in the Prediction Learn-

ing table represents a single memory instruction but needs to

train on all the cachelines the instruction brings in to the cache

hierarchy. Storing the addresses of all the corresponding cache

lines in the footprint container of entry can make the Prediction

Learning Table prohibitively large. Therefore, how to efficiently

associate data blocks fetched by a memory instruction with

its corresponding entry in the Prediction Learning Table is a

crucial problem. To address this challenge, FILM applies a

bloom filter [15], a space-efficient probabilistic data structure

which can rapidly determine whether a data element belongs

to a data set or not. Every Prediction Learning table entry is

assigned to a separate bloom filter. In our work, we use the
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Fig. 5: Training of FILM on demand-fetched blocks. One

Prediction Learning Table entry update at three different cycles.

most basic design of a bloom filter, which is in the form of a

bit vector. The bit vector of bloom filter has a fixed size (e.g.,

4098 bits).

To add an element to the bloom filter, the element is hashed

a few times, and the bits in the bit vector at the index of those

hashes are set to 1. To test for membership, an element is

hashed with the same hash functions. The element is not in the

set if any value at index bits is not set, otherwise it could be

in the set. Since there is no way to delete an element from the

bloom filter, the chance of bloom filter reporting false positive

membership increases as the number of inserted elements grows.

Therefore, we reset the bloom filter periodically, after every

256 insertions, to maintain a low false positive rate of 1%.

We name the bloom filter the footprint container, as what it

records is essentially the memory footprint of an instruction.

3) Learning Process: To train the prediction model, FILM

requires information including cacheline address, the level from

which the data block gets hit or evicted without reuse, and

the hashed PC of the memory instruction if it is an LLC miss.

FILM leverages SFL2 and SFL3 bits to indicate whether a data

block has been reused during its stay at L2 and L3. Jaleel et

al. presented how these bits are required for RRIP if it has to

be applied to exclusive caches. Details on RRIP’s adaptation

for exclusive caches are included in the Section II. The hashed

PC is used to find the right entry in the Prediction Learning

Table, and is stored in the Tag field if a new table entry is

allocated. As described in Figure 3, FILM’s learning process

is triggered by the three types of cache activities: LLC misses,

cache hits and unused data evictions.

On LLC misses, the data address is shifted by the size of

a cacheline to form a cacheline address, and the cacheline

address is inserted into the bloom filter. For example, as

shown in Figure 5, an LLC miss to data 0xBEE happens

at cycle X. The PC (0xFEED) of the memory instruction and

the cacheline address (0xBEE) are sent to FILM’s Prediction

Learning Table. A new table entry is allocated to the memory

instruction. PC (0xFEED) is stored in the Tag field. Fill hints

are set based on the Result table, which are all “Insert” in this

example. ReuseCnt fields are initialized based on the Fill hints.

The cacheline address (0xBEE) is inserted into the Footprint

Container of the table entry.

On training events triggered by unused data eviction or

cache hits, FILM retrieves the PC of the memory instruction

which initially fetched the data from DRAM by looking for the

cacheline address among all the footprint containers in a time

multiplexed fashion. The searching process can be pipelined

and is not on the critical path. If a single membership is

reported for a cacheline address, then FILM constructs the one

to one mapping between the data and the instruction. The data

locality of the memory instruction is learned based on data reuse

information. Alternatively, training activities are not performed

for the following two situations: one is when no residency in

the Prediction Learning Table is detected, which is possible

because FILM tracks a limited number of memory instructions

and footprint containers get reset periodically; and the other

situation is one when the address is found in more than one

bloom filter due to false positive membership reporting. In the

latter case, FILM decides not to train to avoid training noise.

Figure 5 illustrates Prediction Learning Table entry updates due

to L2 data hits at cycle Y and LLC unused evictions at cycle Z

respectively. After searching through all the footprint containers,

cacheline address 0xBEE, which has previously been added to

the Footprint Container of the instruction 0xFEED during cycle

X, is reported as single membership in table entry 0xFEED.

The ReuseCnt number of this table entry is updated based on

the data reuse information. The Fill hints stay same as no new

threshold has been reached.

4) Result Table: Upon LLC miss, data blocks consult FILM

about whether to bypass L2 or LLC in the future. The Prediction

Learning Table is the first-hand source of bypass hints when a

PC match is found. However, if there is no PC match, FILM

relies on the Result Table to handle cases when data blocks

cannot receive bypass hints from the Prediction Learning Table.

The Result Table is a direct-mapped structure indexed by

the hashed instruction pointer. Each table entry has two bits,

representing L2 and L3 bypass hints separately, and their initial

value are set to be “Insert”. When there is an LLC demand

miss, the PC of the demand request is used to index the Result

Table and read the L2 and L3 fill decision. Once the data

block is installed directly into L1, the decision is kept with

the data block along with other metadata. The 2 bit overhead

per cacheline is acceptable, and it helps guide data insertion

as a complement to the Prediction Learning Table. Another

important function of the Result Table is to provide initial Fill

value for a newly allocated Prediction Learning Table entry.

When a Prediction Learning Table entry is evicted, the trained

bypass hints of the instruction are stored into its corresponding

Result Table entry, and such that next time when this instruction

gets reallocated to the Prediction Learning Table, it has warmed-

up bypass hints.

5) Detect stale bypass decisions using empty blocks:
The optimal bypass hints dynamically change along with the
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program execution. The reason is because cache bypass of

one group of data blocks changes the reuse distance of other

groups. A previous bypass decision becomes stale and does

not work in the future as the reuse distance profile changes

dynamically. One example is the case when cache accesses

exhibit a thrashing access pattern, e.g., a memory instruction

repetitively reading K data blocks which happen to map to the

same set of an N -way associative (N < K) cache. The optimal

solution is to keep N data blocks in the cache and bypass the

rest (K−N ). An algorithm without error detection will predict

that none of the future data blocks from the same instruction

should be inserted into the cache. Whereas an optimal algorithm

should allow at least N data blocks to be inserted to guarantee

data reuse at the best effort.

A stale bypass hint is difficult to detect because the data

block following the bypass hint is discarded, leaving no chance

to prove its locality from cache hits. Thus, FILM is designed

with a ”utilize empty blocks” rule to provide opportunities to

detect stale bypass decisions. The rule is explained as follows.

Let us consider the L2 cache as an example. A data block is

inserted into L2 cache due to available free space even though

FILM suggests to bypass L2. The bypass L2 hint is stored

along with this block. On a subsequent hit to the same block at

L2, FILM trains its model and considers the L2 “Bypass” hint

as stale after seeing that a block marked as bypass gets reused.

In addition to increasing the L2ReuseCnt counter, FILM would

immediately flip the L2 fill hint from “Bypass” to “Insert”

based on the single error. Prior art either does not have an

error detection scheme and always performs data bypassing

based on prediction, or inserts blocks if there is free space

cache without any further activities on error detection.

Although the “utilize empty blocks” rule could cause useless

data block insertions (given that FILM suggests bypass), we

argue that it does not cause additional performance degradation

due to two reasons. One is that it does not pollute caches as

it uses free cache space without causing any eviction. The

other reason is that high performance cache replacement policy

protects cache blocks with frequent reuse and selects cache

blocks with less or no reuse as the victim, such that wasted

insertions from the “utilize empty blocks” rule are evicted to

make room for new blocks.

B. Handling Prefetch

FILM’s training on prefetched blocks is performed at the

granularity of a prefetcher. For example, for a system with L1

and L2 prefetchers, FILM sets up two entries in the Prefetch

Prediction Learning Table, with each entry representing one

prefetcher. The footprint container field is not required, because

each cacheline can pinpoint which prefetcher initially fetched

the block by storing prefetch identifier information (PfId) in the

tag store. Cache blocks fetched by the same prefetcher will have

the same PfId. Prefetch identifier helps to distinguish prefetched

blocks from regular blocks (whose PfId is zero). When a

prefetched block serves a demand request, it is promoted from

a prefetched block to a regular block and the PfId is reset to

zero. The future training process on this block is handled the

Fig. 6: Training on prefetched blocks. Showing two different

scenarios at two different cycle.

same as a regular block. Note that a prefetched block serving

prefetch requests from upper levels does not change the PfId

value of the block. Basically, the prefetch identifier of a cache

block provides three hints to FILM. Firstly, it indicates whether

the training target is a regular memory instruction or certain

data prefetcher. Secondly, if the target is a data prefetcher,

PfId points to the prefetcher for which FILM is to be trained.

Thirdly, PfId being non-zero indicates that a prefetched block

has not served a demand request yet.

Training on prefetch requests occurs when a prefetched block

is hit by either prefetch requests or demand requests, and when

a prefetched block is evicted. When a prefetched block sees a

demand request hit, FILM performs three operations. Firstly,

the L2ReuseCnt or L3ReuseCnt of the corresponding prefetcher

is incremented based on whether the hit occurs at L2 or L3.

Secondly, the cacheline address of the hit block is added to the

footprint container of the demand request, in preparation for

future training on this instruction. The ReuseCnt of the Demand

Prediction Learning Table entry also increments. PfId of this

cache block is reset. Thirdly, the demand request PC is used to
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consult the Prediction Learning Table and the Result Table to

get suggested L2 and L3 bypass hints, which is sent back to the

data. When a prefetched block serves a prefetch request (hit),

the L2ReuseCnt/L3ReuseCnt of the corresponding prefetcher

is incremented. When a regular block serves a prefetch request

(hit), the regular block is demoted to a prefetched block and has

its PfId set, but there is no Prediction Learning Table updates.

When an unused prefetch block is evicted, the L2ReuseCnt or

L3ReuseCnt of the corresponding prefetcher is decremented.

Making L2/L3 bypass decisions and correcting stale bypass

decisions are the same as handling demand requests. Figure 6

illustrates the above operation using two different examples.

In the first example at cycle M, a data block prefetched by

L2 services a demand request at L3. In the second example

at cycle N, a prefetched block initiated by L2 prefetcher gets

evicted out of L2 without usage. For this case, the prefetched

block is inserted into the L3 based on the Insert L3 bypass hint

from the Prefetch Prediction Table, but the Demand Prediction

Table is not updated.

IV. EVALUATION METHODOLOGY

Our simulations are performed on a cycle-accurate simulator,

which is an extended version of the 2nd Cache Replacement

Champion (CRC2) simulator [16]. Table I shows detailed

simulator parameters. The memory subsystem consists of a

three-level cache hierarchy and a detailed DRAM model. Eval-

uations are conducted on multicore systems with prefetching

enabled. We apply both traditional data prefetcher designs

such as next-line prefetchers, as well as one of the state-of-

the-art prefetching schemes, VLDP [17]. We use Simpoint

traces of SPEC CPU2006 workloads provided by the 2nd

Cache Replacement Contest [16]. In multi-core experiments,

cores that finish executing early would restart execution from

beginning in order to continue adding pressure to shared cache

and memory. In the multi-core experiments, each core runs

250M instructions with a warm up length of 10M instructions.

We use McPAT [18] to estimate the dynamic power and energy

consumed by the various policies. The system energy reported

in this paper includes core energy, fabric energy, shared LLC

energy and DRAM energy.

We compare FILM design against seven cache replacement

and bypass algorithms. TC-UC [8] and DRRIP EX [3] learn

global caching priorities for exclusive caches. Both policies

use a three-bit re-reference counter per cacheline. TC-UC is

implemented with bypass and aging policies, which corresponds

to the ”Bypass+TC UC AGE x8” policy in their paper [8].

Both FLEXclusion [19] and CHAR [5] focus on reducing on-

chip multi-level cache bandwidth via relaxing cache inclusion

policy. For CHAR we use the address space correlation scheme

and implement the ”CHAR-C4” policy which is tailored for

an exclusive cache model and does not de-allocate a block

from LLC on hit. For FLEXclusion, it operates in both

Aggressive and Bypass mode. While the above four schemes are

address space correlated, we also include code space correlated

schemes, namely SHiP++ EX [20], Hawkeye EX [10], and

MPPPB EX [9]. We have adopted these schemes to exclusive

TABLE I: Simulation parameters

Four cores out-of-order cores, 4.5GHz, 6-wide pipeline,
72-entry load queue, 56 entry store queue
maximum 2 loads and 1 stores be issued every cycle

Branch Predictor bimodal branch prediction, 16384 entries,
20 cycle mispredict latency

Private L1 64KB, 8-way associative, 8 MSHR entries
RRIP replacement policy, nextline prefetcher,
4 cycle latency

Private L2 512KB, 8-way associative, 16 MSHR entries
RRIP replacement policy, VLDP prefetcher,
additional 8 cycle latency

Shared LLC 8MB, 16-way associative, 32 MSHR entries
RRIP replacement policy
additional 20 cycle latency

DRAM 4GB off-chip memory. 1 channel. 1600 MT/s
Read queue length 48 per channel
Write queue length 48 per channel
tRP = 11 cycle, tRCD = 11 cycle, tCAS = 11 cycle

caches by storing the instruction pointer information along

with data block and tailored their RRIP-based replacement

policies for an exclusive cache model based on Jaleel’s prior

work [3]. The implementations are based on the code submitted

by the respective authors to the CRC2. Specifically, the

implementation of SHiP++ EX is based on SHiP++ [20], which

further improves the performance of the SHiP policy.

V. RESULTS

A. Multicore Evaluation

We evaluate FILM on a series of 4-core multi-programmed

workloads, with a wide variation in the data reuse characteristics

and cache capacity sensitivity of the co-running programs. The

workload mixes are made of both streaming-oriented workloads

and reuse-oriented workloads. In the following sections, we

evaluate FILM and other policies from the perspective of

energy efficiency, data movement and performance. An early

finished workload continues executing and stressing shared

resources(e.g., LLC and main memory) until the slowest one

completes, however, the energy and performance of a workload

is computed based on the data of first 250 million instructions.

We use throughput (i.e., total IPC) over entire system energy as

the metric to demonstrate energy efficiency. LLC accesses and

DRAM accesses are used as metrics to evaluate the amount

of data movement controlled by the evaluated policies. LLC

accesses (LLC traffic) consists of all kinds of LLC accesses,

including load/store access, prefetch requests and L2 evictions.

DRAM accesses (DRAM traffic) consists of all the LLC misses.

IPC speedup is used to summarize the performance impact of

a policy on multicore workloads.

1) Energy Efficiency: Figure 7 compares the energy ef-

ficiency of CHAR, FLEXclusion, DRRIP EX, SHiP++ EX,

Hawkeye EX and MPPPB EX, with the number normalized to

the baseline TC-UC. The mixes are arranged in the increasing

order of FILM’s normalized energy efficiency. The comparisons

are demonstrated in two panels based on whether the policies

were originally proposed to handle exclusive caches or not. The

policies in the first class (CHAR, FLEXclusion, DRRIP EX) as

well as the baseline(TC-UC) are address-correlated. In contrast,

388



(a) (b)

Fig. 7: Energy efficiency(IPC/J) of FILM and other schemes. Results normalized to TC-UC. FILM (line with blue triangle)

constructs the upper envelope.

(a) LLC traffic (b) DRAM traffic
(c) LLC+DRAM

energy

Fig. 8: The traffic and energy of shared memory resource

(LLC and DRAM) of FILM and other schemes. Results

normalized to TC-UC. The lower the better.

all the policies in the second class (SHiP++ EX, Hawkeye EX

and MPPPB EX) are PC-correlated and require maintaining

the program counter of the load/store instructions along with

the cacheline. Additionally, CHAR and FLEXclusion, from the

first group, and the baseline TC-UC policy have L2 eviction

bypassing LLC mode, whereas DRRIP EX and policies in the

second group do not enable data bypassing.

Our first observation is that FILM constantly achieves higher

energy efficiency than the baseline whereas the profile of other

policies fluctuates dramatically. Compared to the baseline, the

energy efficiency of FILM varies from 1% to a gain of 20%,

whereas FLEXclusion shows the largest swing between a loss

of 8% to a gain of 16%. Our second observation is that FILM

has the highest average energy efficiency improvement of 9%,

beating the second largest value of 4% from CHAR by 5%. In

other words, given the same amount of energy supply FILM

is able to achieve 9% higher performance than the baseline,

compared to the range of -2% to 4% performance improvement

from other policies.

2) Data Movement: Data movement is a major factor

contributing to the energy consumption difference among all

the policies as it affects both LLC energy and DRAM energy. In

order to understand why one policy consumes more/less energy

than another, we summarize the average normalized LLC and

DRAM traffic as well as the total energy of the two shared

memory resources of all the workload mixes in Figure 8a.

From the figure, we observe that FILM consumes the least

amount of shared memory energy compared to other schemes

because it generates the smallest average number of LLC and

DRAM traffic. It is also noted that all the evaluated policies

introduce more LLC traffic compared to the baseline policy

with fewer DRAM accesses. The reason is that the baseline

policy performs LLC bypass more aggressively compared to

the other schemes. Aggressive LLC bypassing helps reduce

LLC energy, but results in wasting more DRAM energy due

to the increasing LLC misses.

Comparing to the policies with no LLC bypassing (DR-

RIP EX, SHiP++ EX, Hawkeye EX and MPPPB EX), FILM

saves LLC traffic by selectively installing L2 evictions into

LLC. The average normalized LLC traffic for no-bypassing

policies are around 1.22X, which is 0.12X more than the 1.1X

of FILM. The LLC bypass rate of FILM varies between 1%

to 46% (with median value of 20%), which account for up to

0.3X less LLC traffic compared to no-bypassing policies.

Compared with data-bypassing policies, FILM has similar

average LLC traffic compared to CHAR and 0.7X less than

FLEXclusion, and FILM has the lowest DRAM traffic(0.88X)

compared to CHAR(0.9X) and FLEXclusion(0.93X).

3) Performance: Figure 9 summarizes the performance

speedup of various algorithms normalized to the baseline TC-

UC. The mixes are arranged in the increasing order of FILM’s

normalized throughput. The average performance of FILM is

generally better than FLEXclusion and SHiP++, and looks

on par with other schemes. Specifically, FILM outperforms

DRRIP EX on workload mixes with lbm and sphinx3. FILM

beats DRRIP EX in lbm and sphinx3 in terms of single core

performance by more than 10%. FILM shows its performance

advantage on cache capacity sensitive workloads by increasing

the effective cache capacity via reduced insertions, minimizing

shared cache capacity contention in the multicore scenario.

Among all the four PC-correlated policies, SHiP++ EX

shares the most common thoughts with FILM. The largest
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Fig. 9: IPC of FILM and other schemes. Results normalized to TC-UC. FILM constructs the upper envelope.

TABLE II: Comparison between FILM and basic RAP and

RAP enhanced with FILM-like training on prefetch relative to

TC-UC

Metric Basic RAP Enhanced RAP FILM
Hardware overhead per core 72KB 72KB 8.5KB
Energy efficiency (IPC/J) 0.91 0.96 1
DRAM traffic (access count) 2 1.06 1
LLC traffic (access count) 1.38 1 1
Performance (IPC) 0.89 0.98 1

difference is that FILM relies on bypassing dead blocks to

avoid triggering the replacement policy and protecting critical

data, whereas SHiP++ EX (as well as Hawkeye EX and

MPPPB EX) always inserts dead blocks with the highest

eviction priority. Take the mix50 in the Figure 9b as an

example, FILM outperforms SHiP++ EX, Hawkeye EX and

MPPPB EX in this workload mix, which consists of one

cache capacity sensitive workload (sphinx3), one streaming

workload (libquantum), and two workloads with small working

set size (astar and wrf). FILM distills the streaming pattern

and minimizes the LLC data replacement due to this workload,

thus increasing the LLC hit rate of the data with reuse, which

is retained in the cache. Another difference is that FILM

detects any stale bypass decisions and updates its prediction

model, whereas SHiP++ EX does not do any error detection

or correction. There is no obvious performance winner among

CHAR, Hawkeye EX, MPPPB EX and FILM. Hawkeye EX

outperforms FILM on a few workload mixes, and its multicore

throughput speedup comes from its performance improvement

on one workload, lbm. However, even for the workload

mixes with 8% performance difference between FILM and

Hawkeye EX, FILM achieves the same energy efficiency as

Hawkeye EX as FILM generates 25% less LLC traffic.

Co-running application could experience IPC reduction due

to the negative interference between the multiple tenants

contending for shared cache resources. Compared to the

baseline, FILM is able to restrict the performance degradation

of single application within 2%, whereas other policies lead

to single application performance degradation of 4% to 10%.

TABLE III: FILM hardware budget (per core)

Component Parameter Budget
Prediction Learning Table 16 entries, 11-bit Tag, 8 KB
(Demand + Prefetch) 4096-bit footprint container

8-bit ReuseCnt+Fill
Result Table 2048 entries, 2-bit entry 0.5KB

TABLE IV: Overhead Comparison (per core)

CHAR SHiP++ EX Hawkeye EX MPPPB EX FILM
2.25KB 77.5KB 86KB 97KB 8.5KB

4) Comparison with RAP: As both FILM and RAP [21] have

the same goal of optimizing data placement across the cache

hierarchy, we complete our evaluation with RAP comparison

in this section. RAP is compared separately because it does

not have a special training mechanism for prefetched blocks.

With prefetching disabled, FILM’s performance on the multi-

programmed mixes beats RAP by 7%. With prefetching enabled,

the performance of the original version of RAP on the system

with prefetching enabled is poor, because RAP uses PC as

its training metric and the PC of a prefetched block is zero

(prefetcher does not have PC). To make fair comparison, we

enhance RAP with FILM-like training schemes on prefetch

and show the result of the enhanced RAP in Table II. One

difference between RAP and FILM is that for cachelines with

frequent accesses(hits), RAP learns from only the first hit and

evictions, whereas FILM learns from all the hits and evictions.

Another difference is that to avoid losing a global view of data

movement under heavily data bypassing, RAP dedicates few

sets as learning sets which are not affected by the RAP bypass

algorithm, whereas FILM follows its ”utilize empty line” rule.

Enhanced RAP has a 72KB hardware cost as it extends the

metadata field of each cacheline in the cache subsystem with

12-bit PC. With such significant overhead, the energy efficiency

of Enhanced RAP is 4% less than FILM. Both Enhanced RAP

and FILM cut down LLC traffic due to their support on cache

level bypassing. RAP has 6% more DRAM accesses and 2%

less performance compared with FILM as its bypassing tends

to get overly aggressive.
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Fig. 10: Rate of multiple entry matches reported by FILM’s

bloom filter.

B. Hardware Cost and Design Decisions

1) Hardware overhead comparison: Table III shows the

hardware budget of FILM’s two main memory components,

Prediction Learning Table and Result Table. FILM’s total

hardware budget is 8.5KB per core, which is 0.3% more

SRAM than the three-level cache hierarchy, in exchange for

a significant reduction in data movement and a dramatic

improvement on energy efficiency. Table IV compares the

hardware budgets for the evaluated replacement policies. TC-

UC and DRRIP EX are not listed because they, as well as

other six schemes, share the common overhead of three bits

per cacheline to store re-reference counter. FLEXclusion is

not listed because it leverages pre-existing data paths with

only four registers overhead. SHiP++ EX, Hawkeye EX and

MPPPB EX have 72KB more overhead than the number

claimed in their paper due to the overhead of 14-bit PC-based

signature stored with cacheline.

2) Bloom filter analysis: As mentioned earlier, we use a

bloom filter in FILM, to tie all cache blocks fetched from

DRAM by the same memory instruction to one table entry.

When training, we use this bloom filter to identify which

specific memory instruction to train. FILM stops training on

a data address when a multiple match is detected. Figure 10

illustrates the false positive rate at which FILM’s bloom filter

reports multiple entries matched one address among SPEC

CPU2006 workloads. We see that the false positive rate is

greater than 10% for more than half of the workloads. One

may be surprised that FILM’s training accuracy is not seriously

impacted even with such high rates of multiple matches. We

observe that for workloads like libquantum and bwaves, the

valid training points are only around 30% of the entire training

set, and this observation suggests high information redundancy

in the training set. In other words, although we do not train

FILM based on the entire history of data accesses generated

by a given instruction, a small portion of the history provides

sufficient information to train a decision that is as good as the

one made with all the history. Further, this observation adds

confidence to our design choice of using a few sampled cache

sets for training FILM, as opposed to tracking all the sets.

Figure 11 illustrates the impact on performance as the

number of bloom filters in the Prediction Learning Table

increases from 8 to 64. The performance number is normalised

to 16 entries, which is the same number showing in Table III.

Fig. 11: Performance sensitivity to the number of bloom filters.

IPC normalized to 16 bloom filters.

Fig. 12: Energy efficiency of FILM and FILM without ”utilize

empty block rule”. Results normalized to TC-UC. FILM is at

upper envelope.

We observe a huge performance jump when the number of

bloom filters increases from 8 to 16. Performance difference

between 16 and 32 bloom filters is negligible. Performance

increases by 2% as the number quadruples from 16 to 64. Thus,

the least amount we could possible use to maintain performance

is 16.

3) Impact of ”Utilize empty blocks” rule: The ”Utilize

empty blocks” rule inserts evicted cache blocks into lower

caches when there is empty space in the cache, regardless

of FILM’s bypassing hints. If such blocks see hits in their

new home, it guides FILM to dynamically adjust its outdated

bypass decisions. The CHAR algorithm uses empty block as

well. However, FILM uses empty blocks to create opportunities

for detecting stale bypassing hints, whereas CHAR does not

perform any special training on data inserted into empty blocks.

Figure 12 compares normalized energy efficiency over TC-

UC between FILM and another FILM implementation which

does not apply the ”Utilize empty blocks” rule and always

bypasses data block based on hints. Always bypassing reduces

the number of LLC installs and saves cache energy, at the cost

of losing performance and increasing DRAM energy. Figure 12

illustrates that ”utilize empty block” rule contributes to an

average of 4% energy efficiency improvement compared to

TC-UC.
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VI. RELATED WORK

There have been several studies on intelligent cacheline

bypass/placement. A group of researchers have studied the

energy and performance impact of cache bypass on the first

level cache [22]–[26], while another group of researchers

focus on the last level [27]–[36]. All these techniques only

target single level of cache without addressing the problem

from the perspective of the entire cache hierarchy.

Gaur et al. explore insertion and bypass algorithms for

exclusive LLCs and propose a number of design choices for

selective bypassing and insertion age assignment (TC-UC) [8].

LLC bypass and age assignment decisions are based on two

properties of a block, trip count and use count.

Chaudhuri et al. propose CHAR [5], cache hierarchy-aware

replacement algorithms for inclusive LLCs and applies the

same algorithms to implement efficient bypass techniques for

exclusive LLCs in a three-level hierarchy. The CHAR algorithm

learns the reuse pattern of the blocks residing in the L2 cache

to generate selective replacement hints to the LLC.

Sim et al. propose FLEXclusion [19] which dynamically

switches between exclusion and non-inclusion depending on

workload behavior. While FLEXclusion dynamically changes

between the exclusive and non-inclusive to get the benefit of

high performance of exclusive caches and low data traffic of

non-inclusive caches, FILM’s goal is to improve exclusive

caches performance and reduce data traffic by learning bypass

hints.

Wu et al. propose Signature based Hit Predictor (SHiP) [14],

a sophisticated cache insertion mechanism. SHiP predicts

whether the incoming cache line will receive a future hit by

correlating the re-reference behavior of a cache line with a

unique signature, such as memory region, program counter,

or instruction sequence history based signatures. The SHiP

implementation compared in our work uses program counter

as the signature.

Jain et al. propose Hawkeye [10], a cache replacement policy

which learns from Belady’s algorithm by applying it to past

cache accesses to inform future cache replacement decisions.

Hawkeye is consisted of an OPTgen algorithm which uses the

notion of liveness intervals to reconstruct Belady’s optimal

solution for past long cache accesses, and a predictor which

learns OPT’s behavior of past PCs to inform eviction decisions

for future loads by the same PCs.

Jimenez et al. propose Multiperspective Placement, Promo-

tion, and Bypass (MPPPB) [9], a technique that predicts the

future reuse of cache blocks using seven different types of

features to capture various program properties and memory

behavior. The set of features used in MPPPB include data

address, last miss, offset and program counter. Its predictor

is organized as a hashed perceptron predictor indexed by

a diverse set of features, and the final prediction result is

an aggregation of many predictions taking into account each

prediction’s confidence.

Sembrant et al. present a Reuse Aware Placement (RAP)

policy [21] to optimize data movement across the entire

cache hierarchy. RAP dynamically identifies data sets and

measures their reuse at each level in the hierarchy. Each

cache line is associated with a data set and consults that

data set’s policy upon eviction or installation. RAP selects

a group of cachelines (called learning blocks) to help adapt

changes in application and instruction behavior by ignoring

bypass decisions upon installation. Compared with FILM, RAP

experiences performance degradation as an incorrect bypass

decision may have caused additional cache misses before it is

corrected. Another factor leading to RAP’s low performance is

the absence of making special training effort on the prefetch

requests. Moreover, RAP involves huge hardware overhead as

it requires every cache block in the cache hierarchy to maintain

a 12-bit large instruction pointer field.

VII. CONCLUSION

Due to the inherent difference of data block insertion and

movement between an exclusive hierarchy and an inclusive/non-

inclusive hierarchy, prior work, which is PC-correlated and is

designed with non-inclusive caches in mind, cannot be easily

applied to exclusive caches. Moreover, a holistic approach to

manage data placement is essential for high cache performance

and efficient resource utilization. Therefore, the authors propose

FILM, a locality filtering mechanism to adaptively guide

data placement into appropriate cache layers based on data

reuse patterns. With a PC-based prediction scheme, FILM

utilizes bloom filters to record the memory instruction PC of

data blocks, incurring minimal cache overhead for meta-data

transmission and storage. Additionally, FILM is able to quickly

detect and correct any stale bypass decisions. FILM also does

special training on prefetch requests, and makes prefetch aware

learning of bypass/placement decisions.

Compared to a competitive baseline (TC-UC), FILM im-

proves the average energy efficiency of multicore multi-

programmed system by an of average 9% (maximum 20%),

beating the second-highest average energy efficiency improve-

ment from CHAR by 5%, and is constantly more energy

efficient than other PC-correlated schemes. Moreover, FILM

cuts down wasteful cache block insertions and data movement,

and generates on average 12% less LLC traffic and 4% less

DRAM traffic than other PC-correlated schemes.
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