
Acorns: A Framework for Accelerating Deep Neural Networks with Input Sparsity

Xiao Dong∗†, Lei Liu∗, Peng Zhao∗†, Guangli Li∗†, Jiansong Li∗†, Xueying Wang∗† and Xiaobing Feng∗†
∗State Key Laboratory of Computer Architecture

Institute of Computing Technology
Chinese Academy of Sciences, Beijing, China

Email: {dongxiao, liulei, zhaopeng, liguangli, lijiansong, wangxueying, fxb}@ict.ac.cn
†University of Chinese Academy of Sciences, Beijing, China

Abstract—Deep neural networks have been employed in a
broad range of applications, including face detection, natural
language processing, and autonomous driving. Yet, the neural
networks with the capability to tackle real-world problems are
intrinsically expensive in computation, hindering the usage of
these models. Sparsity in the input data of neural networks
provides an optimizing opportunity. However, harnessing the
potential performance improvement on modern CPU faces
challenges raised by sparse computations of the neural net-
work, such as cache-unfriendly memory accesses and efficient
sparse kernel implementation.

In this paper, we propose Acorns, a framework to accelerate
deep neural networks with input sparsity. In Acorns, sparse
input data is organized into our designed sparse data layout,
which allows memory-friendly access for kernels in neural
networks and opens the door for many performance-critical
optimizations. Upon that, Acorns generates efficient sparse
kernels for operators in neural networks from kernel templates,
which combine directions that express specific optimizing
transformations to be performed, and straightforward code
that describes the computation.

Comprehensive evaluations demonstrate Acorns can out-
perform state-of-the-art baselines by significant speedups. On
the real-world detection task in autonomous driving, Acorns
demonstrates 1.8-22.6× performance improvement over base-
lines. Specifically, the generated programs achieve 1.8-2.4×
speedups over Intel MKL-DNN, 3.0-8.8× speedups over Ten-
sorFlow, and 11.1-13.2× speedups over Intel MKL-Sparse.

Keywords-Deep Learning; Sparse; Optimization; Compiler;

I. INTRODUCTION

Recent years have witnessed the remarkable advances in

the development of deep learning models in many real-world

problems, face recognition [1], [2], image retrieval [3], natu-

ral language processing [4], and autonomous driving [5], just

to name a few. While these models are powerful enough to

extract knowledge from massive data, they pose significant

challenges in the computing efficiency when deployed to

carry out inference. A typical neural network [6] requires

billions of floating-point operations to classify an image, and

more challenging problems, like the detection in autonomous

driving, could bring several times more computations. More-

over, the advances in the capability of deep models heavily

rely on the increase of model size, which directly translates

into increasing computational demands and makes it more

challenging and urgent to achieve fast inference. Considering

the ubiquity in a broad spectrum of devices and good

programmability, CPU plays an important role in the neural

network workloads, especially for the inference phase [7].

Sparsity provides the opportunity to improve the inference

performance, as redundant arithmetic operations can be

safely skipped, and the memory traffic can be reduced.

Actually, the input data is naturally sparse in many real-

world tasks, such as the LiDAR (Light Detection And

Ranging) detection [5], [8] in autonomous driving, face

detection [2], character recognition [9], and image recon-

struction and editing [10]. In these tasks, only specific

regions in input images are valid. However, harnessing

the potential improvement faces several challenges. First,

irregular and data-dependent memory access pattern makes

it hard to exploit the locality, leading to insufficient cache

utilization. Secondly, implementing efficient sparse opera-

tors in neural networks can be complex. The sparse data

is usually compressed and only valid elements are kept

with indexing information, restricting available ways of the

kernels to operate over the sparse data. Finally, although

ignoring the input sparsity, existing frameworks [11]–[14]

leverage the vendor libraries, such as Intel MKL-DNN [15]

and NNPACK [16], to implement computationally expensive

kernels. These libraries are elaborately optimized and tuned

by experts to approach the peak performance [15], and thus

are hard to outperform.

In this paper, we focus on exploiting the input spar-

sity to accelerate the inference of deep neural networks.

Several techniques are proposed and work collaboratively

to overcome the challenges. Based on the observation to

the sparsity structure of the sparse inputs, an efficient data

layout is designed for the sparse data in neural networks.

The data layout provides cache-friendly access to sparse

data for neural network kernels and helps to expose plenty

of performance-critical optimization opportunities that can

be easily exploited. With respect to operators, we design a

generating method to produce efficient sparse kernels. We

define kernel templates composed of code to describe the

computation and optimizing directions to express specific

transformations to be performed by the kernel code gener-

ator. Above the operator level, inter-operator optimizations

are employed to simplify the end-to-end inference. All of the

178

2019 28th International Conference on Parallel Architectures and Compilation Techniques (PACT)

978-1-7281-3613-4/19/$31.00 ©2019 IEEE
DOI 10.1109/PACT.2019.00022

Figure 1. The workflow of Acorns

above techniques are integrated into a framework, Acorns,

to achieve efficient inference of neural networks with input

sparsity.

The workflow of Acorns is displayed in Fig. 1. Specif-

ically, Acorns starts with taking the network topology as

input and builds a computation graph consisting of the

operators in the network. Before diving into each operator,

Acorns performs two inter-operator transformations. The

operator fusion finds and merges operators that can be fused

together, and the sparse tensor layout conversion traces the

intermediate tensors and ensures they match the requirement

of tensors’ data layouts when to be consumed. For operators

in the transformed graph, Acorns performs specific trans-

formations according to the optimizing directions on the

code in templates and auto-tuning may be used to find the

best configuration. The final generated program can achieve

efficient inference of the neural network with sparse inputs.

To summarize, we make the following contributions in

this paper:

• We design a new data layout for sparse input data

in deep neural networks, which enables cache-friendly

data accesses and helps to expose plenty of opportuni-

ties of performance-critical optimizations.

• We design a method to generate efficient sparse kernels

in deep neural networks. The computing code and

optimizing directions are combined into kernel tem-

plates, on which the kernel code generator performs

corresponding optimizing transformations and tuning.

• We orchestrate all ingredients into an end-to-end frame-

work to achieve efficient deep neural network inference

with sparse input data.

• We conduct comprehensive experiments to evaluate the

capability of Acorns and compare it with other state-

of-the-art methods. Experiment results of the LiDAR-

based detection demonstrate significant speedups over

all baseline methods. Compared with existing sparse

inference methods, Acorns delivers 8.9-13.2× perfor-

mance improvement. As for dense inference methods,

Acorns achieves 1.8-2.4× speedups over Intel MKL-

DNN [15], 3.6-8.8× speedups over TensorFlow [11],

and 9.8-16.8× speedups over NNPACK [16].

The rest of this paper is organized as follows. We first

introduce necessary background in Section II. Section III

overviews Acorns by an example. In Section IV, we in-

troduce each part of Acorns in detail. The experimental

evaluations are presented in Section V, followed by the

comparison to related work in Section VI. Section VII

summarizes this paper and introduces future work.

II. BACKGROUND

In this section, we first provide a brief introduction to the

key concepts about neural networks and notations we use

in this paper. Then, we introduce typical tasks with sparse

input data.

A. Neural Networks

A neural network is composed of a series of connected

operators, with each one applying specific type of computa-

tion to the inputs from its dependent operators and passing

the results to the following operators. Typical operators

include convolution [17], batch normalization [18], non-

linear activation [6], and pooling [6]. Among these operators,

convolution is the focus of performance optimization, as

it usually dominates the inference latency and is more

complicated to optimize than others (e.g., matrix multipli-

cations). A neural network containing convolutions is called

convolutional neural network (CNN), which is one of the

most important deep learning models and has been widely

used in many domains, such as computer vision and natural

language processing.

B. Tensors

The inputs and outputs of operators in neural networks

are usually represented by tensors. A tensor can be viewed

as a multidimensional array. In inference, the input and

output tensors usually have three dimensions, the channel

dimension (C) and two spatial dimensions, height (H) and

width (W). Throughout this paper, we denote input, output

and weight tensors with I , O and W , respectively. Without

causing confusion, C, H , W are also used to represent the

size of corresponding dimension.

The data layout of tensor can be expressed using the com-

bination of dimensions, such as ‘HWC’ (channel dimension

is the fastest varying dimension in memory). In the sparse

situation, to save storage space, only non-zero values are

kept and another data structure is built to store their indices.

Popular sparse matrix formats such as compressed sparse

row (CSR) [19], compressed sparse column (CSC) and

coordinate (COO) are common examples. Only a particular

set of access patterns can be efficiently supported by these

data layouts. Moreover, as these formats are designed for

179

(a) RGB image (b) bird-eye-view LiDAR image

Figure 2. Example images from KITTI dataset. The RGB image captured
by camera is on the left, and the corresponding bird’s eye view image is
on the right. The images are resized for displaying.

general sparse matrices, domain-specific sparsity structure

cannot be captured by them. We introduce our designed data

layout for sparse tenors in section IV-A.

C. Operators in Neural Network

The convolution operator convolves input feature map

tensor with weight tensor, and produces new feature map

tensor as output. The weight tensor consists of 4 dimensions:

the kernel dimension K, the channel dimension C, the

kernel height dimension R, and the kernel width dimension

S. Convolution is equivalent to matrix multiplication (mm)

when both R and S are equal to 1 and we name it non-spatial

convolution. For spatial convolutions, common practice [11],

[12], [20] first transforms the input tensor into a matrix and

utilizes the mm kernel to compute the convolution result.

Recently, direct convolution with careful optimizations plus

jit (just-in-time) compilation shows excellent performance

on Intel CPU [15], [21].

Pooling [6] divides the H and W dimensions into small

2D blocks and performs reduction within each block by

picking up the maximum or computing the average. Ac-

tivation (e.g., ReLU [6]), batch normalization (bn) [18] and

scale [18] are all element-wise operators. Activation per-

forms non-linear transformation while batch normalization

and scale perform linear scaling with different coefficients

for values in different channels. We refer readers to corre-

sponding papers for more details.

D. Applications with Sparse Input

In this section, we introduce two representative and im-

portant tasks with sparse inputs, the LiDAR-based detection

in autonomous driving and face detection.

1) LiDAR-based Detection: In autonomous driving, a

car relies on the cooperation of multiple devices to sense

the surrounding, such as cameras, GPS, and LiDAR sen-

sors [22]. LiDAR-based perception is essential due to its

ability to perceive distances accurately and the robustness

to the lighting change. The sensor emits laser pulses and

measures the distance to surrounding obstacles through the

time taken by the pulse to reflect off the encountered object

and return to the sensor. By drawing a point in a 3D

coordination system where at least one pulse encounters

object, a point cloud can be constructed to provide a good

representation of the positions and shapes of surrounding

objects, like pedestrians and other vehicles.

An effective way to process the point cloud is projecting it

from the bird’s eye view (the top view) and feeding the result

images into deep learning detection algorithms to recognize

objects of interests [5], [8]. These images are usually very

sparse because only the surfaces of surrounding objects

correspond to non-zero values. The sparsity can reach 75%-

90% in real-world LiDAR-based detection [8], [23]. Fig. 2

displays example images.

2) Face detection: Face detection algorithms employ

CNNs to check if there are faces in given images and

output the locations of found ones. To reduce the risk of

wrongly recognizing background as faces, some light-weight

algorithms [2] are used to direct the attention of CNNs to

predicted regions that are likely to have faces and ignore the

left part of the image. The prediction result is expressed as a

spatial mask and will be combined with the original image to

serve as the input to following CNNs. As locations marked

as 0 will be ignored by CNN, these values can be treated as

0 without affecting the final result.

III. OVERVIEW OF ACORNS

In this section, we use an example to give a brief introduc-

tion to how Acorns implements efficient inference of neural

networks with sparse inputs. Subsequent section describe

each part of Acorns in more detail.

Fig. 3 shows the process of generating the program

for the example neural network, which is extracted from

DenseNet [24]. Each step is shown in a block. First, Acorns

takes the neural network topology (nn.prototxt) as input and

parses it to construct a computation graph (Block 1). In the

graph, each operator of the neural network is represented by

a node, and edges represent tensors, including the input and

output tensors of the neural network and the intermediate

tensors that connect operators. The graph of the example

network contains five operators.

The graph abstracts the neural network at the operator

level and can serve as an appropriate representation to per-

form inter-operator transformations. Acorns first performs

the operator fusion transformation to simplify the graph.

In this transformation, Acorns traverses the graph and tries

to find operator sequence that can be fused legally. In

Block 1, Acorns finds the batch normalization, scale and

ReLU operators can be fused (shown in the red box)

and replaces them with a new operator having the same

functionality. The simplified graph is shown in Block 2.

The performance benefits from operator fusion since the

memory traffic between fused operators is eliminated and

the operational intensity is increased. In the original graph

shown in Block 1, each of these three operators loads its

input tensor from memory and writes the result tensor back

after performing simple computations (linear scaling and

180

Figure 3. An example of the workflow of Acorns. The dashed input node represents a dummy operator feeding the network with inputs.

comparing). Operator fusion helps to reduce the time of

loading and writing from three to one.

The following inter-operator transformation is sparse ten-
sor layout conversion. For efficiency, some types of op-

erators have specific requirements on the data layout of

input tensors to avoid poor locality. Acorns ensures the

requirements are satisfied by tracing the data layouts of

tensors in the traversal over the graph and inserting layout

conversion operators when necessary. At the beginning, we

know the input tensor of the network is sparse and stored in

the original dense tensor layout. Following edges, Acorns

checks if it is compatible with the next operator. When

mismatch happens, a data layout transformation operator is

inserted. In Block 3, Acorns inserts a transformation opera-

tor (the red transform node) before the batch normalization

to construct sparse tensors in our data layout, and appends a

reverse transformation operator (the red re-transform node)

after the convolution to match the pooling’s preference for

the original data layout.

The graph representation is lowered in the following ker-
nel code generation step to generate efficient sparse kernels

for operators in the transformed graph. We define kernel

template for each type of operator. The template consists of

straightforward computation code annotated with optimizing

directions that express which transformations should be

applied to the code. The optimizing directions supported

by Acorns cover transformations that are recognized to be

important for sparse kernels of neural networks, including

loop tiling, vectorization, data packing and multithreading.

The fused op in Block 3 performs series of element-wise

operations and benefits from the multithreading paralleliza-

tion. The sparse convolution is more complex (shown in

Algorithm 3). In addition to parallelization, It contains tiling
directions for blocking the loop nest to exploit the data reuse

in input and weight tensors, and vectorizing direction for

using the vector instruction FMA (fused multiply-add) to

increase the throughput of arithmetic operations. Besides

performing the code transformations according to the op-

timizing directions, Acorns employs auto-tuning to find the

best tiling size. The generated kernels are combined to form

Figure 4. Sparse tensor in different formats

the final program to perform the inference of the neural

network.

IV. IMPLEMENTATION OF ACORNS

A. Sparse Data Layout
The design of data layout for sparse tensors should take

several requirements into account. Firstly, as operators’

sparse input tensors are organized in this layout, it should

allow operators to operate on the sparse tensors in a cache-

friendly way. Secondly, it should support most of operators

involved in neural networks, otherwise layout transforma-

tions will be frequently inserted into neural networks, result-

ing additional overhead. Thirdly, the layout transformations

from and to the original layout should be efficient to avoid

the performance gain is overwhelmed by the overhead of

necessary transformations.

Based on the understanding of the sparsity structure of

sparse input data to neural networks and the computing

patterns of operators, we design an efficient sparse tensor

181

layout. We make use of an important characteristic of the

non-zero values’ distribution in the input data, named as

Algorithm 1 Layout Transformation

1: procedure TRANSFORM

2: for (h,w) ← (0, 0) to (H,W) do
3: if I[h,w, 0] �= 0 then
4: nnz + = 1

5: values[nnz, :] = I[h,w, :]
6: locations[nnz, :] = [h,w]
7: end if
8: end for
9: end procedure

10: procedure REVERSE-TRANSFORM

11: for n ← 0 to nnz do
12: h,w ← locations[n, :]
13: output[h,w, :] = values[n, :]
14: end for
15: end procedure

channel consistency, which means whether a given spatial

location (h, w) is valid is consistent for all C values along

the channel dimension. The channel consistency exists in

the inputs of all tasks mentioned in Section II-D. Moreover,

the channel consistency can be maintained for most types of

operators in neural networks, such as convolution, pooling,

batch normalization, scale and activation, which ensures the

results of these operators are channel-consistent as long as

the inputs are. Fig. 4 displays an example of a sparse tensor

in our data layout. Assuming there are N non-zero spatial

locations, we can know the total number of non-zero values

is N ∗C, and the non-zeros can be stored in a dense matrix.

Determining the storing order of the non-zeros requires the

understanding of the memory access patterns of kernels. We

arrange the channel dimension inside the merged spatial

dimension, forming the dense ‘NC’ matrix named values.

This ensures computationally expensive operators can access

C values in a contiguous memory space. As for the location

information, we store it in a N ∗ 2 matrix named locations
with each row recording the spatial location (h,w) for the

corresponding C values.

Fig. 4 shows the example of representing the same sparse

tensor in CSR and COO formats. To use sparse matrix

formats, we first merge the ’height’ and ’width’ dimensions

and construct a sparse matrix (Fig. 4c). As these formats are

designed for general sparse matrices, they do not realize the

channel-consistency in the sparse neural network domain,

thus they ignore the location-sharing opportunity along the

channel dimension, which results in larger memory footprint

and reduces the operational intensity. COO stores a pair of

row and column indices for each non-zero value, making the

locations C× larger. CSR (CSC) records the column (row)

indices for each non-zero value and encodes the row (col-

umn) indices in an extra array. Besides, all of these formats

encode the locations in the sparse matrix, hence extra com-

putation is required in kernels to restore the original location

information of the tensor. Graham [25] proposed a hashtable-

based representation. The hashtable serves as a rule book by

recording which locations in the output tensor are related for

each non-zero input location. However, it requires breaking

convolution into several matrix multiplications, wasting the

R× S folds of data reuse. Besides, the construction cost of

the rule book is not trivial (See section V-B).

Our sparse tensor layout can support most of operators to

access both values and locations efficiently. The overheads

of transformations to this layout (transform) and back to

the original layout (reverse-transform) are quite low. Algo-

rithm 1 displays the two procedures.

Algorithm 2 Sparse Tensor Layout Conversion

1: for op in G.operators do // topological order
2: for input in op.inputs do
3: if input.layout �= op.requiredLayout[input] then
4: G.add transformation(op, input)
5: end if
6: end for
7: for out in op.outputs do
8: out.layout ← op.outputLayout[out]
9: end for

10: end for

B. Inter-Operator Optimization

Acorns performs two transformations on the computation

graph of neural network: operator fusion and sparse tensor
layout conversion.

The operator fusion transformation targets to simplify the

graph by finding consecutive operators that can be merged

and replacing them with a new operator with the same

functionality. This procedure is implemented in a traversal

of the graph. Based on the understanding of operators’

computation, we recognize common patterns of operators

that can be fused to facilitate Acorns to find them. Each

pattern consists of the types of those operators and their

corresponding equivalent operator. During traversing the

computation graph, Acorns compares the types of visited

operators with defined patterns and performs the replacement

when finding a match. Common patterns involves convolu-

tion and matrix multiplication, followed by normalization

and activations, such as ‘convolution-bn-scale-relu’, ‘mm-

bn-scale’ and ‘bn-scale-relu’. Although possible combina-

tion of operators grows exponentially with operator types,

most of them are incompatible with the design principles

of neural networks and therefore the required patterns are

limited.

Different types of operators may have different prefer-

182

ences for the data layouts of the input tensors due to their

own data access patterns in computation. For examples,

pooling desires efficient access to spatially neighboring

values, which is ill-suited to spatially sparse tensors but

can be well supported by the original tensor layout. In

the sparse tensor layout conversion phase, Acorns needs to

ensure the input tensors’ layouts match the desired ones of

corresponding operators to avoid performance degradation.

Since the input tensors of one operator are produced by its

dependent operators as outputs, we need to know the data

layouts of each operator’s output tensors.

Specifically, Acorns defines a pair of attributes for each

type of operator. The required layout describes the preferred

layouts of the input tensors, and possible values are ‘origi-

nal’ for the original tensor layout, and ‘sparse’ for our sparse

tensor layout. The other attribute output layout expresses

the layout of each output tensor. With the two attributes,

Acorns performs the data layout conversion via a traversal

of the graph. Algorithm 2 displays the procedure. Starting

from the first operator of the graph, Acorns records the

layout of its output tensors. Then, following the dependency

between operators, Acorns picks out operators whose input

tensors are ready and checks whether layout transformation

is required. Our designed sparse tensor layout is preferred by

most of operators. Exceptions include pooling which prefers

the original layout for both the input and output tensors,

and spatial convolution which generates output tensor in the

original layout. The overhead of layout transformations is

evaluated in Section V-D.

C. Sparse Kernels

Based on the proposed sparse tensor layout, we design

the kernels for common operators involved in neural net-

works. For element-wise operators, their kernels are quite

straightforward and can be implemented in the traversal of

the values matrix. We do not list them due to the space

limit.

Convolution usually dominates the end-to-end inference

performance and can be viewed as a generalized matrix

multiplication. We show the sparse convolution kernel in

Algorithm 3. The basic idea is to traverse the rows in the

matrix values and multiply the C non-zeros in a row and

the weight tensor. The result is added to the output tensor O.

The original layout is used for the output tensor to determine

the index for each output location (outh, outw) directly,

and a mask matrix M records which locations are valid

in the output tensor. Non-spatial convolution is equivalent

to matrix multiplication and the result can be stored in the

sparse layout directly.

In the sparse convolution kernel based on the designed

data layout, plenty of optimizing chances are exposed to

Acorns. There are ample data reuse in the computation. The

C values in one row are used R∗S ∗K times by the weight

tensor, and the weight tensor is also reused by different

rows. As the non-zeros in our data layout are stored in a

dense matrix with fixed shape, loop tiling and tuning can be

easily used to enhance the data locality. Moreover, the core

code at Line 13 computes the inner product of two vectors,

which is suitable for vectorization. We introduce how these

opportunities are captured by the optimizing directions in

kernel templates in detail in the following section.

Algorithm 3 Sparse Convolution Kernel Template

1: #pragma tiling
2: #pragma parallelization
3: for i ← 0 to N do
4: h,w ← I.locations[i, :]
5: #pragma tiling
6: for k ← to K do
7: for (r, s) ← (0, 0) to (R,S) do
8: compute output spatial location outh, outw
9: M [outh, outw] ← 1

10: #pragma tiling
11: #pragma vectorizing
12: for c ← 0 to C do
13: sum + = I.values[i, c] ∗W [k, r, s, c]
14: end for
15: O[outh, outw, k] + = sum
16: end for
17: end for
18: end for

D. Kernel Code Optimization

To harness the potential performance improvement, we

need to exploit the optimizing opportunities and generate

high-performance kernels for sparse operators. Implement-

ing efficient sparse kernels is quite complex, and we show

existing methods fail to achieve it in Section V. Compiler

itself has many built-in optimizing transformations, but it

is often restricted by the code complexity and the inability

to prove the optimizations’ validity [26]. Experts can write

high-performance code based on the understanding of the

computation and the knowledge of computer architecture,

while this method takes significant engineering efforts, and

achieving close-to-peak performance may still needs tuning.

Acorns adopts a template-based generating method to

generate efficient kernels with the aid of the domain-specific

optimizing knowledge. We define kernel templates that con-

sist of straightforward code describing the computation and

the optimizing directions expressing which transformations

to be performed on the annotated code. Acorns will carry out

specific transformations on the code automatically based on

the optimizing directions. We introduce each optimization

in detail next.

1) Loop tiling: Tiling [27] is a well-known optimization

technique that transforms nested loops to enhance the data

locality. It partitions the original loop space into small blocks

183

and reorders the execution sequence such that data in cache

and registers can be reused, hence reducing the number of

references falling to the main memory and the data access

latency.

Loops with tiling directions will be blocked automatically

by Acorns. As the tiling size shows a big impact on the

performance [28], [29] and is dependent on both the data

access patterns and the hardware characteristics [29], [30],

for flexibility and performance, Acorns takes the responsi-

bility of finding the best tiling configuration for given loop

nests and platform. It achieves this target through an auto-

tuning method. Details are introduced in Section IV-D3.

Tiling directions are applied in kernels with data reuse

chances, such as matrix multiplication and convolution. For

example, we annotate the loops of N , K, and C with the

tiling directions in the convolution kernel template (See

Algorithm 3). Assuming the block sizes are NB, KB and

CB, respectively, the three innermost loops compute the

partial sum of a NB ∗ KB block and update the output

with it. The outer loops control the traversal of different

blocks.

2) Vectorization: Exploiting the capability of perform-

ing operations on multiple data elements simultaneously

is important to improve the throughput of arithmetic op-

erations and memory accesses. Modern CPU usually has

vector instruction extensions, such as the Advanced Vector

Extensions (AVX) [31] for Intel CPU and the NEON [32]

for Arm CPU. The vector instructions can be generated by

host compilers through embedding special functions named

‘intrinsic’ in code.

The innermost loop usually performs the same type op-

eration on different elements that resides in memory con-

tiguously, such as the multiplications between input values

and weights in both convolution and linear transformation

kernels, and the arithmetics in some element-wise kernels.

It is suitable to utilize the vector instructions to boost the

performance. Acorns will find loops with vectorizing direc-

tion and try to vectorize the inside expression by replacing

it with corresponding intrinsics. In the code at Line 13 in

Algorithm 3, the product between an input element and a

weight is added to sum. Acorns will recognize this arith-

metic operations and use the Fused Multiply-Add (FMA)

intrinsic to replace it. Weights and inputs are also loaded

through intrinsics before the computation. When combining

vectorization and tiling, Acorns ensures the tiling size will

be multiple of the width of used vector intrinsics exactly.

3) Auto-tuning: The tiling size has a great impact on

the performance [28], [29] while it is not straightforward

to determine the best tiling size for each level of the loop

nests. In Acorns, we exploit the auto-tuning technique to

search the best tiling size. The brute-force method tries every

legal tiling configuration and picks out the one with the best

performance. But it will take significant time to complete the

searching as the search space is defined by the combination

of all possible tiling sizes of each loop level. For real-world

CNNs [24], [33], the number of legal candidates for one

single convolution operator can easily reach several hundred.

We propose an empirical model to reduce the search

space for Acorns. The core idea is to avoid trying can-

didate kernels that cannot achieve effective data reuse on

specific platforms. Specifically, the model calculates the

working set size of computing the NB ∗ KB partial sum

block, which is (NB*KB+NB*CB+CB*KB)*sizeof(float),

and checks if it exceeds the capacity of a specific level

of data cache. The other constrain is the working set of

the two innermost loops (loops of NB and KB) should fit

in another higher level data cache, which is calculated as

(NB*KB+NB+KB)*sizeof(float).

We choose the L2 and L1 data cache for the model

and evaluate it on all 85 different convolution kernels from

ResNet50 [33] and DenseNet-121 [24]. We find the best

tiling sizes are always kept by the model and the search

space can be reduced by up to 45%. On average, 30%
candidates are skipped without being tested by Acorns.

4) Weight Packing: The access pattern of weight tensor

changes after tiling. The weight tensor was accessed one by

one in specific order (e.g., KRSC) with the values arranged

in a compatible way. After tiling, weight tensor will be

accessed block by block. With the original layout of weight

tensor, this access pattern will result in high-stride accesses

and potential TLB misses.

To resolve this problem, Acorns will adjust the layout

of weight tensor automatically to ensure the contiguous

accesses. The weight tensor will be packed into blocks with

the same size as the related loop tiles, and the blocks will

be stored one by one with respect to the access order. As

the weight tensors are fixed during the inference phase, the

packing procedure can be completed ahead of the actual

inference.

5) Multithreading: Besides capturing the data-level par-

allelism through the vectorization, Acorns also exploits the

loop-level parallelism exposed in kernels via multithreading.

Acorns provides the parallelization direction to annotate

loops that can be performed in parallel, and distributes the

computation to multiple threads via OpenMP.

As the false sharing problem can cause significant perfor-

mance degradation [34], we should avoid different threads

writing memory locations within the same cacheline. Thus,

the loops of C (K for mm and convolution) are excluded

from parallelization, and we consider the loops of N . For

element-wise kernels, annotating loops of N is safe as the

size of channel dimension (usually between 16 to 1024) is

large enough to avoid false sharing. For convolutions, as

non-zero values residing in one R ∗ S block in the input

tensor contribute to the same output spatial location, Acorns

arranges each thread to compute the result of its own BN
block and store it in a private buffer. A merging step will

merge local results of different threads together and produce

184

Figure 5. The single-thread performance of Acorns and baseline methods. The execution time of baseline methods is normalized to Acorns’ time.

Figure 6. The multithreading performance of Acorns and baseline methods

the final outputs. The extra merging step brings some

overheads and we compare the multithreading speedups with

other baselines in Section V-B2.

V. EVALUATIONS

To evaluate the techniques described in this paper, we

use Acorns as well as several existing frameworks and

libraries to execute convolutional neural networks with real-

world sparse input data and compare their performance. We

demonstrate in Section V-B Acorns can generate programs

that outperform all baseline methods in performance with

notable margins. We further demonstrate how much each

part of Acorns contributes to the overall performance gain in

Section V-C, and the overhead of data layout transformation

in Section V-D. Finally, we show in Section V-E that our

technique is able to exploit different degrees of sparsity and

transform it to actual performance improvement effectively.

A. Methodology

We pick ten widely used and representative neural net-

work frameworks and libraries as baselines to evaluate

the performance improvement of Acorns. These baselines

can be divided into two categories based on how they

treat the sparsity. The sparsity-aware methods exploit the

input sparsity in the computation. On the contrary, sparsity-

unaware methods do not realize the sparsity and treat the

input as dense data.

There are not many works utilizing input sparsity in deep

learning workloads on CPU. SparseConvNet (SCN) [25]

supports end-to-end sparse inference and utilizes the matrix-

matrix multiplication kernel in PyTorch [13] to implement

sparse convolution. Intel MKL provide heavily optimized

sparse kernels (Intel MKL-Sparse) [35] for Intel processors

and the SpMM kernel is used to implement mm and convolu-

tion operators. Since SpMM supports several different sparse

matrix formats (CSR, CSC, COO), we pick out the one

with the best performance to represent Intel MKL-Sparse.

TACO [36] is a recently developed compiler that is capable

of generating optimized kernels for tensor expressions with

mixes of dense and sparse tensors.

As for sparsity-unaware methods, we choose six libraries,

including Intel MKL-DNN [15], NNPACK [16], Eigen [37],

Intel MKL [38], OpenBLAS [39] and ATLAS [40], and

two frameworks, Caffe [12] and Google’s TensorFlow [11].

Specifically, Caffe is only used as a front-end to parse the

testing neural networks and call the corresponding comput-

ing kernels in the baseline libraries for operators.

The experiments use two state-of-the-art CNNs, ResNet-

50 [33] and DenseNet-121 [24], in the LiDAR-based detec-

tion task. The input data comes from the widely used KITTI

dataset [23], and it contains 7518 images with spatial size

1400 ∗ 700. The average sparsity is 0.79, meaning an input

image has only 21% valid regions on average. To generate

sparse kernels, Acorns uses randomly generated images with

the average sparsity (79%). For a more comprehensive un-

derstanding of Acorns, in Section V-E, we also use randomly

generated sparse images with a wider spectrum of sparsity

degrees than KITTI to analyze Acorns’ performance.

We run all experiments on a four-socket, 32-core Intel

Xeon E7-4809 v3 CPU machine with 32GB of main mem-

ory. The CPU supports Intel Advanced Vector Extensions

2 (AVX2) [41], a 256-bit width vector instruction extension.

185

Table I
THE MULTITHREADING SPEEDUP OF ACORNS AND BASELINES

Speedup ResNet DenseNet

Intel MKL-DNN 5.4 3.3

TensorFlow 12.3 7.1

NNPACK 2.6 2.1

Intel MKL 1.6 1.4

SCN 2.6 2.2

Intel MKL-Sparse 1.7 1.3

Acorns 3.6 3.0

Each core has 32KB of L1 data cache and 256KB of L2

cache. A 20MB of L3 cache is shared among 8 cores.

B. Overall Performance

In this section, we compare the performance of programs

generated by Acorns with baseline methods. We use the time

of running the models on all 7518 images in the KITTI test

dataset to evaluate the performance.

1) Single-Thread: Fig. 5 displays the speedups achieved

by Acorns in the single-thread situation. The performance of

seven sparsity-unaware methods is represented by light-grey

bars, and sparsity-aware methods are represented by dark-

grey bars in the right part. As TACO does not support spatial

convolutions (R>1 or S>1), we show its normalized time

of the left supported kernels. It is clear Acorns achieves the

best performance among all methods with notable speedups.

Compared with sparsity-unaware methods, Acorns

achieves 2.7 to 22.6× speedups, demonstrating its

capability to exploit the sparsity and transform it to

actual performance improvement. It is notable that Acorns

achieves 2.7× speedup over Intel MKL-DNN [15]. Besides,

Intel MKL also shows performance comparable to sparsity-

aware methods, demonstrating the difficulty for sparse

computation in surpassing these optimized and carefully

tuned methods.

Compared with the three sparsity-aware baselines, Acorns

achieves 5.4 to 8.3× performance improvement, verifying

the new data layout and collaborative template-based kernel

generation can serve as a better solution to sparse infer-

ence. Among them, TACO is incapable of generating all

kernels of operators in the testing neural networks. We also

analyze the generated kernel code and find TACO lacks

several performance-critical optimizations, including tiling

and vectorization, which contribute a lot to the performance

gain (See Section V-C).

Acorns shows 5.4 to 5.6× speedups over Intel MKL-

Sparse. Among supported sparse formats, COO performs

best in evaluations. Our format reduces memory traffic

as non-zero locations of different channels are shared.

Equipped with tuning-assisted loop tiling and explicit vec-

Table II
THE OVERALL PERFORMANCE IMPROVEMENT BREAKDOWN. indi

REFERS TO INDIVIDUAL SPEEDUP, AND accu REFERS TO ACCUMULATED

SPEEDUP

Speedup
ResNet DenseNet

indi accu indi accu

op fusion 1.02 1.02 1.06 1.06

vectorization 2.16 2.21 1.34 1.42

loop tiling&auto-tuning 2.29 5.05 2.47 3.51

weight packing 1.20 6.06 1.19 4.17

multithreading 3.55 21.51 3.03 12.64

torization, Acorns can realize better utilization of registers

and cache. We conduct cache-related profiling to analyze

the memory access efficiency and the results are displayed

in Fig. 7. Acorns show significantly less L1 and last-level

cache references, and the reduced miss on L1 data cache

and LLC demonstrates enhanced data locality.

The programs generated by Acorns runs 6.5 to 8.3×
faster than SCN [25]. We find the building procedure to

construct the hashtable-based representations incurs non-

trivial overhead and takes 28% and 33% time in the ResNet-

50 and DenseNet-121 inference, respectively. Moreover, the

performance also suffers from SCN’s insufficiently opti-

mized kernels. It calls the matrix multiplication kernel R∗S
times to complete convolution, wasting data reuse cross con-

volution kernels and resulting in worse performance. Acorns

achieves an average 5.4× speedup on all 171 convolution

kernels from ResNet-50 and DenseNet-121.

2) Multithreading: We start from 2 threads and double

the thread number until it reaches 32. The best performance

of each method in this process is recorded as its multithread-

ing performance. Fig. 6 shows the multithreading speedups

of Acorns over baselines. Eigen is skipped as its kernels

used in the experiment do not support multithreading. TACO

is also skipped for its incomplete support for all required

kernels. Among dense BLAS libraries, we only keep the

best-performing Intel MKL as the representative.

Acorns achieves the best performance on all models

again, showing 1.8 to 18.6× speedups. Table I displays

the speedups over its single-thread performance for each

method. Except TensorFlow and NNPACK which implement

own thread pool for better scalability, other methods utilize

OpenMP for parallelization. While the extra merging step

incurs some overheads, Acorns achieves the best multi-

threading speedup among sparsity-aware methods.

C. Performance Contribution Analysis

In this section, we break down the overall performance

gain achieved by Acorns and analyze how much each

component contributes to it. The optimizations are enabled

one by one, and Acorns generates a program at each step. We

186

Figure 7. The cache profiling results of ten convolution kernels (along x axis) from ResNet-50 and DenseNet-121. We normalize Acorns’ values to that
of Intel MKL-Sparse, thus bars lower than 1 mean Acorns’ values are smaller.

evaluate these generated programs on the KITTI dataset and

the results are shown in Table II. From top to bottom, each

line shows the performance improvement of an additional

optimization. Both the individual speedup (speedup over the

prior one) and the accumulated speedup (speedup over the

baseline) are listed.

The benefit of operator fusion depends on the neural

network architecture and the fused operators take 0.6%
and 1% of computations in ResNet-50 and DenseNet-121,

respectively. Although the improvements are small, we argue

the fused operators would make a larger performance impact

with more optimizations enabled, since these operators are

insensitive to the following optimizations due to their low

computing intensity and little data reuse. The vectorization

and loop tiling with auto-tuning contribute most of the

performance improvement except multithreading. It is worth

noting that although the optimization techniques themselves

are not original, we show building an end-to-end framework

where they can work collaboratively is quite effective to

solve the problem of sparse inference of deep neural net-

works.

D. Layout Transformation Overhead

In experiments, the transformation operators are inserted

after the pooling and spatial convolutions, and the reverse

transformation operators are inserted before pooling. All

inserted transformation operators take 7.9% and 20.0%
overall time in the inference of ResNet-50 and DenseNet-

121, respectively. The reverse-transformation operators are

more expensive duo to the irregular writing pattern and

contribute more than 50% of transformation overhead. Since

there are much more poolings in DenseNet than ResNet (4

vs 1), transformations in DenseNet incurs more overhead.

E. Performance with Varying Sparsity

In this section, we investigate Acorns’ capability in ex-

ploiting different degrees of sparsity. As images in KITTI

only cover a narrow range of sparsity (0.57-0.93), we syn-

thesis images with sparsity ranging from 0.1 to 0.9 as input.

Since different sparsity levels impacts the tuning results,

Acorns runs the tuning procedure and generates a program

Table III
THE SPEEDUP ON DIFFERENT LEVELS OF SPARSITY

Sparsity 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

MKL-DNN 0.9 1.0 1.1 1.3 1.4 1.9 2.3 3.3 5.3

MKL-Sparse 8.0 8.3 8.1 8.0 7.4 7.7 7.2 6.8 5.7

for each sparsity level. We run the generated programs of

ResNet-50 over 1000 images and compute the average time

to evaluate the performance. Intel MKL-DNN and MKL-

Sparse are chosen as baselines.

Table III displays the experiment result. Acorns can match

Intel MKL-DNN when sparsity reaches 0.2 and achieve

speedups under higher sparsity, demonstrating the optimiz-

ing capability of Acorns is not only effective for some

specific levels of sparsity. The speedups over Intel MKL-

Sparse verify the advantages of Acorns in generating and

tuning sparse kernels for specific levels of sparsity. We also

evaluate the performance loss when the sparsity level to

which Acorns tunes mismatches the sparsity level at runtime.

On average this causes about 7% performance degradation.

The most performance loss is 21% and happens when using

kernels tuned to 0.1 sparsity for inputs with 0.9 sparsity.

VI. RELATED-WORK

A. Efforts to exploit sparsity in neural networks

Efforts towards exploiting the sparsity in neural networks

are most similar to Acorns. spg-CNN [42] exploits the

sparsity produced in the back-propagation phase of training

and reforms the gradient computation to a composition of

small dense matrix multiplications. Optimizations including

data layout transformation, vectorization and tiling are lever-

aged. Acorns targets the sparsity in input data and focuses

on the inference phase. Upon the designed sparse data

layout, Acorns proposes a template-based generating method

to produce efficient kernels in neural networks. SCN [25]

designs a hashtable-based sparse tensor representation and

utilizes the computing kernels in PyTorch [13] to implement

sparse operators. We demonstrate its inefficiency by showing

187

its incapability to improve the performance compared to

highly tuned dense library [15]. SBNet [8] divides tensors

with block-structured sparsity into dense grids and uses

the optimized library [43] for dense computation. Acorns

do not only target specific spatial sparsity and is able to

generate sparse kernels with better performance that tuned

dense ones. Shi.et al [44] propose to skip zeros in operators’

inputs on-the-fly and utilize SIMD to implement sparse

kernels. But the insufficient designs in optimization result in

limited speedups. TACO [36], [45] is a compiler to generate

optimized kernels for tensor expressions. Acorns targets

sparse inference of neural networks and is distinguished

by the new designed data layout and the template-based

optimizing kernel generator.

There are other efforts devoted to exploiting the sparsity in

weight tensors. Park et al. [46] and Chen et al. [47] develop

sparse convolutions with data placement arrangement [47]

and tiling [46], [47] based on the CSR format for CPU

and GPU, respectively. Acorns utilizes the domain-specific

sparsity structure and organize sparse data in a new data

layout. Liu et al [48] propose to customize sparse kernels

by removing redundant instructions according to the specific

sparse weights. Acorns exploits the sparsity in input data,

which varies with different inputs and is out of the capability

of that method.

B. Efforts to optimize sparse computation

Many sparse matrix formats have been proposed to sup-

port the representation and computation of sparse matrices.

Compressed sparse row (CSR), compressed sparse col-

umn (CSC), and coordinate (COO) are most popular formats

and are supported by most of computation libraries [35],

[49]. Several efforts seek to optimize specific sparse oper-

ations by designing new formats, such as ELLPACK [50]

and compressed sparse block (CSB) [51] for sparse matrix-

vector multiplication (SpMV), and skyline [52] for Cholesky

decomposition and LU decomposition. Our data layout for

sparse tensors exploits the domain-specific ‘channel con-

sistency’ in sparse inputs of neural networks and works

collaboratively with designed optimization sequence to boost

the performance of sparse kernels. Many efforts have been

directed to implement efficient sparse operations with opti-

mizing transformations, such as SpMV [50], [53]–[57] and

SpMM [58]–[62]. Optimizing techniques like tiling [58] and

auto-tuning [57] are also used to enhance the performance.

Compared with these efforts, Acorns focuses on generating

efficient sparse kernels used in neural network inference, and

the generated kernels show notable performance improve-

ment over existing sparse library [35] and compiler [36].

C. Deep Learning Compilers and Frameworks

As far as we know, no existing frameworks or compilers

provide sufficient support for sparse input data in deep

learning workloads, and Acorns is the first compiler to

exploit the input sparsity to accelerate the inference. Several

popular frameworks [11]–[14], [20], [63] allow users to

construct neural networks using their APIs and delegate the

computation to vendor libraries [15], [16], [38], [39], [43].

TensorFlow [11] provides a coo-based sparse tensor repre-

sentation, but most of common operators do not support it,

making end-to-end sparse inference impossible. Compared

with them, Acorns exploits the input sparsity to accelerate

the inference and is able to generate sparse kernels that have

better performance than existing libraries.

Some works are devoted to generating efficient neural

network kernels. TVM [64], [65] provides a DSL for users

to express the computation and the transformations. It can

generate inference programs by using graph-level transfor-

mations and tuning kernels for specific platforms. Tensor

Comprehension [26] transforms tensor expressions into a

polyhedral representation and the kernel code is generated

by a jit compiler. Other works [66]–[68] design multi-

level intermediate representations (IR) and generate LLVM

IR [69] to utilize the low-level optimizations and portability

of LLVM. Acorns shares some optimizing transformations

with them, like loop tiling, multithreading parallelization,

and data packing. But Acorns focuses on the sparsity in

input data and achieves notable performance improvement

by designing the data layout for sparse tensors and the

optimizing sequence to exploit the potential performance

gain effectively.

VII. CONCLUSION AND FUTURE WORK

In this paper, we propose a framework to accelerate the

neural network inference by exploiting the sparsity in input

data. The designed data layout for sparse tensors exploits the

domain-specific sparsity structure and enables performance-

critical optimizations. Acorns performs optimizing trans-

formations on kernel templates and utilizes auto-tuning to

generate efficient inference code for neural networks. Com-

prehensive evaluations demonstrate the generated programs

achieve significant performance improvement over state-of-

the-art methods.

In the future, we plan to enhance Acorns from several

perspectives, such as an unified kernel representation and

new code generators for different platforms like GPU.

ACKNOWLEDGMENT

We thank the reviewers for the valuable feedback. This

work is supported by National Key R&D Program of

China under Grant No.2017YFB1003103, Science Fund for

Creative Research Groups of the National Natural Science

Foundation of China under Grant No.61521092 and the Key

Program of National Natural Science Foundation of China

under Grant No.61432018 and No.61432016.

188

REFERENCES

[1] Y. Taigman, M. Yang, M. Ranzato, and L. Wolf, “Closing
the gap to human-level performance in face verification.
deepface,” in IEEE Computer Vision and Pattern Recognition
(CVPR), 2014.

[2] G. Song, Y. Liu, M. Jiang, Y. Wang, J. Yan, and B. Leng,
“Beyond trade-off: Accelerate fcn-based face detector with
higher accuracy,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2018, pp. 7756–
7764.

[3] C. C. Loy, T. Xiang, and S. Gong, “Multi-camera
activity correlation analysis,” in 2009 IEEE Computer
Society Conference on Computer Vision and Pattern
Recognition (CVPR 2009), 20-25 June 2009, Miami,
Florida, USA, 2009, pp. 1988–1995. [Online]. Available:
https://doi.org/10.1109/CVPRW.2009.5206827

[4] A. Conneau, H. Schwenk, L. Barrault, and Y. Lecun, “Very
deep convolutional networks for text classification,” in Euro-
pean Chapter of the Association for Computational Linguis-
tics EACL’17, 2017.

[5] X. Chen, H. Ma, J. Wan, B. Li, and T. Xia, “Multi-view 3d
object detection network for autonomous driving,” in IEEE
CVPR, vol. 1, no. 2, 2017, p. 3.

[6] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet
classification with deep convolutional neural networks,” in
Advances in neural information processing systems, 2012, pp.
1097–1105.

[7] K. Hazelwood, S. Bird, D. Brooks, S. Chintala, U. Diril,
D. Dzhulgakov, M. Fawzy, B. Jia, Y. Jia, A. Kalro et al.,
“Applied machine learning at facebook: a datacenter infras-
tructure perspective,” in 2018 IEEE International Symposium
on High Performance Computer Architecture (HPCA). IEEE,
2018, pp. 620–629.

[8] M. Ren, A. Pokrovsky, B. Yang, and R. Urtasun, “Sbnet:
Sparse blocks network for fast inference,” in The IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), June 2018.

[9] B. Graham, “Spatially-sparse convolutional neural networks,”
arXiv preprint arXiv:1409.6070, 2014.

[10] T. Dekel, C. Gan, D. Krishnan, C. Liu, and W. T. Freeman,
“Sparse, smart contours to represent and edit images,” in
Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2018, pp. 3511–3520.

[11] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean,
M. Devin, S. Ghemawat, G. Irving, M. Isard et al., “Tensor-
flow: a system for large-scale machine learning.” in OSDI,
vol. 16, 2016, pp. 265–283.

[12] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Gir-
shick, S. Guadarrama, and T. Darrell, “Caffe: Convolutional
architecture for fast feature embedding,” in Proceedings of the
22nd ACM international conference on Multimedia. ACM,
2014, pp. 675–678.

[13] Facebook, “Pytorch,” 2018. [Online]. Available:
https://pytorch.org/

[14] ——, “Caffe2,” 2018. [Online]. Available: https://caffe2.ai/

[15] E. Georganas, S. Avancha, K. Banerjee, D. Kalamkar,
G. Henry, H. Pabst, and A. Heinecke, “Anatomy of high-
performance deep learning convolutions on simd architec-
tures,” in Proceedings of the International Conference for

High Performance Computing, Networking, Storage, and
Analysis. IEEE Press, 2018, p. 66.

[16] M. Dukhan, “Nnpack,” 2018. [Online]. Available:
https://github.com/Maratyszcza/NNPACK/

[17] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-
based learning applied to document recognition,” Proceedings
of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.

[18] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating
deep network training by reducing internal covariate shift,”
in International Conference on Machine Learning, 2015, pp.
448–456.

[19] W. F. Tinney and J. W. Walker, “Direct solutions of sparse
network equations by optimally ordered triangular factoriza-
tion,” proc. IEEE, vol. 55, no. 11, pp. 1801–1809, 1967.

[20] T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang, T. Xiao,
B. Xu, C. Zhang, and Z. Zhang, “Mxnet: A flexible and ef-
ficient machine learning library for heterogeneous distributed
systems,” arXiv preprint arXiv:1512.01274, 2015.

[21] A. Heinecke, G. Henry, M. Hutchinson, and H. Pabst,
“Libxsmm: accelerating small matrix multiplications by run-
time code generation,” in Proceedings of the International
Conference for High Performance Computing, Networking,
Storage and Analysis. IEEE Press, 2016, p. 84.

[22] Waymo, “Recreating the self-driving experience: the
making of the waymo 360 video,” 2018. [Online].
Available: https://medium.com/waymo/recreating-the-self-
driving-experience-the-making-of-the-waymo-360-video-
37a80466af49

[23] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for
autonomous driving? the kitti vision benchmark suite,” in
Computer Vision and Pattern Recognition (CVPR), 2012
IEEE Conference on. IEEE, 2012, pp. 3354–3361.

[24] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger,
“Densely connected convolutional networks.” in CVPR,
vol. 1, no. 2, 2017, p. 3.

[25] B. Graham and L. van der Maaten, “Submanifold sparse
convolutional networks,” arXiv preprint arXiv:1706.01307,
2017.

[26] N. Vasilache, O. Zinenko, T. Theodoridis, P. Goyal, Z. De-
Vito, W. S. Moses, S. Verdoolaege, A. Adams, and A. Co-
hen, “Tensor comprehensions: Framework-agnostic high-
performance machine learning abstractions,” arXiv preprint
arXiv:1802.04730, 2018.

[27] M. Wolfe, “More iteration space tiling,” in Proceedings of
the 1989 ACM/IEEE conference on Supercomputing. ACM,
1989, pp. 655–664.

[28] J. J. Navarro, T. Juan, and T. Lang, “Mob forms: a class of
multilevel block algorithms for dense linear algebra opera-
tions,” in Proceedings of the 8th international conference on
Supercomputing. ACM, 1994, pp. 354–363.

[29] M. D. Lam, E. E. Rothberg, and M. E. Wolf, “The cache
performance and optimizations of blocked algorithms,” in
ACM SIGARCH Computer Architecture News, vol. 19, no. 2.
ACM, 1991, pp. 63–74.

[30] S. Coleman and K. S. McKinley, “Tile size selection using
cache organization and data layout,” in ACM SIGPLAN No-
tices, vol. 30, no. 6. ACM, 1995, pp. 279–290.

[31] Intel, “Intel-avx,” 2019. [Online]. Avail-
able: https://software.intel.com/en-us/articles/introduction-to-
intel-advanced-vector-extensions

189

[32] ARM, “Arm-neon,” 2019. [Online]. Avail-
able: https://developer.arm.com/architectures/instruction-
sets/simd-isas/neon

[33] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning
for image recognition,” in Proceedings of the IEEE conference
on computer vision and pattern recognition, 2016, pp. 770–
778.

[34] M. Scott and W. Bolosky, “False sharing and its effect on
shared memory performance,” in Proceedings of the USENIX
Symposium on Experiences with Distributed and Multiproces-
sor Systems (SEDMS), vol. 57, 1993, p. 41.

[35] Intel, “Intel-mkl sparse kernels,” 2018. [Online].
Available: https://software.intel.com/en-us/mkl-developer-
reference-c-sparse-blas-level-2-and-level-3-routines

[36] F. Kjolstad, S. Kamil, S. Chou, D. Lugato, and S. Amaras-
inghe, “The tensor algebra compiler,” Proceedings of the ACM
on Programming Languages, vol. 1, no. OOPSLA, p. 77,
2017.

[37] Eigenteam, “Eigen,” 2018. [Online]. Available:
http://eigen.tuxfamily.org/index.php

[38] Intel, “Intel-mkl,” 2018. [Online]. Available:
https://software.intel.com/en-us/mkl-developer-reference-
c-blas-level-3-routines

[39] X. Zhang, “Openblas,” 2018. [Online]. Available:
https://github.com/xianyi/OpenBLAS/

[40] R. C. Whaley and A. Petitet, “Minimizing development
and maintenance costs in supporting persistently optimized
BLAS,” Software: Practice and Experience, vol. 35, no. 2,
pp. 101–121, February 2005.

[41] Intel, “Intel-avx2,” 2019. [Online]. Available:
https://software.intel.com/en-us/cpp-compiler-developer-
guide-and-reference-intrinsics-for-intel-advanced-vector-
extensions-2

[42] S. Rajbhandari, Y. He, O. Ruwase, M. Carbin, and T. M.
Chilimbi, “Optimizing cnns on multicores for scalability,
performance and goodput,” in Proceedings of the Twenty-
Second International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS
2017, Xi’an, China, April 8-12, 2017, 2017, pp. 267–280.
[Online]. Available: https://doi.org/10.1145/3037697.3037745

[43] S. Chetlur, C. Woolley, P. Vandermersch, J. Cohen, J. Tran,
B. Catanzaro, and E. Shelhamer, “cudnn: Efficient primitives
for deep learning,” arXiv preprint arXiv:1410.0759, 2014.

[44] S. Shi and X. Chu, “Speeding up convolutional neural net-
works by exploiting the sparsity of rectifier units,” arXiv
preprint arXiv:1704.07724, 2017.

[45] F. Kjolstad, P. Ahrens, S. Kamil, and S. Amarasinghe, “Sparse
tensor algebra optimizations with workspaces,” arXiv preprint
arXiv:1802.10574, 2018.

[46] J. Park, S. Li, W. Wen, P. T. P. Tang, H. Li, Y. Chen, and
P. Dubey, “Faster cnns with direct sparse convolutions and
guided pruning,” arXiv preprint arXiv:1608.01409, 2016.

[47] X. Chen, “Escort: Efficient sparse convolutional neural net-
works on gpus,” arXiv preprint arXiv:1802.10280, 2018.

[48] B. Liu, M. Wang, H. Foroosh, M. Tappen, and M. Pensky,
“Sparse convolutional neural networks,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, 2015, pp. 806–814.

[49] Nvidia, “cusparse,” 2018. [Online]. Available:
https://docs.nvidia.com/cuda/cusparse/index.html

[50] N. Bell and M. Garland, “Implementing sparse matrix-vector
multiplication on throughput-oriented processors,” in Pro-
ceedings of the conference on high performance computing
networking, storage and analysis. ACM, 2009, p. 18.

[51] A. Buluç, J. T. Fineman, M. Frigo, J. R. Gilbert,
and C. E. Leiserson, “Parallel sparse matrix-vector and
matrix-transpose-vector multiplication using compressed
sparse blocks,” in SPAA 2009: Proceedings of the 21st
Annual ACM Symposium on Parallelism in Algorithms
and Architectures, Calgary, Alberta, Canada, August
11-13, 2009, 2009, pp. 233–244. [Online]. Available:
https://doi.org/10.1145/1583991.1584053

[52] R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato,
J. Dongarra, V. Eijkhout, R. Pozo, C. Romine, and H. V. der
Vorst, Templates for the Solution of Linear Systems: Building
Blocks for Iterative Methods, 2nd Edition. Philadelphia, PA:
SIAM, 1994.

[53] J. L. Greathouse and M. Daga, “Efficient sparse matrix-
vector multiplication on gpus using the csr storage format,”
in Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis.
IEEE Press, 2014, pp. 769–780.

[54] W. Liu and B. Vinter, “Csr5: An efficient storage format
for cross-platform sparse matrix-vector multiplication,” in
Proceedings of the 29th ACM on International Conference
on Supercomputing. ACM, 2015, pp. 339–350.

[55] D. Merrill and M. Garland, “Merge-based sparse matrix-
vector multiplication (spmv) using the csr storage format,”
in ACM SIGPLAN Notices, vol. 51, no. 8. ACM, 2016,
p. 43.

[56] B. Xie, J. Zhan, X. Liu, W. Gao, Z. Jia, X. He, and L. Zhang,
“Cvr: Efficient vectorization of spmv on x86 processors,” in
Proceedings of the 2018 International Symposium on Code
Generation and Optimization. ACM, 2018, pp. 149–162.

[57] H. Yoshizawa and D. Takahashi, “Automatic tuning of
sparse matrix-vector multiplication for CRS format on gpus,”
in 15th IEEE International Conference on Computational
Science and Engineering, CSE 2012, Paphos, Cyprus,
December 5-7, 2012, 2012, pp. 130–136. [Online]. Available:
https://doi.org/10.1109/ICCSE.2012.28

[58] H. M. Aktulga, A. Buluç, S. Williams, and C. Yang, “Op-
timizing sparse matrix-multiple vectors multiplication for
nuclear configuration interaction calculations,” in 2014 IEEE
28th International Parallel and Distributed Processing Sym-
posium. IEEE, 2014, pp. 1213–1222.

[59] C. Hong, A. Sukumaran-Rajam, I. Nisa, K. Singh, and
P. Sadayappan, “Adaptive sparse tiling for sparse matrix
multiplication,” in Proceedings of the 24th Symposium on
Principles and Practice of Parallel Programming. ACM,
2019, pp. 300–314.

[60] C. Yang, A. Buluç, and J. D. Owens, “Design principles
for sparse matrix multiplication on the GPU,” in Euro-Par
2018: Parallel Processing - 24th International Conference
on Parallel and Distributed Computing, Turin, Italy, August
27-31, 2018, Proceedings, 2018, pp. 672–687. [Online].
Available: https://doi.org/10.1007/978-3-319-96983-1 48

[61] G. O. López, F. Vázquez, I. Garcı́a, and E. M.
Garzón, “Fastspmm: An efficient library for sparse
matrix matrix product on gpus,” Comput. J., vol. 57,
no. 7, pp. 968–979, 2014. [Online]. Available:
https://doi.org/10.1093/comjnl/bxt038

190

[62] C. Hong, A. Sukumaran-Rajam, B. Bandyopadhyay, J. Kim,
S. E. Kurt, I. Nisa, S. Sabhlok, Ü. V. Çatalyürek,
S. Parthasarathy, and P. Sadayappan, “Efficient sparse-matrix
multi-vector product on gpus,” in Proceedings of the 27th
International Symposium on High-Performance Parallel and
Distributed Computing, HPDC 2018, Tempe, AZ, USA,
June 11-15, 2018, 2018, pp. 66–79. [Online]. Available:
https://doi.org/10.1145/3208040.3208062

[63] L. Truong, R. Barik, E. Totoni, H. Liu, C. Markley, A. Fox,
and T. Shpeisman, “Latte: a language, compiler, and runtime
for elegant and efficient deep neural networks,” ACM SIG-
PLAN Notices, vol. 51, no. 6, pp. 209–223, 2016.

[64] T. Chen, T. Moreau, Z. Jiang, H. Shen, E. Yan, L. Wang,
Y. Hu, L. Ceze, C. Guestrin, and A. Krishnamurthy, “Tvm:
end-to-end compilation stack for deep learning,” in SysML
Conference, 2018.

[65] Y. Liu, Y. Wang, R. Yu, M. Li, V. Sharma, and
Y. Wang, “Optimizing CNN model inference on cpus,”
CoRR, vol. abs/1809.02697, 2018. [Online]. Available:
http://arxiv.org/abs/1809.02697

[66] Google, “Xla: Domain-specific compiler for linear algebra
to optimizes tensorflow computations.” 2018. [Online].
Available: https://www.tensorflow.org/performance/xla/

[67] R. Wei, V. Adve, and L. Schwartz, “Dlvm: A modern
compiler infrastructure for deep learning,” arXiv preprint
arXiv:1711.03016, 2017.

[68] N. Rotem, J. Fix, S. Abdulrasool, S. Deng, R. Dzhabarov,
J. Hegeman, R. Levenstein, B. Maher, S. Nadathur, J. Olesen
et al., “Glow: Graph lowering compiler techniques for neural
networks,” arXiv preprint arXiv:1805.00907, 2018.

[69] C. Lattner and V. Adve, “Llvm: A compilation framework for
lifelong program analysis & transformation,” in Proceedings
of the international symposium on Code generation and opti-
mization: feedback-directed and runtime optimization. IEEE
Computer Society, 2004, p. 75.

191

