
POSTER: SPiDRE: Accelerating Sparse
Memory Access Patterns

Adrián Barredo
Universitat Politècnica de Catalunya

Barcelona Supercomputing Center
adrian.barredo@bsc.es

Jonathan C. Beard
Arm Research

jonathan.beard@arm.com

Miquel Moretó
Universitat Politècnica de Catalunya

Barcelona Supercomputing Center
miquel.moreto@bsc.es

Abstract—Development in process technology has led to an
exponential increase in processor speed and memory capacity.
However, memory latencies have not improved as dramatically
and represent a well-known problem in computer architecture.
Cache memories provide more bandwidth with lower latencies
than main memories but they are capacity limited. Locality-
friendly applications benefit from a large and deep cache hi-
erarchy. Nevertheless, this is a limited solution for applications
suffering from sparse and irregular memory access patterns,
such as data analytics. In order to accelerate them, we should
maximize usable bandwidth, reduce latency and maximize moved
data reuse. In this work we explore the Sparse Data Rearrange
Engine (SPiDRE), a novel hardware approach to accelerate these
applications through near-memory data reorganization.

I. INTRODUCTION

Processor speed and memory capacity have naturally expo-

nentially evolved with advances in process technology. On the

other hand, memory latencies have not seen the same evolution

and they are a system performance limitation, a phenomenon

known as the Memory Wall [1].

Locality-friendly applications can benefit from deep mem-

ory hierarchies. In this case, a combination of low-latency

cache memories and prefetching hides main memory access

latencies. On the other hand, applications with sparse and

irregular memory access patterns do not see much improve-

ment in large memory hierarchies. In many situations, they

are counter-productive due to a low cache line utilization

(i.e. cache pollution) and useless and difficult to predict

prefetchings that represent an extra data movement. Making

matters worse, vector instruction sets, which exploit data-level

parallelism (DLP), have seen a comeback and their efficiency

is similarly limited by memory bandwidth and latency.

In this work, we present the Sparse Data Rearrange Engine

(SPiDRE), a novel hardware approach that performs data

rearrangement near memory, transforming sparse data to dense

data. SPiDRE improves performance first by decoupling (par-

allelizing) access and execute, the acceses performed in paral-

lel with execution on the host core. SPiDRE also compacts

data, making more efficient bandwidth usage and enabling

more data to fit in the cache. Consequently, SPiDRE allows

applications to take better advantage of the memory hierarchy

(even prefetching) reducing memory latency experienced by

the host core.

Sparse

Dense

SPiDRE

Core

L1

L2

Network
Page

Memory

Fig. 1: SPiDRE device general picture. The device gathers data

from sparse locations and creates a new and dense version.

II. SPIDRE OVERVIEW

SPiDRE is implemented for our evaluation as a near-

memory device, connected to the main coherence bus with

direct access to the memory controllers. SPiDRE is designed

for applications with low cache block utilization [2], which

access dispersed memory locations and cause high (but under-

utilized) traffic on data transfer networks (e.g., coherence bus,

interconnects, etc.) [3]. SPiDRE transforms a data structure

into a new one using a rearrange function specified by the

user. In the latter, elements are reorganized the way they are

accessed by the host, with the goal of improving cache block

and bandwidth utilization. The latency of this process can be

overlapped with host computation. The reorganized data can

be successfully prefetched using a simple next line prefetcher.

A. SPiDRE Architecture

SPiDRE is a programmable but relatively simple device. It

can be implemented as a microcontroller placed next to the

memory controller. It works as an accelerator on behalf of

a requesting core process. The core sends commands to the

device and suspends or computes, if there is any computation

to be done in the meantime, until synchronization messages

are received. Multiple devices may operate at the same time,

applying the same rearrange function or different ones in

parallel. Following lines explain the SPiDRE architecture.
1) Address Translation: In order to reduce area overhead,

a direct virtual-to-physical address translation is performed

in SPiDRE using simple base plus offset virtual memory

calculations. It requires the data structures accessed by the

devices to reside in contiguous physical pages. The host
translates the base address and provides it to SPiDRE.

482

2019 28th International Conference on Parallel Architectures and Compilation Techniques (PACT)

978-1-7281-3613-4/19/$31.00 ©2019 IEEE
DOI 10.1109/PACT.2019.00056

2) Maintaining Memory Consistency: SPiDRE and the host
core make use of a common coherence network. SPiDRE will

often work on shared data with the host core. For this reason, if

the data is contained in the caches or in the device scratchpads

it must be flushed to main memory to make both units work

with the most recent version of the data.
3) Micro-architectural Support: The rearranged data must

not be accessed until it has been populated by SPiDRE. The

host core and the prefetcher may issue memory requests to

these memory locations while SPiDRE is operating, leading

to undefined behavior. A new structure, the SPiDRE Control

Table (SCT), keeps information about every rearrangement in

flight from a host core. It is located in the core and in the

prefetcher. If the data to be accessed is not ready, the memory

request will be stored in a queue.

B. SPiDRE Phases
This section describes the phases involved in the rearrange

process in sequential order.
1) Flushing of Sparse Data / Invalidation of Dense Data:

Before the rearrangement, flush/invalidate operations are trig-

gered on the SPiDRE device in order to maintain memory

consistency,. Once flushes complete, data blocks will be avail-

able to the host in a shared state but read only and data to be

rearranged will be in valid form for the SPiDRE units.
2) Allocation of SPiDRE Accelerators: Multiple cores may

plan to use these devices at the same time. In the allocation,

every core dynamically reserves SPiDRE devices depending

on their availability and the minimum and a maximum number

of accelerators they want to employ.
3) Offloading of Rearrange Functions: The host provides

every associated allocated SPiDRE the rearrange function,

the work boundaries (i.e. start and end indices in the final

structure) and the translated physical base addresses for each

structure to be accessed by the devices.
4) Rearrangement Trigger: The host core issues a com-

mand to notify the rearrangement starts. Our implementation

assumes a write to a memory mapped register to initiate.
5) Execution of Rearrange Functions: In this phase, every

SPiDRE device accesses the sparse data, performing the irreg-

ular memory accesses, and populating the dense data struc-

tures. Every accelerator has received its rearrange function,

data pointers and work boundaries in the Offloading phase.
6) Synchronization between SPiDRE and Host Core: It is

needed to ensure the host only accesses data when it is ready.

Every time the devices rearrange a complete cache block, and

it is flushed into main memory from their scratchpads, a signal

is sent to the host so that it can consume it. The SCT controls

that the host does not exceed the already rearranged limits.
7) Release of SPiDRE Devices: At the moment the last

element assigned in the Offloading phase is rearranged, the

SPiDRE device suspends and becomes available for future

rearrangements.

III. METHODOLOGY

We employ gem5 [4] to simulate an Arm full-system en-

vironment. We simulate a single out-of-order core processor

Fig. 2: Speedup using 8 SPiDRE devices per rearrangement.

Numbers with scalar, NEON, scalar + SPiDRE and NEON +

SPiDRE codes, normalized to the scalar scenario.

extended with the micro-architectural support for SPiDRE.

SPiDRE is modelled as an in-order core. The funcionalities

and latencies from the previously described phases are mod-

elled. The approach is evaluated using a set of representative

benchmarks that show irregular memory access patterns.

IV. EVALUATION

Figure 2 shows the speedup host vs host + SPiDRE using

eight SPiDRE accelerators. A SPiDRE + scalar scenario

provices an average 2.3× speedup. The SPiDRE device creates

a compacted version of the data and thus, new vectorization

capabilities are exposed to the compiler. The original bench-

marks cannot be efficiently vectorized due to the irregular

memory accesses. Consequently, they do not obtain a signif-

icant benefit with NEON support. In contrast, a SPiDRE +

NEON scenario achieves a 2.7× speedup.

Higher strides in the memory accesses imply a low cache

line and bandwidth utilization.

In DGEMM, results depend on the matrix block sizes. In

this case, SPiDRE transposes one of the input matrices. The

bigger the blocks, the higher the distance between elements

and the speedup. For instance, 200x200, 300x300 and 400x400

matrix blocks provide ≈1.3×, ≈2.3× and ≈3× speedups.

In SpMV, the performance depends on the non-zero element

positions in the input matrix. They define the accesses to

the vector. We selected matrix inputs from a wide variety of

scientific domains. On average, a 1.62× speedup is obtained.

V. ACKNOWLEDGMENTS

This work has been supported by the Spanish Ministry of

Science and Innovation (contract TIN2015-65316-P, Ramon y

Cajal fellowship number RYC-2016-21104 and FPI fellowship

number BES-2017-080635), and by the Arm-BSC Centre of

Excellence initiative.

REFERENCES

[1] W. Wulf and S. A. McKee, “Hitting the memory wall: Implications of
the obvious,” Charlottesville, VA, USA, Tech. Rep., 1994.

[2] J. C. Beard and J. Randall, “Eliminating dark bandwidth: a data-centric
view of scalable, efficient performance, post-Moore,” in HiPC, 2017.

[3] J. Mellor-Crummey, D. Whalley, and K. Kennedy, “Improving memory
hierarchy performance for irregular applications,” in ICS, 1999.

[4] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell,
M. Shoaib Bin Altaf, N. Vaish, M. Hill, and D. Wood, “The gem5
simulator,” vol. 39, 2011.

483

