
POSTER: Quantifying the Direct Overhead of
Virtual Function Calls on Massively Parallel

Architectures

Mengchi Zhang, Roland N. Green, Timothy G. Rogers
Department of Electrical and Computer Engineering

Purdue University
{zhan2308, green349, timrogers}@purdue.edu

Abstract—Programmable accelerators aim to provide the flex-
ibility of traditional CPUs, with greatly improved performance
and energy-efficiency. Arguably, the greatest impediment to the
widespread adoption of programmable accelerators, like GPUs, is
the software engineering overhead involved in getting the code to
execute correctly. To help combat this issue, GPGPU computing
has matured from its origins as a collection of graphics API hacks
to include advanced programming features, including object-
oriented programming. This level of support, in combination
with a shared virtual memory space between the CPU and GPU,
make it possible for rich object-oriented frameworks to execute
on GPUs with little porting effort. However, executing this type
of flexible code on a massively parallel accelerator introduces
overhead that has not been well studied.

In this poster, we analyze the direct overhead of virtual
function calls on contemporary GPUs. Using the latest GPU
architectures and compilers, this poster performs the analysis
of how virtual function calls are implemented on GPUs. We
quantify the direct overhead incurred from contemporary im-
plementations and show that the massively multithreaded nature
of GPUs creates deficiencies and opportunities not found in CPU
implementations of virtual function calls.

Index Terms—GPU, Object-Oriented Programming

I. INTRODUCTION

General-purpose Graphics Processing Unit (GPGPU) pro-

gramming extensions like CUDA [1], OpenCL [2] and Ope-

nACC [3] enable the execution of C/C++ code on GPUs.

While GPUs offer the potential for high performance and

energy efficiency, a major barrier to their adoption as general-

purpose accelerators is programmability. To help alleviate this

problem, the subset of C++ supported on GPUs has grown

to include much of the C++ standard as well as a shared

virtual address space with the CPU. However, the overhead of

virtual function calls in a massively mutlithreaded environment

has not been studied. In this poster, we study the execution

of an object-oriented microbenchmark that measures virtual

function overhead on current GPUs. Just like in CPUs, objects

allocated on the GPU have virtual member functions, where

the implementation of the function is not known until runtime.

This dynamic dispatch is known to cause both direct and

indirect overhead in CPUs [4]. Direct costs are attributed

to the extra instructions needed to call the virtual function

(virtual table lookups etc.), while indirect costs result from

the lack of compiler optimizations across virtual function

Fig. 1: Direct overhead of virtual function calls in GPUs for 1

warp vs. 10M warps on an NVIDIA Titan V. In this example,

each thread accesses a different object in the same type.

boundaries. This poster focuses on the direct cost of calling

virtual functions on GPUs.

II. VIRTUAL FUNCTION CALL AND ITS OVERHEAD ON

GPUS

Table I chronicles the state of CUDA programming features

and NVIDIA GPU capabilities over the last decade. The

programming features accessible on GPUs has been steadily

increasing with each new release of CUDA and each new

hardware generation. Despite this increased support for pro-

gramming features, little attention has been given to the effect

virtual function calls have on performance.

Since the implementation details of virtual function calls on

NVIDIA GPUs are not described in any public documentation,

we obtain the information in this poster by reverse-engineering

binaries compiled with object-oriented programming. We per-

form all our analysis using the recently released NVIDIA

Titan V GPU, however, we examine PTX and SASS code

from several different GPU generations and observe that

the implementation of object-oriented code has not changed

significantly. We also note that although other GPU vendors

do not support object-oriented features like virtual function

calls, we anticipate that the observations made in this study

would hold for other massively parallel accelerators.

The layout of objects (and structures) in CUDA follows

the C++ standard, where fields defined sequentially within

the object are laid out sequentially in the virtual address

496

2019 28th International Conference on Parallel Architectures and Compilation Techniques (PACT)

978-1-7281-3613-4/19/$31.00 ©2019 IEEE
DOI 10.1109/PACT.2019.00063

TABLE I: Progression of NVIDIA GPU programmability and performance

Year 2006 2010 2012 2014 2018

CUDA toolkit 1.x 3.x 4.x 6.x 9.x
Programming Basic C support C++ class inheritance C++ new/delete Unified Enhanced Unified
features & template inheritance & virtual functions CPU/GPU memory memory. GPU Page Faults.
GPU Architecture Tesla G80 Fermi Kepler Maxwell Volta
Peak FLOPS 346 GFLOPS 1 TFLOPS 4.6 TFLOPS 7.6 TFLOPS 15 TFLOPS

space. Virtual function calls are used to implement runtime

polymorphism. To support virtual function calls, where the

location of the code implementing the function is not known

until runtime, the CUDA compiler supports dynamic binding.

At compile-time, a virtual function table is created in CUDA’s

constant memory address space. In CUDA programs, constant

memory is a small, cached memory space that is generally

used to store variables constant across all threads in a kernel.

GPUs do not currently support dynamic code loading or

code sharing across kernels (like Linux does with .so files).

Therefore, the code for every virtual function call in a kernel

must be embedded inside each kernel’s instruction stream.

That means that the same virtual function implementation has

different addresses, depending on the kernel it is called from.

To support object creation in one kernel and use in another, a

layer of indirection is added to traditional CPU virtual function

implementations. A second virtual function table is created in

global memory when objects are allocated. Inside the global

memory table, pointers into constant memory, which is unique

per-kernel, are initialized. When a virtual function is called

on an object that has been allocated in another kernel, the

constant memory for the calling kernel is read to find the

location of the function’s implementation. This adds an extra

level of overhead not found in CPU object-oriented imple-

mentations. When new objects are constructed, they contain

a pointer to the global virtual function table for the object

type being constructed. When a virtual function is called,

the global virtual table pointer is used to reference constant

memory, where the address of the function implementation is

stored. There is no dynamic inlining or just-in-time compiler

optimizations performed in contemporary GPUs to mitigate

the cost of calling virtual functions. An indirect call instruction

from the GPU’s instruction set is used to jump to the virtual

function. GPUs use a lock-step Single Instruction Multiple

Thread (SIMT) execution model where sequential threads in

the program are bound together into warps when scheduled on

the GPU’s Single Instruction Multiple Data (SIMD) datapath.

In NVIDIA machines, 32 threads execute in lock-step across

a warp. Consequentially, when a virtual function is called

across a warp, each thread in the warp can potentially jump

to a different virtual function implementation, depending on

the objects being accessed in parallel threads. When threads

across a warp traverse different control flow paths, those paths

cannot be executed in the same instruction. This results in a

serialization of the divergent control-flow paths.

Figure 1 plots the direct overhead caused by calling virtual

functions on a GPU. The overhead is broken down into
3 basic components: the cost of the indirect function call

itself (Indirect Call), the cost of loading the virtual function

locations from the virtual table as well as loading function

pointers from constant memory (Load Vfunc*) and the cost

of loading the pointer to the virtual table (Load Vtable*). To

demonstrate the effects of multithreading, overheads for both

1 warp and 10 million warps are plotted. In the single warp

case, 30% of the overhead comes from the indirect function

call itself. With only one warp, there is not enough parallelism

to hide the deep branch pipeline. The loads split the remaining

overhead roughly equally. The overhead looks much different

when the workload is scaled to 10 million warps. The function

call latency is completely hidden by multithreading, and the

loads dominate the overhead. In particular, the load to the

virtual table pointer accounts for 85% of the direct overhead.

Using the latest CUDA compiler, each object contains a

pointer to its virtual table in memory. This implementation

results in significant cache-contention when thousands of

threads call thousands of virtual functions in quick succession.

However, the number of distinct object types accessed in quick

succession is several orders of magnitude smaller. The cost of

loading function pointers from constant memory is mitigated

due to the caching of the function pointers belonging to less

types. Based on these facts, we conclude that the overhead of

the virtual table pointer loads should be mitigated on massively

parallel architectures.

III. CONCLUSION

In this poster, we describe how virtual function calls are

implemented in contemporary GPUs. Through microbench-

marking we characterize the overhead of virtual function calls

on GPUs. While CPUs access very few objects simultaneously,

and have sophisticated mechanisms like out-of-order and spec-

ulative execution to hide the latency of difficult to predict

branches from virtual function calls, GPUs have no such

hardware and instead, rely on massive multithreading. We find

that virtual function calls on GPUs are heavily bottlenecked

by memory system throughput.

REFERENCES

[1] “NVIDIA CUDA C Programming Guide,” https://docs.nvidia.com/cu-da/
cuda-c-programming-guide/index.html, NVIDIA Corp., 2016, accessed
August 6, 2016.

[2] “OpenCL,” http://www.khronos.org/opencl/, Khronos Group, 2015, ac-
cessed July 6, 2018.

[3] “OpenAcc,” https://www.openacc.org/, OpenACC.org, 2019, accessed
April 15, 2019.

[4] U. Hölzle and D. Ungar, “Optimizing dynamically-dispatched calls with
run-time type feedback,” in Proceedings of the ACM SIGPLAN Con-
ference on Programming Language Design and Implementation (PLDI),

1994.

497

