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Abstract—GPUs are known to benefit structured applications
with ample parallelism, such as deep learning in a datacenter.
Recently, GPUs have shown promise for irregular streaming
network tasks. However, the GPU’s co-processor dependence on a
CPU for task management, inefficiencies with fine-grained tasks,
and limited multiprogramming capabilities introduce challenges
with efficiently supporting latency-sensitive streaming tasks.

This paper proposes an event-driven GPU execution model,
EDGE, that enables non-CPU devices to directly launch pre-
configured tasks on a GPU without CPU interaction. Along with
freeing up the CPU to work on other tasks, we estimate that
EDGE can reduce the kernel launch latency by 4.4× compared
to the baseline CPU-launched approach. This paper also proposes
a warp-level preemption mechanism to further reduce the end-to-
end latency of fine-grained tasks in a shared GPU environment.
We evaluate multiple optimizations that reduce the average warp
preemption latency by 35.9× over waiting for a preempted warp
to naturally flush the pipeline. When compared to waiting for
the first available resources, we find that warp-level preemption
reduces the average and tail warp scheduling latencies by 2.6×
and 2.9×, respectively, and improves the average normalized
turnaround time by 1.4×.

Index Terms—GPU, Multiprogramming, Networking

I. INTRODUCTION

To address slowdowns in Moore’s Law [41] and Dennard

scaling [12], the use of specialized processors in the data-

center is growing. For example, Google [11], Amazon [4],

Facebook [35], Microsoft [39], and Oracle [48] use graphics

processing units (GPUs) in their datacenters to accelerate

computationally expensive and highly parallel applications,

such as deep learning. Many recent works have shown potential

for the GPU to branch out from the more traditional scientific

or deep learning applications to a broader class of streaming

applications relevant to the datacenter. Examples include server

and packet processing applications [10], [19], [21], [22], [30],

[31], [59], network function virtualization (NFV) [23], [70],

databases [6], [66], and webservers [2].

However, limitations with GPU architecture and system-level

integration introduce challenges with efficiently supporting

latency-sensitive streaming tasks. First, GPUs are typically

coupled to a CPU in a co-processor configuration, which may

unnecessarily involve the CPU for GPU task management

and I/O. For instance, many of the GPU networking works

mentioned above employ a persistent CPU and/or GPU software

runtime to orchestrate the communication of data and control

between a network interface (NIC) and GPU, which can

increase latency and complexity for tasks only requiring the
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Fig. 1: Combined kernel launch and warp scheduling latency.

GPU. Second, GPUs optimize for throughput over latency,

preferring larger tasks to efficiently utilize the GPU hardware

resources and amortize task launch overheads. Consequently,

GPU networking applications often construct large packet

batches to improve throughput at the cost of queuing and pro-

cessing latencies. Lastly, GPUs have limited multiprogramming

support, which reduces the ability to efficiently share the GPU

between longer running tasks and latency-sensitive streaming

tasks. For example, recent works use GPUs to accelerate

NFV operations (e.g., IP forwarding/encryption); however, task

launch overheads and challenges with the co-execution of

concurrent GPU tasks can degrade performance and impact

service-level objectives (SLO) [23], [70]. Others have shown

that GPUs are viable candidates for deep learning inference

workloads in datacenters, but the smaller batch sizes necessary

to meet SLO requirements limit GPU resource-efficiency [24].

In such cases, GPU resource sharing can improve resource-

efficiency at the cost of unpredictable latencies and poor

performance isolation.

This paper proposes improved GPU support for fine-grained,

latency-sensitive streaming tasks in a heterogeneous environ-

ment. Specifically, it proposes an event-driven extension to

existing GPU programming models called EDGE. EDGE

enables external devices to efficiently launch tasks of any size

on the GPU without a CPU and/or GPU software framework.

EDGE is a form of GPU active messages [13] that adopts

a similar programming model to the Heterogeneous System

Architecture (HSA) [17]. In EDGE, tasks are communicated

directly to the GPU through in-memory buffers instead of

through a GPU driver running on the CPU. The CPU is only

responsible for configuring a communication plan between an

external device and the GPU. The CPU pre-registers event
kernels on the GPU to be triggered in response to external

events and pre-configures the parameter memory that each

subsequent event kernel will access. Once configured, the CPU

is not required on the critical path for the management of

data or control. External devices directly trigger GPU event
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kernels by writing to special doorbell registers. The basic device

requirements for supporting EDGE are discussed in Section

III-D. We propose GPU hardware extensions to internally

manage and launch event kernels, which can reduce the kernel

launch latency over the baseline CPU-launched kernels by an

estimated 4.4×. Reducing the kernel launch overheads can

enable the use of smaller GPU kernels in certain streaming

applications to improve end-to-end latencies.

EDGE reduces the overall time required to begin executing

kernel instructions on the GPU by reducing both kernel launch

overheads and scheduling latency. Once launched on the GPU,

event kernels of any size are treated as regular host or device

launched kernels. However, EDGE also provides an optimized

path for fine-grained kernels – a single warp – to share GPU

resources with concurrently running GPU tasks. We propose a

lightweight warp-level preemption mechanism, which borrows

a subset of resources from a running kernel. We evaluate

multiple optimizations to reduce the warp preemption latency by

35.9× compared to waiting for a preempted warp to naturally

flush the pipeline. On a set of networking event kernels and

traditional GPU background kernels, we find that warp-level

preemption reduces the average/tail event warp scheduling

latencies and improves average normalized turnaround time

(ANTT) over waiting for free resources by 2.6×, 2.9×, and

1.4×, respectively. Figure 1 shows that EDGE with warp-

level preemption reduces the overall launch time by 3.14×
versus a baseline GPU without EDGE and 2.06× versus an

EDGE-enabled GPU lacking warp-level preemption.

This paper makes the following contributions:

• It proposes an event-driven extension to the GPU pro-

gramming model and set of hardware changes that reduce

the GPU’s dependence on the CPU for task management.

These reduce kernel launch overheads and enable non-

CPU devices within a heterogeneous system to directly

initiate computation on the GPU.

• It proposes a warp-level GPU preemption mechanism that

enables the fine-grained co-execution of GPU event kernels

with concurrently running applications. When the GPU is

fully occupied, warp-level preemption reduces latency of

scheduling an event warp and improves throughput versus

waiting for resources to become available.

• It enables the effective use of smaller GPU kernels for

streaming applications. Smaller kernels can be overlapped

to reduce the end-to-end task latency while maintaining

high throughput.

This paper is organized as follows: Section II elaborates on

the background and motivation for EDGE, Section III presents

the design of EDGE, Section IV describes the warp-level

preemption mechanism, Section V provides our experimental

methodology, Section VI evaluates EDGE, Section VII

discusses related work, and Section VIII concludes.

II. BACKGROUND AND MOTIVATION

This section briefly summarizes relevant GPU background

material, discusses existing GPU kernel launching and resource

sharing techniques, and motivates EDGE.

Fig. 2: Baseline GPU Architecture.

A. GPU Architecture and Programming Model

Figure 2 presents a high-level view of the GPU architecture

assumed in this study [25], [62], resembling an NVIDIA or

AMD discrete GPU. GPUs are highly parallel, throughput-

oriented accelerators containing multiple single-instruction,

multiple-thread (SIMT) cores, kernel and thread schedulers,

caches, and high-bandwidth off-chip global memory. The SIMT

cores contain an instruction cache, warp schedulers, instruction

buffers, a large register file, multiple execution and load-store

units (LSUs), a local on-chip memory, which can be configured

as an L1 data cache or shared scratchpad memory, and (not

shown) address translation units.

GPU applications typically consist of a CPU side, responsible

for communicating data and tasks with the GPU, and a GPU

side, which executes the parallel functions (kernel). GPU SIMT

cores execute instructions in lock-step in groups of scalar

threads (e.g., 32 or 64 threads), referred to as warps. Multiple

warps are grouped together into thread blocks (TBs), which are

the schedulable unit of work on the GPU. Groups of TBs form

the work for a kernel. GPUs are programmed in parallel APIs,

such as CUDA or OpenCL. The CPU communicates with the

GPU through a driver running on the CPU, typically connected

to the host system via PCIe for discrete GPUs. Asynchronous

operations through multiple streams (hardware queues) enable

data transfers and (parallel) kernel executions to be overlapped.

NVIDIA HyperQ provides 32 such queues.

In the baseline [25], [62], the CPU launches a kernel by

passing the kernel parameters, metadata (kernel dimensions,

shared memory size, and stream), and function pointer to a

GPU driver on the CPU. The GPU driver then configures

the kernel’s parameter memory, constructs a kernel metadata

structure (KMD), and launches the kernel into hardware queues

in the I/O & front-end unit. Internally, a kernel management

unit (KMU) stores the pending kernels and schedules kernels to

the kernel dispatch unit (KDU) based on priority when a free

entry is available. Finally, a SIMT-core scheduler configures

and distributes TBs from the KDU to the SIMT-cores based

on available resources for the TB contexts. Current NVIDIA

GPUs support up to 32 concurrently running kernels in the

KDU and 1024 pending kernels in the KMU. CUDA dynamic
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Fig. 3: External GPU kernel launching approaches.

parallelism (CDP) [44] enables GPU threads to internally

launch sub-kernels on the GPU to exploit irregular parallelism

in applications.

GPU data may be explicitly transferred via memory copies,

accessed in shared/unified memory, or accessed directly through

remote direct memory access (RDMA), such as GPUDi-

rect [45].

B. GPU Kernel Launch Overheads

The baseline described above incurs overheads for streaming

applications as it requires the CPU to configure, launch, and

handle the completion of every GPU kernel. As illustrated in

Figure 3a, in a streaming environment where the tasks originate

from an external device, such as a NIC, the CPU may poll both

the external device and GPU to improve performance. If the

CPU is not responsible for any of the task processing, including

the CPU on the critical path can increase the kernel launch

latency and limit the potential for workload consolidation. The

latter is important for increasing utilization and reducing costs

in datacenters [7].

We measure this impact in Figure 4a, which evaluates

the performance for a set of memory and compute bound

CPU tasks (Spec2006) concurrently running with a GPU UDP

ping benchmark (swaps packet header source/destination). In

this experiment, data is transferred directly to the GPU from

an Ethernet NIC via GPUDirect. Polling CPU threads were

required for efficient packet I/O and kernel launch/completion

management. We find that, relative to running in isolation,

the CPU memory and compute bound applications run 1.17×
and 1.19× slower with GPU-ping, while the peak GPU-ping

packet rate is reduced by 4.83× and 2.54×, respectively. This

performance impact is caused by the CPU having to switch

between the CPU applications and GPU task management, even

though all of the actual GPU-ping processing is performed on
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Fig. 4: Evaluation of Baseline (Fig. 3a) and Persistent Threads

(Fig. 3b) on an NVIDIA GTX 1080 Ti / Intel i7-2600K.

the GPU. Hence, reducing the GPU’s reliance on the CPU can

improve system efficiency and lower the kernel launch latency

when consolidating workloads onto independent devices.

There are multiple alternatives for launching GPU tasks

besides the baseline described above. Figure 3b illustrates

persistent threads (PT) [20], which is a software-only approach

to manage GPU tasks via polling GPU threads. PT pre-

configures a large number of continuously running TBs that poll

in-memory work queues and perform the application processing.

PT replaces the GPU driver and hardware task schedulers with

a GPU software scheduler, relaxing the requirement for the

CPU to be involved. The polling TBs can improve efficiency

for smaller kernels by reducing kernel launch overheads,

but can reduce efficiency for larger tasks, as the software

schedulers are less efficient than hardware. Figure 4b evaluates

a PT framework relative to the baseline for a continuous

stream of matrix multiplication kernels on two matrix sizes;

small (2 TBs/kernel) and large (120 TBs/kernel). Power is

measured using the NVIDIA Management Library [46]. With

the small kernel, PT spends more time performing the matrix

multiplication relative to the kernel launch overheads, which

decreases execution time by 2.9× with only 20% higher power;

hence lowering energy. However, the increased overhead from

the TB software scheduler on larger kernels increases execution

time by 5.6× while lowering power by 45%; hence increasing

energy. Additionally, PT polling indefinitely consumes GPU

resources, which limits the potential for other kernels to run

and increases power consumption relative to the baseline by

13% (in an active power state, p2) when no tasks are pending

(Active Idle).

Figure 3c illustrates GPUDirect Async [52], which removes

the CPU from the critical path for receiving and sending

data between an Infiniband NIC and the GPU. For receiving,

GPUDirect Async pre-configures the receive buffers and pre-

launches the kernels to be asynchronously executed when the

data arrives, reducing launch overheads and freeing up the

CPU when waiting for data. Similarly for sending, GPUDirect

Async pre-configures the transmit buffers to enable the GPU

to directly send data to the NIC, freeing up the CPU from

managing the transmit on behalf of the GPU. However, the

CPU is still required to manage each kernel launch.

HSA [17] utilizes user-level in-memory work queues and

doorbell registers to configure and launch GPU tasks through
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standard memory operations. An HSA packet processor (typi-

cally a hardware unit on the GPU) processes the work queues

to launch kernels. While HSA does not require the CPU or

GPU driver to launch GPU tasks, HSA still requires each GPU

task to be separately configured, which increases the amount

of data needed to specify the GPU task.

Figure 3d illustrates XTQ [33], which proposes an extension

to Infiniband NICs to internally manage pre-registered HSA

tasks through RDMA. RDMA writes specify a kernel ID, which

the NIC uses to configure and launch the corresponding GPU

kernel via an HSA work queue. XTQ lowers kernel launch

overheads by implementing the HSA logic in the Infiniband

NIC to bypass the CPU on the critical path. As XTQ exploits

RDMA on Infiniband, it is more targeted to remote task

launching than fine-grained streaming applications. XTQ also

pushes the kernel management functionality to the NIC, not the

GPU, requiring other external devices to reimplement similar

XTQ functionality to launch tasks directly on the GPU.

Figure 3e illustrates EDGE. EDGE adopts a similar program-

ming model and execution flow as HSA and XTQ. However,

EDGE pushes the kernel configuration and management logic

to the GPU, reducing complexity for external devices wanting

to launch tasks directly on the GPU. Additionally, EDGE

provides optimizations for fine-grained streaming GPU tasks.

Another approach to reduce kernel launch overheads is to

use integrated GPUs. These GPUs reside on the same die as

the CPU and share a common physical memory, inherently

reducing kernel launch and data transfer overheads relative to

discrete GPUs. However, integrated GPUs typically have lower

peak processing capabilities than discrete GPUs, which may

limit their effectiveness in the datacenter. Furthermore, for tasks

not originating from the CPU, such as a NIC, the physically

shared CPU-GPU memory provides reduced benefits.

C. Fine-Grained GPU Kernels

Latency-sensitive streaming GPU applications, such as

packet processing, may benefit from using smaller kernels

(fewer threads). Many highly-parallel GPU packet processing

applications batch packets together and process each packet

with a separate GPU thread [19], [21], [22]. Thus, the kernel

size is variable. Larger batches, and hence larger kernels, are

typically constructed to improve throughput, increase GPU

utilization, and mitigate kernel launch overheads. However,

this comes at the cost of increased queuing and processing

latencies. If the kernel launch overheads were low, the smallest

batch size that can benefit from GPU parallelization is the

size of a warp (e.g, 32 packets). Decreasing the batch size

can reduce the packet queuing latency and the time to process

each packet batch, while multiple small packet batches can be

pipelined on the GPU to maintain high throughput.

Additionally, irregular applications are often represented as

multiple tasks with low degrees of parallelism, which can

also benefit from using smaller kernels. Pagoda [68] lists

several example applications, such as DCT, fractal analysis,

and beamforming. However, the kernel launch overheads for

smaller kernels have a higher contribution to the end-to-end

latency, as they are amortized over less work.

To estimate the launch overheads described above, we

measure the latency breakdown for a continuous stream of

GPU IPv4 forwarding kernels with different kernel sizes at 8

Gbps (Figure 5). We evaluate two discrete NVIDIA GPUs

and an AMD GPU using CUDA and ROCm [1], respectively.

Each GPU thread processes a separate packet. Section VI-A

discusses how the launch overheads were computed. When

the kernel is small, the kernel launch overheads contribute to

a larger fraction of the total latency than the packet queuing

and kernel runtime. The opposite behavior is seen when the

packet batch sizes are larger. If the kernel launch overheads are

lowered, the end-to-end latency for the smaller packet batches

can be reduced.

D. GPU Multiprogramming

Current GPUs have limited support for compute multipro-

gramming, although they have long supported preemptive mul-

tiprogramming for graphics [42]. Recent NVIDIA GPUs [43],

[47] and the HSA specification [17] describe support for

instruction-level kernel preemption for higher-priority compute

tasks; however, our experience with the most recent NVIDIA

and HSA-enabled AMD GPUs show that higher-priority kernels

wait for the first available resources (e.g., a TB completion)

instead of immediately preempting.

There has been a large body of research towards improv-

ing preemption/context switching and multiprogramming on

GPUs [9], [28], [38], [49], [53], [57], [64], [65], [69]. These

works tend to target resource sharing, spatial multitasking, and

external/self-initiated preemption at the TB, SIMT core, or full

kernel level with hardware, software, and/or compiler support.

Many of these works identify that saving and restoring the

context for a full TB or kernel is high, and evaluate alternative

techniques to preempt at the TB granularity. For example,

both FLEP [65] and EffiSha [9] propose using a compiler to

transform large multi-TB kernels into a smaller set of persistent

thread-like TBs and a CPU/GPU runtime to schedule kernels

to initiate preemption. Preemption occurs when a persistent-TB

completes one or more executions of one kernel and identifies

that it should be preempted to execute a different kernel.

However, if the size of a higher-priority kernel is small, such

as a single warp, preempting or waiting for a full TB/kernel
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Fig. 6: EDGE event kernel table (EKT) architecture.

to complete can lead to high preemption latencies (Figure 12)

and increase the impact on the kernel being preempted. For

small kernels, EDGE instead targets partial-TB preemption

at the warp granularity, reducing preemption overheads and

enabling the lightweight co-execution of fine-grained streaming

tasks with concurrently running applications. For larger kernels,

EDGE can make use of these previously proposed preemption

techniques.

III. EVENT-DRIVEN GPU EXECUTION

EDGE provides an alternative path for devices to directly

and efficiently launch tasks on the GPU. The basic device

requirements for supporting EDGE are discussed in Section

III-D. Supporting an event-driven execution model on the GPU

has four main requirements: the GPU needs to know which

task to run on a given event, which data each event task should

operate on, when to execute the task, and how to indicate that

the task is complete. This section describes how each of these

requirements are addressed in EDGE.

A. Event Kernels and the Event Kernel Table

EDGE introduces a new type of GPU kernel, the event
kernel, which is internally launched by the GPU in response

to an internal or external event. Event kernels are configured

once and remain on the GPU, such that any device capable

of communicating with the GPU is able to launch an event

kernel. EDGE manages event kernels in an event kernel table
(EKT) within the kernel management unit (KMU), as shown in

Figure 6. When a kernel operation is received from the GPU’s

front-end, traditional kernels flow directly to the pending kernel

queues, while event kernels access the EKT. EDGE supports

registering a new event kernel, removing an existing event

kernel, and launching an event kernel from the EKT.

The EKT consists of a small on-chip SRAM buffer and

control logic. The EKT is responsible for storing the pre-

configured event kernel metadata structures (event KMDs),

which contain the necessary information to describe the event

kernel, such as the kernel function pointer, kernel dimensions,

and pointer to the kernel parameter memory. Multiple different

event kernels can be stored, with the size of the EKT dictating

the maximum number of separate event kernels. Event kernels

are assigned a unique identifier upon registration (Section

Fig. 7: EDGE event submission and completion queues.

III-E), which can be used to look up the corresponding event

kernel from the EKT. The remaining portions of the EKT are

described in Section III-C.

B. Event Kernel Parameter Memory

Part of the baseline GPU kernel launch overheads are a

result of configuring and communicating the kernel parameters

with the GPU. EDGE exploits the opportunity that the same

kernel will have the same parameter memory structure (same

types, number, and order of parameters). As such, the parameter

memory could be pre-configured (e.g., setting constants and

GPU memory buffers) for the maximum number of concurrent

instances of each event kernel, removing the need to repeatedly

configure it on the critical path in streaming applications.

EDGE adopts a similar approach to HSA [17] and PT [20],

utilizing user-level, in-memory task queues to interact with the

GPU. In-memory task queues replace expensive API calls to

the GPU driver with simple memory load and store instructions.

However, pre-allocating and configuring the parameter memory

once instead of before each kernel launch requires that both the

GPU and external device know which entries in the task queues

are free, complete, or contain valid tasks to launch. EDGE

reduces this complexity with in-order circular task queues.

Consequently, the external device does not need to query a

runtime or the GPU for the next valid entry in the task queue,

nor does it need to specify which entry contains a valid task

when launching an event. When the GPU receives a signal to

launch an event kernel, the parameter memory to operate on

is simply the next entry in the queue.

A pair of circular task queues manage task submission and

completion in EDGE, as shown in Figure 7. Each entry

in the submission queue contains the pre-configured event

kernel parameters and pointer to the corresponding entry in the

completion queue. The size of each submission queue entry is

dependent on the number and size of event kernel parameters.

The completion queue maintains a set of flags specifying if

an entry is free or complete, which is polled by the external

device. The external device is responsible for managing its own

head/tail logic for the circular completion queue and clearing

the completion flag after consuming the results of an event

kernel. As is described in Section III-C, the GPU only requires

a single head pointer. To minimize access latency for each

device, the submission and completion queues are stored in

GPU global memory and external device memory, respectively.
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C. Launching Event Kernels

Once registered with the GPU, devices can directly launch

event kernels by signalling the GPU. Similar to HSA, EDGE

achieves this through writes to memory-mapped doorbell

registers. Each entry in the EKT is tied to a unique doorbell

register, which is returned upon event kernel registration. EDGE

requires modifications to the GPU’s front-end (Figure 2) to

identify doorbell register writes and trigger reads from the

corresponding entries in the EKT. Launching an event kernel

is therefore reduced to a single read from the on-chip EKT

buffer, significantly lowering kernel launch overheads.

Each EKT entry contains an event KMD and metadata

describing the event kernel’s parameter memory (Figure 6).

Param Buffer Base stores the base address of the submission

queue. Param Entry Head stores the address of the next valid

parameter memory to use from the in-order submission queue.

Param Entry Size stores the size of each entry in the submission

queue. Finally, Param Buffer End stores the address of the

last entry in the submission queue. The EKT also contains

logic for implementing the circular buffer in hardware. When

an EKT entry is read, the current head is incremented by the

parameter memory size and stored back into the head. The

head pointer is reset to the base pointer when exceeding the

maximum number of entries in the submission queue.

As shown in Figure 6, traditional GPU kernels flow

directly to the pending kernel table, whereas event kernel

requests access the EKT. An event registration request stores

the EKT and metadata in an EKT entry. An event launch

request reads an entry from the EKT to prepare the event

kernel for scheduling. Event kernels larger than a single warp

are transferred to separate event kernel queues in the KMU

to be scheduled by the kernel scheduler, similar to device

launched GPU kernels in NVIDIA CDP [63]. As will be

described in Section IV, small event kernels (a single warp) are

instead transferred directly to the SIMT core scheduler for fast

scheduling. This enables EDGE to increase the total number

of concurrent warp-level kernels on a GPU (more details in

Section IV-C). Upon completion, a simple hardware unit or

GPU software completion routine can mark the corresponding

event completion flag as done.

D. Device Requirements for Supporting EDGE

There are two main requirements for devices to support

EDGE. First, the device must be able to read and write directly

to GPU memory. This is satisfied by any device able to

communicate over the PCIe bus with the GPU (e.g., DMA).

Directly accessing GPU memory is required to populate the

input GPU buffers, set any event kernel arguments, write to

the doorbell registers, and read from the output GPU buffers.

Second, the device requires logic for interacting with the

circular event submission and completion queues (Section

III-B). For example, the device needs to manage internal head

and tail pointers and check/update the event kernel status

in the completion queue entries. If the device contains an

internal command processor, this logic can be implemented in

TABLE I: EDGE API extensions.

eventDoorbellReg = edgeRegisterEvent<<<pType0,... pTypeN>>>(
&eventSubQueue, kernelPtr, gridDim, TBDim, shrdMem, maxNumEvents)
edgeUnregisterEvent(eventDoorbellReg)

software running on the processor. Otherwise, this logic should

be implemented in hardware.

E. EDGE API

Table I presents the EDGE extensions to the GPGPU API

(e.g., CUDA or OpenCL). The API enables the CPU to register

and unregister event kernels with the GPU. Similar to HSA, all

other EDGE operations, such as configuring parameter memory

and launching event kernels, are done through generic memory

operations.

Registering an event kernel is similar to the baseline CUDA

kernel launch API. The main differences are that the kernel

launch is delayed by storing the kernel metadata structure

on the GPU (kernelPtr, gridDim, TBDim, shrdMem) and the

parameter memory structure is specified (pType0...pTypeN)

instead of passing the actual parameters. edgeRegisterEvent
allocates the event submission queue in GPU memory based on

the structure of event kernel parameters and maximum number

of in-flight events, which is stored in eventSubQueue. The same

GPU driver logic as the baseline kernel launch API can be used

to verify the kernel pointer, dimensions, and shared memory

requirements. A unique doorbell register, edgeDoorbellReg, is

assigned to the event kernel and returned. The doorbell register

address is also used as an identifier to unregister the event

kernel and free the corresponding submission queue memory.

Under successful operation, the new event kernel is stored in

an event kernel table entry and the parameter buffer values are

initialized to the first submission queue entry. As event kernels

are associated with a doorbell register, not a kernel name,

separate event kernels (potentially with the same name) can be

concurrently registered with a unique set of parameters. The

CPU is then responsible for allocating the event completion

queue in external device memory (using an available API for

the external device), pre-allocating all of the GPU input/output

buffers for the event kernels, and assigning the corresponding

completion queue entry pointers, GPU buffer pointers, and any

constant parameters in each submission queue entry.

If edgeRegisterEvent fails, a NULL value is returned. This

can happen if any inputs are invalid, if the event kernel table

is full, or if there is not enough GPU memory to allocate the

event submission queue. In the event of a failure, any modified

state is reverted and allocated memory is freed.

Figure 8 presents an example of the EDGE API (Figure

8c) compared to the baseline (Figure 8b) for a streaming GPU

application where tasks originate from an external device (e.g.,

a NIC or FPGA). EDGE does not require any modifications to

the GPU kernel code from the baseline (Figure 8a). In both the

baseline and EDGE, the parameter memory is pre-configured

for the maximum number of in-flight kernels, while EDGE also

assigns the corresponding completion queue pointers. The main

difference is that the baseline requires one or more CPU threads

341



Fig. 8: Pseudo code comparison between the baseline and EDGE for an example streaming GPU application.

to poll the external device for new tasks to launch and poll

the GPU for completed tasks to consume through the standard

GPU APIs, whereas EDGE implements the kernel launching

and completion management directly on the external device

(Section III-B, Section III-C). As described in Section III-D,

the required device-side EDGE logic may be implemented as

code running on an internal processor or as dedicated hardware.

While not shown, the baseline also requires device-side logic

for configuring the device to populate/consume the GPU buffers

(e.g., through a device driver or device API).

IV. EVENT KERNEL PREEMPTION AND PRIORITY

Event kernels are treated like regular host or device launched

kernels. They can be of any shape (kernel dimensions) or size

(number of threads), utilize the baseline GPU hardware task

and thread schedulers, and have a configurable priority. The

ability to increase the priority can help to maintain a level of

quality of service (QoS) in an enviornment where other GPU

tasks may be run concurrently, such as the datacenter.

As described in Section II-C, certain GPU applications, such

as packet processing, may beneft from using smaller kernels. If

the GPU is fully occupied executing other tasks, however, the

latency benefits of using smaller kernels is reduced. To address

this, we propose a fine-grained partial preemption technique

when the event kernel is the size of a single warp. In EDGE, a

lower-priority background kernel is only partially preempted to

obtain the required resources to run the event kernel. This form

of partial preemption for warp-level event kernels can enable

the fine-grained co-execution of multiple kernels to reduce

impacts on the system QoS compared to full preemption or

waiting for TBs from concurrently running kernels to complete.

A. Spatial Multitasking through Hardware Reservation

A simple coarse-grained approach to ensure event kernels

have enough resources to execute is to statically reserve a

fraction of the resources for the event kernel. For example,

the event kernel registration could reserve specific GPU SIMT

cores to handle the event kernel. While this indefinitely lowers

the amount of resources available for normal tasks to run on the

GPU, the time to schedule an event kernel and the contention

for shared resources (e.g., caches, memory bandwidth) can be

significantly reduced. In Section VI, we evaluate a fair-sharing

approach, where background kernels and event kernels receive

an equal number of reserved SIMT cores. Evaluating a dynamic

resource reservation technique is left to future work.

B. Thread Block-Level Event Kernels

In the baseline GPU, TBs from higher-priority (HP) kernels

interrupt TBs from lower-priority (LP) kernels at the TB

execution boundaries. Specifically, the SIMT core scheduler

(Figure 2) stops scheduling new LP TBs and prioritizes HP TBs

from the KDU as LP TBs complete. Once all TBs from the HP

kernel have been scheduled, the scheduler resumes scheduling

TBs from the LP kernel. We refer to this as draining partial

preemption, which is similar to the TB draining technique

presented in [57]. While this process enables the HP kernel to

begin executing as soon as enough resources become available,

the scheduling latency for the HP kernel is dependent on the
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Fig. 9: EDGE SIMT core architectural modifications.

remaining execution time of the LP TBs. This can lead to high

variability in the event kernel scheduling latencies. We also

evaluate TB draining in Section VI.

C. Warp-level Events

There are several simplifications when scheduling a kernel

containing a single warp compared to multiple TBs, which can

be exploited to improve efficiency. The SIMT core scheduler

(Figure 2) is responsible for scheduling TBs from running

kernels in the KDU to SIMT cores with enough resources to

handle the TB. The scheduler configures SIMT core control

registers to indicate which TBs from the kernel are currently

executing and to track when TBs complete. Subsequent TBs are

then scheduled or the completed kernel is removed. For a kernel

with a single warp, many of these requirements are removed.

For example, when the warp completes, the kernel completes.

Consequently, the management of warp-level kernels does not

need to be centralized across all SIMT cores. Similar to the

global KDU, EDGE proposes minor hardware extensions to

the SIMT cores to internally manage warp-level kernels, as

shown in Figure 9. This increases the maximum number

of concurrent warp-level kernels on the GPU without the

overheads for managing kernels of any size and shape. As

shown in Figure 6 and Figure 9, warp-level event kernels are

transferred directly to the SIMT core scheduler, which selects

a SIMT core to handle the warp-level event and transfers the

event kernel to a small Pending Event Warp Table residing in

the SIMT core.

D. Warp-level Preemption

GPUs contain multiple SIMT cores and warp contexts, each

potential candidates to handle the warp-level event kernel. For

example, the NVIDIA GeForce 1080 Ti contains 28 SIMT

cores with up to 64 warps per SIMT core, for a total of

1792 warps. GPUs schedule TBs to SIMT cores until the first

required resource is depleted (registers, shared memory, warps,

TB contexts). However, this can lead to underutilization if

one resource is more heavily used than others. Depending

on the resource requirements of the warp-level event kernel

and the current SIMT core utilization, the event warp may be

able to immediately run on a free warp context. However, if

there are no available resources to process the warp-level event

kernel, the kernel must either block until sufficient resources

are available or preempt a running warp.

We propose a fine-grained, warp-level preemption mecha-

nism that can temporarily borrow the necessary resources from

Fig. 10: EDGE SIMT core preemption logic.

a running TB to execute the warp-level event kernel. The main

challenge with preempting a warp is to minimize the preemption

latency. Compared to full TB or kernel-level preemption, warp-

level preemption requires saving significantly fewer resources,

which lowers preemption overheads. Additionally, GPUs exploit

fine-grained multithreading to hide the effects of long latency

operations by seamlessly switching between multiple warps.

If a warp is temporarily preempted to process a warp-level

event kernel, the preempted task can still make progress by

scheduling other warps from the TB. Figure 9 highlights the

high-level architectural modifications and Figure 10 presents

the EDGE SIMT core logic to support warp-level preemption,

as described below.

EDGE preempts warps at an instruction granularity instead

of waiting for a warp to complete all of its instructions, as is

done in TB draining (Section IV-B). To correctly save a warp’s

context and to minimize complexity, any pending instructions

are flushed from the pipeline prior to starting the event kernel.

Depending on the state of the selected warp to preempt, called

the victim warp, or the instructions currently in the pipeline,

this preemption latency can be quite large with high variability.

We identified four main causes of large scheduling latencies:

First, low scheduling priority for the victim warp; second,

pending instructions in the instruction buffer (i-buffer); third,

victim warps waiting at barriers; and fourth, in-flight loads.

EDGE with warp-level preemption tackles these sources of

increased latency by employing, respectively, the following

flushing optimizations: First, to ensure that the victim warp

completes promptly, the victim warp’s priority is temporarily

increased. Second, flushing any non-issued instructions from the

i-buffer limits the number of instructions the warp-level event

kernel needs to wait for. Third, a victim warp waiting at a barrier

is a perfect candidate for interrupting, since the warp is currently

sitting idle. This is referred to as barrier skipping. However, we

need to ensure that the victim warp is correctly re-inserted into

the barrier when the event kernel completes. Finally, in-flight

loads can be dropped and replayed for victim warps. Dropping

loads involves releasing the MSHR entry for the pending load,

releasing the registers reserved in the scoreboard, and rolling

back the program counter to re-execute the load instruction

once the victim warp is rescheduled after the event kernel. We

also need to ensure that no independent instructions for the

victim warp have completed out of order following the load

instruction, due to separate execution pipelines [58]. Section
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VI-B evaluates the benefits of these flushing optimizations on

preemption latency.

Once the victim warp has been properly flushed, any

resources overwritten by the event warp need to be saved.

Unlike a regular warp, event warps do not require TB barrier

management, since there is only a single warp. Additionally, the

special thread / TB dimension registers are always initialized

to the same values. The event warp can use the victim warp’s

SIMT stack [18] to efficiently save the program counter and

warp divergence state by pushing on a new entry containing

the program counter of the event kernel’s start address and

a full active thread mask. When the event kernel completes,

the event kernel entry can be popped off the SIMT stack to

resume execution of the preempted victim warp.

Any registers used by the event warps need to be saved and

restored, which is achieved through preallocated regions in

global GPU memory. However, as shown in Figure 10, if the

SIMT core register file is underutilized and contains enough

free registers, the event warp instead reserves new registers. In

EDGE, we avoid changing the resource requirements of a victim

warp during preemption and only allow event warps to preempt

victim warps with the same or lower number of registers (even

if there are enough free registers in the register file). This

can limit the opportunities for event-warp preemption and is

discussed more in Section VI-C. Other works have also shown

that GPU multiprogramming can benefit from underutilized

GPU resources through resource partitioning/sharing [64], [67].

To further improve QoS for the event kernel, once an event

kernel is running, EDGE sets its warp priority to the highest

level in the warp scheduler.

E. EDGE Overheads and Limitations

The EKT (Figure 6) is modeled as a small on chip buffer

with a single read/write port. Each row contains five 8B values

for the kernel pointers and parameter buffer pointers, six 4B

values for the kernel dimensions, and a 2B value for the shared

memory requirements, for a total width of 66B. Assuming the

EKT has 32 entries (maximum of 32 different event kernels),

the total storage overhead for the EKT is 2.1KB – less than 1%

of a single SIMT core’s register file. The EKT also contains a

single 64-bit adder and comparator for the circular buffer

logic. EDGE requires one or more Pending Event Kernel

queues in the KMU, which can be achieved by adding pending

kernel queues or reusing the existing hardware queues for

host/device launched kernels. EDGE also adds logic to the

GPU front-end for identifying writes to the doorbell registers

and to the SIMT core scheduler for selecting a SIMT core to

handle a warp-level event kernel. The SIMT core modifications

(Figure 9) include the small event warp table to manage

event kernels and the logic for warp-level preemption. A four-

entry event warp table adds 160B per SIMT core. Supporting

warp-level preemption requires logic to prioritize warps in the

warp scheduler, manipulate valid bits to flush entries from

the instruction buffer, release scoreboard/MSHR entries, and

control registers to drop in-flight loads and to indicate if the

TABLE II: Gem5-GPU Configuration

Component Configuration
Num SIMT core / frequency 16 / 700MHz

Max TBs / threads per SIMT core 16 / 2048

Num registers per SIMT core 65536

L1 $ / shared memory size per SIMT core 64KB / 48KB

L2 $ size 1MB

GPU base warp scheduler Greedy-then-Oldest

Gem5 CPU / memory configuration O3CPU / Gem5 fused

victim warp should return to a warp barrier after completing

the event kernel.

A limitation with warp-level preemption is shared memory,

which is allocated at a TB level. Consequently, there is no

warp-local region of shared memory for the event warp. Using

shared memory would require saving and restoring the entire

shared memory for the victim warp’s TB and blocking the

TB until the event warp completes. To keep overheads low,

we restrict preemption for event warps not requiring shared

memory. Event kernels requiring shared memory are treated

as regular event kernels.

V. METHODOLOGY

EDGE is implemented in Gem5-GPU v2.0 [50] with GPGPU-

Sim v3.2.2 [5]. Although GPGPU-Sim is loosely based on an

NVIDIA architecture, it implements a generic SIMT execution

model and memory hierarchy similar to both NVIDIA and

AMD GPUs. As such, we expect that the proposed techniques in

EDGE will be relevant to both NVIDIA and AMD architectures.

Additionally, we observed similar trends for kernel launch

overheads on both NVIDIA and AMD GPUs (Figure 5).

Gem5-GPU was modified to include support for CUDA

streams, concurrent kernel execution, concurrent TB execution

from different kernels per SM (CDP changes in GPGPU-

Sim [63]), and kernel argument memory using Gem5’s Ruby

memory system. The Gem5-GPU configuration used in this

work is listed in Table II. We modified the baseline Gem5-GPU

architecture to include a timing model for the EKT, updates to

the SIMT core scheduler, EDGE SIMT core controller, victim

warp selection and flushing, and the fine-grained preemption

mechanisms. A static latency is included to account for the

kernel dispatch time from the KMU to running on a SIMT

core (discussed in Section VI). Gem5-GPU’s CUDA runtime

library was extended with the EDGE API in Table I to manage

event kernels on the GPU.

We evaluate multiple traditional GPU kernels and

networking-based event kernels. The traditional GPU applica-

tions are Back Propagation (BP), Breadth First Search (BFS),

K-means (KMN), LU Decomposition (LUD), Speckle Reducing

Anisotropic Diffusion (SRAD), and Stream Cluster (SC) from

Rodinia [8], Matrix Multiply (MM) from the CUDA SDK ex-

amples, and two convolution kernels, filterActs YxX color and

filterActs YxX sparse (CONV1/2), from Cuda-convnet [32]

using a layer configuration similar to LeNet [34]. These

kernels contain varying thread block runtimes, which can

benefit thread block draining or preemption depending on

the duration and completion rate. Additionally, the input data
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size for the traditional GPU kernels was set such that event

kernels are not optimistically biased to having free TBs/warps

available based on the kernel’s implementation. The event

kernels are MemC [22], IPv4 and IPv6 IP forwarding [26],

and IPSec [68]. MemC, a key-value store and UDP packet

processing kernel, is evaluated on GET requests using 16B keys

and 2B values. Shared memory is removed from MemC. The

hashtable contains 16k entries and is warmed up with 8k SETs.

The IPv4/6 forwarding tables are constructed using the same

prefixes as in [26]. IPSec implements the 3DES algorithm [15]

with 256B packet payloads. Each event kernel is configured for

32 requests per event-warp except for IPSec, which launches

a single event-warp per packet.

VI. EVALUATION

This section evaluates EDGE and warp-level preemption.

A. Event Kernel Launch Latency

We first evaluate the reduction in kernel launch latency

with EDGE relative to the baseline CUDA kernel launching

approach. We measure the baseline launch latency on an

NVIDIA Titan V with both the NVIDIA profiler and CPU TSC

timers on a microbenchmark that launches an empty kernel

(single TB and warp), using the CUDA driver API. The timers

are placed immediately before the kernel launch and after

device synchronization, and the synchronization instruction

overhead (measured with the profiler) is subtracted from the

total time. Averaging over 100k kernel launches, we find that

the baseline kernel launch latency is ∼5us. Furthermore, the

asynchronous CUDA launch API call alone takes ∼2us, which

limits the maximum event rate a single CPU thread can support.

We estimate the kernel launch latency for an event kernel

already configured and residing on the GPU in EDGE using

results from DTBL [62]. DTBL measures the kernel dispatching

latency (in GPU cycles) to schedule a kernel residing in

the KMU through the KDU to the SIMT cores using the

clock() instruction at the end of one kernel and the start

of another kernel dependent on the first. This dependency

restricts the second kernel from being scheduled until the first

kernel completes, effectively measuring the launch latency for

a kernel residing in the EKT (Figure 6). DTBL estimates an

average of 283 GPU cycles on the NVIDIA K20c. We also

tried to reproduce these results; however, additional instructions

inserted by the NVIDIA compiler, such as the kernel parameter

loading, address resolution, and the latency to store the result

of clock() at the end of the first kernel, introduce overheads

unrelated to the kernel dispatch latency. We contacted an author

of DTBL (who was working at NVIDIA) and confirmed that

they verified this dispatch latency using internal tools. As such,

we use an event kernel dispatch latency of 300 GPU cycles

to account for the additional overheads of loading an event

kernel from the EKT to the KMU.

To account for the PCIe overheads when writing to the

doorbell register and completion queue, we add 700ns (PCIe

round-trip latency) to EDGE’s kernel launch overhead [16],

[36], [40], [61]. With 300 GPU cycles for the event kernel
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Fig. 11: Event warp preemption latency evaluation

dispatch latency (at 705 MHz), we estimate that EDGE can

reduce the kernel launch latency by ∼4.4× (1.1us) compared

to the average baseline CUDA launch latency (5us).

B. Warp-Level Preemption

A key requirement for preemption is low and predictable

latency. However, this is challenging when the warp to preempt

(victim warp) can be in any state of execution in the pipeline.

Warp-level preemption requires flushing the victim warp’s

instructions from the pipeline. ALU operations (as modeled

in GPGPU-Sim) range from 4 to 330 cycles depending on the

operation and precision, while long latency memory operations

(e.g., DRAM accesses) can take 1000’s of cycles. Waiting for

the victim warp to naturally flush the pipeline may result in

high scheduling latencies. Figure 11a measures the average

preemption latency for an event kernel with low resource

requirements on two warp selection policies: Newest and

Oldest, where the most or least recently launched warps are

selected, respectively. With the baseline greedy-then-oldest

warp scheduling policy, selecting older warps tends to have

a much lower preemption latency, since older warps are

prioritized. As such, the victim warp selection alone can have

a large impact on scheduling latency, ranging from 2-8k cycles

on average. Evaluating methods to optimize the warp selection

to reduce preemption latency is an area for future work.

Figure 11b presents a breakdown of the factors contributing

to the event warp preemption latency, which are not mutually
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exclusive. For example, an instruction that is in the pipeline may

also have registers reserved in the scoreboard. Pipeline means

that a warp instruction is in the pipeline, Scoreboard means that

the instruction has registers reserved in the scoreboard, Load
indicates the warp is waiting for in-flight loads, I$-Miss is an

instruction cache miss, and Barrier and Mem Barrier indicate

that warps are waiting at thread or memory barriers, respectively.

The trend for Oldest policy is very similar – victim warps are

waiting for load instructions to complete. The Newest policy

has more diversity, such as waiting for thread barriers. This

is related to the implementation of the evaluated benchmarks,

which, for example, have thread barriers near the start of the

kernel after loading data from global to shared memory.

Figure 11c measures the improvements in preemption

latency when applying each of the preemption optimizations

discussed in Section IV-D. The average preemption latency is

reduced by 35.9× and 33.7× for the Oldest and Newest policies,

respectively. At 705 MHz, the average preemption latency is

∼70ns (50 cycles) and ∼310ns (220 cycles), respectively. For

Oldest, the largest benefit comes from dropping and replaying

load instructions, which is explained by the large fraction of

stalls on pending loads in Figure 11b. For Newest, many

benchmarks are also stalled on barrier instructions. However,

only applying the barrier skipping does not result in a large

reduction because BFS and SC, which are not blocked on thread

barriers, dominate the average calculation. After reducing the

preemption latency with the other optimizations, thread barriers

have a larger contribution to the average preemption latency.

C. Preemption vs. Draining

With exclusive access to the GPU, the main benefits of

EDGE come from the reduced kernel launch overheads and

increased independence from the CPU for task management.

However, when the GPU is shared between other applications,

the warp-level preemption mechanism can reduce the end-to-

end latency for fine-grained streaming kernels over waiting

for free resources (draining). As described in Section IV-B,

the baseline GPU schedules TBs from running kernels in the

KDU to the SIMT cores based on available resources and

priority. Depending on the implementation and active state of

any concurrently running kernels, TB draining can result in

long scheduling latencies with high variability.

Figure 12 evaluates the benefits of preemption over draining

for a set of warp-level (32 threads) event kernels (IPv4, IPv6,

MemC, and IPSec) and background kernels (CONV, MM, BP,

and BFS) that fully occupy the GPU. For each combination

of event and background kernel, we launch an event kernel

at random times over three runs of the background kernel

and measure the total number of preemption cycles before

the event kernel can begin executing with TB draining and

preemption. To increase the total number of event kernel

preemption measurements per background kernel, we skip

the actual execution of the event kernel once it is ready to

be scheduled. As described in Section II, the use of smaller

kernels corresponds to smaller network packet batch sizes,

which can help to lower queuing and processing latencies.

Figure 5 shows that despite having low absolute values, the

launch overheads of small kernels are significant relative to

the kernel runtime. For example, the single warp runtime (in

isolation) is approximately 2300 GPU cycles for IPv4/6 and

23000 GPU cycles for MemC and IPSec.

Warp-level preemption requires that the victim warp uses

enough registers to support the event kernel (Section IV-D).

However, depending on the kernel implementations, this may

not always be the case. If the register usage condition is

satisfied, preemption is initiated and the registers are either

saved or new registers are allocated from the register file if

free. This flow restricts event warps from using more registers

than the victim warp, even if available in the register file.

We include two background kernels, BP and BFS, which use

fewer registers per thread than MemC and IPSec. Consequently,

the preemption latency for these kernel combinations will be

similar to draining (IPv4/6 can preempt all kernels).

As shown in Figure 12, warp-level preemption reduces the

average and tail event kernel scheduling latencies over draining

by 2.6× and 2.9×, respectively. When the background kernels

have enough registers to be preempted by all event kernel (e.g.,

CONV/MM), the average and tail latencies via preemption

improve significantly to 115.7× and 68.4×, respectively. In

all experiments, we found that there were always enough

registers available in the underutilized register file (avoids

register saving/restoring), even for MemC and IPSec with BP

and BFS, which were restricted from preemption.

Allowing MemC and IPSec to allocate a larger number of

free registers from the underutilized register file (Section IV-D)

improves the average and tail scheduling latencies by 96.4×
and 53.8× over draining, respectively. Given the potential to

reduce scheduling latency with preemption, it may be beneficial

to consider more aggressive approaches to ensure preemption

is possible. For example, EDGE could reserve a portion of

the register file for event warps. Alternatively, the maximum

number of registers per event kernel could be limited to ensure

that it fits within a background kernel’s footprint, trading

off scheduling latency for lower runtime performance due

to increased register spilling. Another option is to preempt

more than one warp from the background kernel, such that the

event kernel can use the registers from multiple contiguous

warps. Evaluating techniques to improve the opportunities for
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fine-grained preemption is left for future work.

D. Event Kernels and Multiprogramming
This section evaluates a complete multiprogramming use-

case with streaming event kernels and longer running back-

ground tasks. We use the same combination of background

kernels and fine-grained event kernels as the previous section.

This section also evaluates a static fair resource-sharing

approach, referred to as reserved, which equally partitions

SIMT cores between the event kernels and background kernels.
Figure 13 presents the performance impact when run-

ning multiple event kernels alongside a background kernel

under different event rates and scheduling techniques. The

performance impact is measured as the kernel slowdown in

the multiprogrammed case relative to isolation. The time to

schedule an event kernel is included in the total event runtime.

The event kernel slowdown is shown on the left y-axis (log2)

and the background kernel slowdown is shown on the right

y-axis. The top row evaluates a low event kernel rate, where

a maximum of two event kernels are concurrently run on the

GPU. The bottom row evaluates a high event kernel rate, where

a maximum of 32 IPv4/6 and 16 MemC/IPSec event kernels

are concurrently run on the GPU. We double the number of

concurrent IPv4/6 kernels as their execution times are relatively

short. Figure 13(a)-(d) and ( f )-(i) present the results for each

combination of event kernel and background kernel, while (e)

and ( j) present the average results across all kernels.
The ideal slowdown for all kernels is one. However, schedul-

ing overheads and contention over shared resources negatively

impact performance. For the low event rate, preemption is able

to improve the average event kernel performance by 1.3× over

draining, while both techniques have negligible impact on the

background kernel’s performance due to low event utilization.

The main benefits for preemption come from the reduction in

scheduling latency. SIMT core reservation behaves as expected

given the low utilization of half the GPU. Event kernels benefit

from zero scheduling latency and reduced contention for shared

resources, such as the SIMT cores, instruction/data caches, and

memory bandwidth, whereas the background kernels lose half

of their compute resources. However, as can be seen in Figure

13(a)-(d), the background kernel performance does not decrease

linearly with the number of reserved SIMT cores. This is largely

a factor of whether the application is compute-intensive (e.g.,

MM) or memory-intensive (e.g., CONV). Overall, reservation

under low event rates improves event kernel performance and

reduces background kernel performance relative to preemption

by 2.3× and 1.3×, respectively.

The higher event rate places significantly more stress on the

system, leading to larger performance impacts for both event

and background kernels with all scheduling techniques. MemC,

the more heavy-weight event kernel, incurs the largest over-

heads (37/109/48× for D/R/P) due to the increased interference

from other MemC kernels. Such slowdowns are prohibitively

high, indicating that MemC requires more exclusive access to

GPU resources under high rates to maintain SLOs. Draining

helps to reduce the background kernel interference on the

event kernel’s execution under high rates, since it blocks entire

background TBs instead of warps. This can improve the runtime

of the event kernel, limiting the benefits of faster scheduling.

IPSec experiences the lowest slowdown of the event kernels,

as it is more compute-intensive and better optimized for the

GPU’s SIMT architecture. Each thread in a warp works on the

same packet, instead of a separate thread per packet, which

reduces the potential branch and memory divergence, and hence

the extent of interference from the background kernel.

Unlike the low event rate, reservation performs the worst for

event kernels at high rates. This is because the event kernels are

limited to the reserved SIMT cores, increasing the total number

of event kernels per SIMT core. On average, we find that

preemption improves event kernel performance over draining

and reservation by 1.4× and 2.8×, respectively. However, the

event kernel improvements come at the cost of the background

kernel performance, which is decreased by 1.3× and 1.2×,

respectively. While preemption only blocks the execution of a

single background warp, it blocks the completion of an entire
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TB waiting on the tail warp. Conversely, draining allows the

background TBs to complete before beginning event execution,

which maintains higher utilization for the background kernel.

As described in Section VI-C, we restrict MemC and IPSec

from preempting BP and BFS due to register utilization, which

results in similar performance for preemption and draining. BFS

also shows lower benefits from preemption for IPv4/6. While

the other background applications launch one (CONV/MM) or

two (BP) kernels, BFS launches multiple kernels at each stage

in the search algorithm. Due to the coarse-grained kernel launch

synchronization, BFS TBs must complete before the next kernel

can be launched. This results in more free resources being

available on the GPU at a given time, which both preemption

and draining are able to exploit to begin running immediately.

Depending on the scheduling delay and runtime slowdown,

each technique is able to execute a different number of event

kernels within a single background task. We also compute

the ANTT [14] to measure the overall system performance

in a multiprogrammed environment. As there are significantly

more event kernels than the single background task, the ANTT

closely follows the event kernel slowdowns. With high event

rates, we find that preemption is able to improve the ANTT

over draining and reservation by 1.4× and 2.7×, respectively.

E. Summary

Overall, EDGE provides three main benefits – it removes

the requirement for a CPU or persistent GPU runtime to

manage GPU tasks, reduces the kernel launch latency for event

kernels of any size, and can improve total system throughput

and end-to-end latency for fine-grained streaming kernels in

a multiprogrammed environment. As highlighted in Section

VI-D, different combinations of applications and event rates

can have large variations in performance/fairness between the

evaluated scheduling techniques. There are many possibilities

and trade-offs for managing resource sharing and execution

priorities. We believe that a dynamic approach would provide

the greatest flexibility (e.g., dynamically scaling the amount of

reserved resources based on the event rate and using preemption

when free resources are unavailable). Furthermore, dynamically

limiting the scheduling of background TBs/warps while event

kernels are executing can significantly improve event kernel

performance, since the contention for shared resources, such

as the memory system, are reduced. We plan to evaluate such

dynamic approaches in future work.

VII. RELATED WORK

Multiple related works for reducing GPU kernel launch

overheads, reducing the GPU’s dependence on the CPU for task

management, and improving GPU multiprogramming support

are discussed in Section II-B and Section II-D.

Previous works have evaluated CPU/GPU PT runtimes for

improving GPU efficiency and independence from the CPU

driver and GPU hardware task schedulers for GPU task man-

agement and I/O [9], [10], [31], [54], [68], [69]. Most of these

works evaluate TB-level PT frameworks, while Pagoda [68]

presents a warp-level PT framework targeted towards fine-

grained kernels. GPUrdma [10] even removes CPU interaction

for performing I/O operations with an Infiniband NIC. However,

these works require persistently running GPU threads, which

as discussed in Section II-B, can trade off flexibility for

efficiency. Others have pushed towards improving GPUs as

a first-class computing resource to support efficient GPU

multiprogramming [27], [29], [51], [55], [60]. These works

utilize OSes, Hypervisors, CPU/GPU runtime environments,

GPU compilers, and/or GPU hardware techniques to virtualize

GPU resources to improve resource sharing. Our proposed event

kernels can make use of these resource virtualization techniques

to improve fairness in a multiprogrammed environment, while

EDGE enables the direct initiation of such event kernels

from external devices, removing the requirement for CPU

involvement on the critical path or polling GPU runtimes.

Recent work [56] also proposes an event-driven GPU

programming model consisting of GPU callback functions,

which are invoked on events, such as file read completions. This

framework, similar to GPUfs [54] and GPUnet [31], contains

CPU and GPU event loops, which poll for RPC events from

either device, or require re-launching kernels from the host

upon RPC completion. Considering event kernels as callback

functions, EDGE can remove the requirement for continuously

running GPU event loops, while minimizing the impact on

performance required to re-launch full kernels.

VIII. CONCLUSION

This paper improves GPU support for fine-grained, latency-

sensitive streaming applications in the datacenter, such as

networking. We propose an event-driven GPU execution model,

API, and set of hardware extensions (EDGE) that reduce the

GPU’s dependence on a CPU and enable external devices to

directly launch pre-configured tasks on a GPU. We estimate

that EDGE can reduce the kernel launch overheads by 4.4×
compared to the baseline CPU-launched approach. We also

propose a warp-level preemption mechanism to reduce the

scheduling latency for fine-grained, streaming GPU tasks.

EDGE includes multiple optimizations that reduce the average

warp preemption latency by 35.9× over waiting for a preempted

warp to naturally flush the pipeline. For a set of warp-level

network event kernels and concurrently running traditional

GPU kernels, we find that warp-level preemption is able to

reduce the average/tail scheduling latencies and ANTT over

waiting for resources to become available by 2.6×, 2.9×, and

1.4×, respectively. When preemption is always possible, the

average and tail scheduling latencies improve to 115.7× and

68.4× over draining, respectively.
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APPENDIX

ARTIFACT APPENDIX

A. Abstract

EDGE is built on top of Gem5-gpu (https://gem5-gpu.cs.

wisc.edu/). We evaluated EDGE on Ubuntu 14.04 running on

a cluster of machines, however, there are no specific software

or hardware requirements. This section provides detailed

instructions on how to compile EDGE, as well as scripts for

running the experiments and collecting the data. We mainly

target Figure 12 and Figure 13, as they contain the main results

in this paper. Also, Figure 1 is based on the data in Figure 12,

averaged across all background tasks and event kernels used

in our evaluation. In addition to the setup instructions, we also

provide a VirtualBox VM with all dependencies installed and

code compiled to run the experiments.

B. Artifact Check-List (Meta-Information)
• Program: Mixed, provided.
• Compilation: gcc4.7 + gcc4.4 + cuda3.2
• Run-time environment: Ubuntu 14.04 + gem5-gpu dependen-

cies (provided).
• Metrics: Latency (min, max, average).
• Output: Provided scripts.
• Experiments: Provided scripts.
• How much disk space required (approximately)?: The main

directory requires 5G. Extra storage is also required for installing
dependencies. The size of the provided VM is 12G.

• How much time is needed to prepare workflow (approxi-
mately)?: Less than 1 hour.

• How much time is needed to complete experiments (approx-
imately)?: Less than 1 day on a cluster of machines. We did
not attempt to run all of the experiments on a single machine,
but we estimate it would take about a week.

• Publicly available?: Yes.
• Licenses (if publicly available)?: BSD-3 (Gem5, GPGPU-

Sim, Rodinia, MemC benchmark, CONV benchmarks), Apache
License Version 2.0 (IPv4/6 forwarding benchmark), NVIDIA-
SDK license (MM benchmark)

• Archived (provide DOI)?: https://zenodo.org/badge/
197230707.svg

C. Description
1) How delivered: We have created GitHub repository for EDGE,

as well as ready-to-use VirtualBox VM with everything installed and
compiled. The username for VM is ”maria” and the password is
”asdfqwer”. The EDGE GitHub repository can be found here: https:
//github.com/marialubeznov/event driven gpu execution. The EDGE
VM can be downloaded here: http://www.ece.ubc.ca/∼mlubeznov/
edge.

2) Hardware Dependencies: In general, there are no strict
hardware dependencies. However, each experiment in this paper may
take over an hour to run on our modified version of Gem5-gpu,
and the complete paper data includes over one hundred experiments.
Consequently, we recommend using a cluster of machines to run
all of the experiments in EDGE. We have provided run scripts for
both a single machine and a cluster of machines (using the PBS job
scheduler).

3) Software Dependencies: Our artifact has been tested on
Ubuntu 14.04. It does not require root access, but it has some depen-
dencies that need to be installed (listed below). These dependencies
are essentially a union of Gem5 and GPGPU-Sim dependencies. Also,
Gem5-gpu requires gcc4.7 to build the simulator and gcc4.4 to build
the benchmarks.

• NVIDIA CUDA 3.2
• gcc 4.4 for benchmark/edge directory
• gcc 4.7 for Gem5 and benchmark/libcuda directories
• libnuma
• python 2.7
• SCons any recent version.
• zlib any recent version. Need the ”zlib-dev” or ”zlib1g-dev”

package to get the zlib.h header file as well as the library itself.
• swig
• makedepend
• bison
• flex

4) Data Sets: All of the benchmarks used in this paper are
included in the GitHub repository and VM. Most of the benchmarks
are taken from open source projects and others are prepared by us.
Where appropriate, the data sets provided with the benchmarks are
used.

• Rodinia [8].
• Cuda-convnet [32]: https://github.com/dnouri/cuda-convnet (Con-

volution kernels on random input data).
• MemcachedGPU [22]: https://github.com/tayler-hetherington/

MemcachedGPU (GET request kernel on request traces generated
by Memaslap [3]).

• IPv4/6 Forwarding [26]: Unique IPv4 and IPv6 prefixes from
RouteViews (provided with the benchmark).

• IPSec [68]: Network packets of varied sizes generated by
NetBench [37] (provided with the benchmark).

D. Installation
First install the dependencies listed above.

# Clone git repo
sudo apt-get install git
git clone https://github.com/marialubeznov/

event_driven_gpu_execution.git
#Install gcc versions
sudo apt-get install build-essential
sudo cat "deb http://dk.archive.ubuntu.com/ubuntu/

trusty main universe" >> /etc/apt/sources.list
sudo apt-get update
sudo apt-get install g++-4.4
sudo apt-get install g++-4.7
sudo update-alternatives --remove-all gcc
sudo update-alternatives --install /usr/bin/gcc gcc

/usr/bin/gcc-4.4 10
sudo update-alternatives --install /usr/bin/gcc gcc

/usr/bin/gcc-4.7 20
sudo update-alternatives --install /usr/bin/g++ g++

/usr/bin/g++-4.4 10
sudo update-alternatives --install /usr/bin/g++ g++

/usr/bin/g++-4.7 20
#Update gcc version
sudo update-alternatives --config gcc
sudo update-alternatives --config g++
#Install dependencies:
sudo apt-get install python-dev
sudo apt-get install scons
sudo apt-get install zlib1g-dev
sudo apt-get install swig
sudo apt-get install xutils-dev
sudo apt-get install flex bison
sudo apt-get install libnuma-dev
#Install cuda 3.2
wget http://developer.download.nvidia.com/compute/

cuda/3_2_prod/toolkit/cudatoolkit_3.2.16
_linux_64_ubuntu10.04.run

wget http://developer.download.nvidia.com/compute/
cuda/3_2_prod/sdk/gpucomputingsdk_3.2.16_linux.
run

chmod +x cudatoolkit_3.2.16_linux_64_ubuntu10.04.run
gpucomputingsdk_3.2.16_linux.run
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./cudatoolkit_3.2.16_linux_64_ubuntu10.04.run

./gpucomputingsdk_3.2.16_linux.run
cd <sdk_install_path>/NVIDIA_GPU_Computing_SDK/C/

common
make
cd <edge_benchmark_install_path>/

event_driven_gpu_execution/benchmarks/edge/
ln -s ../common

Update $LOCAL_GEM5_PATH/set_env with relevant paths:

• LOCAL_GEM5_PATH path to the EDGE git clone directory.
• ZLIB_PATH path to directory containing libz.so (if not default).
• CUDAHOME, CUDA_HOME
• NVIDIA_CUDA_SDK, NVIDIA_CUDA_SDK_LOCATION

Compile Gem5-gpu and the benchmarks.

cd $LOCAL_GEM5_PATH
source set_env
cd benchmarks/libcuda
#set gcc version to 4.7
make
cd $LOCAL_GEM5_PATH/gem5
#set gcc version to 4.7
./build_command
cd $LOCAL_GEM5_PATH/benchmarks/edge/<name>/
#set gcc version to 4.4
make

E. Evaluation and Expected Results
Running the experiments required for Figure 12 and Figure 13 can

be done using the following set of scripts (present in all 4 benchmark
directories).

Single machine:

run_no_overlap.sh
run_low_util.sh
run_high_util.sh

Cluster:

run_<benchmark_name>_no_overlap.pbs
run_<benchmark_name>_low_util.pbs
run_<benchmark_name>_high_util.pbs
run_cluster_no_overlap.sh
run_cluster_low_util.sh
run_cluster_high_util.sh

The results presented in Figure 12 may not exactly match the
absolute values reported in the paper, since for each combination
of event kernel and background kernel, we launch the event kernels
at random times and average over three runs of the corresponding
background kernel. However, the trend of the results should closely
match the results presented in the paper. The results presented in
Figure 13 can be replicated.

After completing all the experiments above, the data can be
collected using the following scripts:

#Figure 12
$LOCAL_GEM5_PATH/benchmarks/common/GetDataFig12.sh <

background task> > <background task>_no_overlap
bash $LOCAL_GEM5_PATH/benchmarks/common/

process_data_fig12.sh
#Figure 13
$LOCAL_GEM5_PATH/benchmarks/common/GetDataFig13.sh <

background task> <type> > <background_task>_<
type>

bash $LOCAL_GEM5_PATH/benchmarks/common/
process_data_fig13.sh

Where type = {low_util, high_util}
The type keywords represent the low and high event kernel rate

experiments, respectively. The background task is provided as an
index corresponding to the mapping in Table III.

TABLE III: Benchmark index mapping.

0 1 2 3

Convolution
Matrix
multiply

Backprop
(rodinia)

BFS
(rodinia)

The main results from these experiments are reported as a latency
or runtime metric. As multiple event kernels are launched during each
experiment, we report three latency metrics (minimum, maximum,
and average) and the total number of launched event kernels. The
runtime slowdowns are computed using the average kernel runtimes
when an event kernel is run concurrently with a background kernel
and the kernel runtime in isolation.

F. Experiment Customization
The GPU configuration can be configured in:

$LOCAL_GEM5_PATH/gem5gpu/configs/gpu_config/gpgpusim
.fermi.config.template

The command format for launching the benchmarks directly is:

$LOCAL_GEM5_PATH/gem5/build/X86_VI_hammer_GPU/gem5.
opt $LOCAL_GEM5_PATH/gem5-gpu/configs/se_fusion.
py -c $LOCAL_GEM5_PATH/benchmarks/edge/<
benchmark_name>/<benchmark_exe_name> -o ’<
benchmark_options>’
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