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Abstract—QuiescentNVM is a user-space runtime provid-
ing transparent failure-consistency guarantees for lock-based
parallel programs executing on hybrid combinations of tra-
ditional DRAM and byte-addressable non-volatile memory
(NVM) technologies. A dual-versioning mechanism performs
in-place persistent writes over one copy, and consistent fallback
guarantees are provided by the other copy. Thus, the two writes
to NVM present in logging-based solutions (such as for durable
memory transactions) are reduced to a single write. Further, we
avoid the need to rewrite legacy applications to exploit durable
transactions. Our system relies on its dual-copy framework
operation that safely persists data during global quiescent states,
where no thread must hold a lock on persistent data.

For applications with low lock-contention, global lock-free
quiescent states will occur sufficiently frequently, and we de-
liver better performance and lower wear to NVM than current
systems. We do not cover high-lock contention scenarios while
enforcing quiescent states to occur.
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I. INTRODUCTION

Durable memory transactions are a programming abstrac-

tion for enforcing crash-consistency, where all updates in

a transaction are atomically and persistently committed to

Non-Volatile Memory (NVM) with respect to a system

failure. Typically, durable transaction implementations are

based on logging [1], [2], that results in additional write

accesses to NVM to build log entry records of each update to

persistent memory [3]. The twice-write overhead means that

logging mechanisms become even more undesirable when

considering the limited write endurance of NVM [4]. We

present next an overview of the design of QuiescentNVM.

QuiescentNVM enforces crash-consistent persistent se-

mantics for lock-based programs via the inference of

program-defined Failure-Atomic SEctions (FASEs) from

conventional critical sections. The FOUR main principal

aspects of QuiescentNVM design concerning its dual-copy

framework, memory access write monitoring, quiescent

lock-free states, and failure-atomic version switching are

respectively described in sections I-A to I-D.

A. A Dual-Copy Framework

A user program acquires persistent memory from the

nvmalloc interface. Two copies of each persistent page

are maintained in NVM (a 2x NVM storage allocation over-

head), and one shadow copy in DRAM. User applications

only interact directly with the DRAM-side copy, and our

runtime persists DRAM shadow page copy updates to the

corresponding durable NVM region whenever a quiescent
lock-free state occurs. Each time we move a persistent page

from DRAM-side to NVM-side, only one persistent copy,

referred as the working copy, will be modified. The other

persistent page will be regarded as the consistent copy.

We perform in-place updates directly to the working copy
and leverage the consistent copy as a fallback to ensure

failure-atomicity. We do not use undo/redo log entries in our

system. Roles between the working copy and the consistent
copy are dynamically switched by QuiescentNVM’s version

switching policy. NVM version switching is fully transparent

to unmodified applications.

B. Transparent Memory Access Monitoring

The set of modified pages is determined using techniques

based on i), compiler instrumentation of every write hashed

to page boundaries, or ii), memory write-protection and

page fault handling. As in DTHREADS [5], a page-diff

of the DRAM-side and the working copy determines the

accumulated updates to a page. This is expected to achieve

better wear-levelling in comparison to logging-based solu-

tions, as only accumulated changes need to be applied, rather

than logging and applying every store instruction performed.

Compiler instrumentation and page-level protection schemes

are both provided because excessive TLB misses may

be triggered by page protection faults in some applications

leading to lower performance.

C. Quiescent Lock-Free States

Lock-based systems must decide when to persist updates

to shared state in a consistent manner. Complex dependen-

cies may exist between nested lock acquire/release critical

sections, chained acquisition of locks, and wait/notify con-

dition signalling.

NVthreads [6] and DTHREADS [5] manage such depen-

dencies by performing sequential merges of updates in a

synchronized order that matches program execution. Isolated

thread execution is enforced where conventional threads

are converted into child processes with separate address

spaces, and key synchronization operations (thread creation,

joining, lock acquire/release, etc.) are intercepted at runtime

to globally merge and persist any modifications made by

separate processes to shared storage.

We do not use isolated execution, and keep all threads

within a single shared process address space, thus benefiting

from lower context switch overheads. Note that in our

490

2019 28th International Conference on Parallel Architectures and Compilation Techniques (PACT)

978-1-7281-3613-4/19/$31.00 ©2019 IEEE
DOI 10.1109/PACT.2019.00060



function PTHREAD MUTEX LOCK HOOK(mutex)

while True do
PTHREAD MUTEX LOCK(global lock)

ret ← PTHREAD MUTEX TRYLOCK(mutex)

if ret == 0 then
Nlocks ← Nlocks + 1

PTHREAD MUTEX UNLOCK(global lock)

break

end if
PTHREAD MUTEX UNLOCK(global lock)

end while
end function

function PTHREAD MUTEX UNLOCK HOOK(mutex)

PTHREAD MUTEX LOCK(global lock)

Nlocks ← Nlocks - 1

if Nlocks == 0 then
PERSIST()

end if
PTHREAD MUTEX UNLOCK(mutex)

PTHREAD MUTEX UNLOCK(global lock)

end function

Figure 1. Quiescent lock-free state detection

system we only persist updates when a globally quiescent
lock-free state exists where no application threads hold a

lock. Thus, no threads are then eligible to issue writes to

persistent memory in such a state. Our runtime intercepts

lock acquisition/release where a global lock is used to

safely observe, and to maintain a quiescent state, whilst

a PERSIST operation is used to perform failure-atomic

version switching. Once the captured consistent states have

been made durable by the PERSIST operations, then the

global lock is released and application threads can acquire

locks to further modify persistent data. Figure 1 outlines the

operation of our runtime in this regard.

D. Failure-Atomic Version Switching

Figure 2 describes the algorithm for failure-atomic version

switching using clflush and sfence x86 instructions.

To achieve version switching, we maintain i), a global
version number Gseq that is incremented at the end of a

procedure that we use to PERSIST data to NVM, and ii),

each persistent NVM copy of a page is associated with a

local version number (seq) that is used to distinguish the

working copy and the consistent copy of a page in NVM.

Specifically, during the PERSIST procedure, the persistent

NVM page copy with smaller seq in a dual-version pair

becomes the working copy.

In summary, updating the seq of a working copy is

represented as a version-switch local to the dual-version

shadow pair, which cannot be visible to the post-crash stage

unless the PERSIST procedure completes normally.

input: S (The set of modified pages.)

function PERSIST(S)

for each p ∈ S do
w ← persistent copy with smaller seq

wseq ← Gseq + 1

clflush wseq

sfence
clflush DIFF BYTES(p, w)

end for
sfence
Gseq ← Gseq + 1

clflush Gseq

sfence
end function

Figure 2. Failure-atomic version switching.
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