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Abstract—Vector processing is a widely used technique to
improve performance and energy efficiency in modern processors.
Most of them rely on predication to support divergence control.
However, performance and energy consumption in predicated
instructions are usually independent on the number of true values
in a mask. This means that the efficiency of the system becomes
sub-optimal as vector length increases.

In this work we propose the Optimized Predication Execution
(OPE) technique. OPE delays the execution of sparse masked
vector instructions sharing the same PC, extracts their active
elements and creates a new dense instruction with a higher
mask density. After executing such dense instruction, results
are restored to the original sparse instructions. Our approach
improves performance by up to 25% and reduces dynamic energy
consumption by up to 43% on real applications with predication.

I. INTRODUCTION

Data-Level Parallelism (DLP) can be exposed to the hard-

ware by means of vector computations [1], [2], where a Sin-

gle Instruction operates over Multiple Data streams (SIMD).

SIMD extensions appeared to improve multimedia applications

efficiency and they are dominant in current processors. How-

ever, predicated vector instructions operate independently of

the active elements in the mask operands. As such, the execu-

tion time of predicated instructions depends on the architecture

vector length (VL) and not on the active elements in the mask

register. As a result, current SIMD implementations have VL-

time performance, waste a significant energy on unnecessary

computations and increase contention in the Vector Functional

Unit (VFU). With the current trend of doubling the register

size every four years [3], this situation will become unsustain-

able. Ideally, the execution time and energy consumption of

predicated instructions should be proportional to the fraction of

true/false values in the mask. Such an implementation would

achieve density-time performance and energy efficiency.

In this work we propose a novel hardware mechanism, the

Optimized Predication Execution (OPE) design. OPE achieves

density-time performance and energy efficiency in SIMD

extensions without programmer intervention.
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Figure 1. OPE basic functionality.

II. THE OPE MECHANISM

A. Overview

OPE creates a dense version of several dynamic predicated

instructions for a certain PC. The active elements (vector

elements whose corresponding mask bits are true) of these

vector instructions are gathered into a dense instruction. In

the best scenario, this dense instruction has source registers

with all elements active and it is executed instead of the

original instructions. As a result, the number of accesses to

the VFU decreases. This is crucial for performance and energy

efficiency, since the VPU can add up to 75% of the total core

dissipated power [4]. Once the dense instruction is executed,

results are scattered back to the destination registers of each

original sparse instruction. OPE can be implemented in any

architecture with predication support.

OPE basic functionality is shown in Figure 1. In this

case, two predicated instructions with 50% mask densities,

corresponding to two loop iterations for the same PC, are

optimized. After gathering their active elements from the

source registers into the dense, they are executed and their

results are scattered into the original destination registers.

B. Hardware Components

OPE requires the following four new hardware elements:

1) The Predication Instruction Table (PIT) contains in-

formation about dense and sparse predicated instructions. It is

needed to perform the gathering and scattering phases.

2) The Predication Ticket Table (PTT) keeps track of

the latest created dense instruction for every PC. It facilitates

the accesses to the PIT, since there can be multiple dense

instructions for the same PC waiting to be executed.

3) The Gather Unit creates a dense version of several sparse
source vector registers. The active elements of the source

registers are moved into the lanes (position in a vector register

that contains an element) of the dense register.

4) The Scatter Unit restores the results of an executed dense
instruction back to the original destination registers. The dense

destination register elements are moved to the corresponding

active lanes of the destination registers.

C. Integration into an Out-of-Order Processor

Next, the main functional changes to incorporate OPE into

a classic out-of-order processor are described.

1) Decode: In case a predicated instruction is found a signal

is sent to Issue stage.
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Figure 2. Performance (left), VFU access reduction (center) and dynamic energy reduction (right) results of OPE. Normalized to a non-OPE scenario.

2) Issue: If the signal from Decode is active and the mask

register is ready, a logic decides whether the instruction is a

candidate to be optimized. Then, the PTT and PIT are accessed

to know if it is the first candidate for that PC. In case a new

dense is required, it is created and its operands are renamed.

The PTT creates and stores a new ticket, which is provided

to the optimized instruction and employed to create a new

PIT entry. A reservation station (RS) and a re-order buffer

(ROB) entry are allocated for the dense instruction. Also, a

dense destination register is reserved in the Register Alias

Table (RAT) to allow operand forwarding. Candidates to be

gathered into this dense instruction are given the PTT ticket

after their mask operand becomes ready.

3) Dispatch: As candidate operands become ready, their

active lanes are gathered, their RS are freed and PIT fields

are updated. Once dense operands are completely populated,

a timeout occurs, or a squash is triggered, the instruction

becomes ready to execute.

4) Execution: The dense instruction is executed and opti-

mized instructions are bypassed. If the dense destination reg-

ister is used by subsequent dense instructions, it is forwarded.

5) Writeback: The dense instruction is written in the

corresponding ROB entry. Then, the lanes are scattered into

the original destination registers.

6) Commit: Dense and sparse instructions commit se-

quentially, ensuring speculation and exception handling are

performed in-order.

III. METHODOLOGY

We evaluate the performance of OPE in the gem5 [5]

simulator. We have deployed OPE into an x86 processor

with AVX-512 support, which contains predicated instructions.

OPE functionality has been added to the simulator and the new

hardware latencies are modelled. Our baseline is a processor

without OPE support. We have selected ten applications which

have been vectorized using Intel intrinsics [6] to extract maxi-

mum vectorization. We simulated an x86 system with a 16.04

Ubuntu and a 4.9.4 Linux kernel. Two micro architectures are

modelled: a latency and a throughput-oriented implementation

based on the Icelake (ICE) [7] and the Knights Landing

(KNL) [8].

IV. EVALUATION & CONCLUSIONS

Figure 2 shows the results of executing OPE with 25% and

50% mask densities in terms of speedup, VFU access reduc-

tion and dynamic energy reduction. Results are normalized to

a regular no-OPE execution. On average, applications achieve

between 3.6% and 10% performance speedups, between 21%

and 41% VFU access reductions, and between 6.2% and

13.4% dynamic energy reductions.

Applications such as N-Body and RNG, contain a high per-

centage of long latency vector instructions per loop iteration.

This situation leads to higher performance benefits, as there is

more contention in the VFU.

B-Filter and S-Distort also contain long latency vector

instructions. However, a higher number of instructions per loop

iteration prevents an efficient population of the dense registers.

Other benchmarks, such as Convol, only contain low-latency

predicated instructions. Nevertheless, an irregular memory

access pattern hides OPE latencies and it is able of marginally

improve performance up to 5%.

In all the experiments, the KNL configuration provides more

optimization opportunities to the OPE mechanism as there is

more contention in the VFU. Also, lower mask densities (i.e.

25%) lead to more optimization opportunities.
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