
POSTER: A Polyhedral+Dataflow Intermediate
Language for Performance Exploration

Eddie C. Davis
Computer Science

Boise State University
Boise, USA

eddiedavis@boisestate.edu

Catherine RM. Olschanowsky
Computer Science

Boise State University
Boise, USA

catherineolschan@boisestate.edu

Abstract—This poster introduces a compiler intermediate lan-
guage designed for dataflow optimizations within a polyhedral
framework. This intermediate representation describes computa-
tions at a high level, defines a set of loop and data transformations
that can be applied, and provides visual feedback reflecting the
expected effect of transformations on the performance model.

Computations are represented as macro-dataflow graphs, with
support for both regular and irregular scientific applications,
including stencils and sparse linear algebra kernels. This layer
provides optimizations such as loop transformations or tempo-
rary storage reductions. The multi-level intermediate represen-
tation enables this broad range of optimizations by allowing
each layer to be transformed independently, while respecting
dependences. The approach is evaluated on a computational fluid
dynamics solver, sparse matrix-vector multiplication kernels, and
the matrix-tensor Khatri-Rao product. The experimental results
either outperform or are competitive with existing implementa-
tions.

Index Terms—polyhedral, dataflow, compiler, irregular, sparse,
inspector, executor

I. INTRODUCTION

The performance of many numerical applications is limited

by frequent interactions with the memory subsystem. Dataflow

optimizations performed across entire sections of code can

provide significant reductions in memory traffic, both decreas-

ing execution time and reducing energy consumption. Krieger

et al. [1] refer to these series of loops as loop chains, and

demonstrate the potential impact of these transformations in

both regular and irregular applications.

Compilers leverage multiple intermediate representations

and successively lower the code from a high level represen-

tation such as an abstract syntax tree (AST) to mid-level IR

(e.g., LLVM or GIMPLE), to the register level. Intermediate

representations increasingly incorporate the polyhedral model

and dataflow representations [2]–[4]. These new layers expose

optimization opportunities such as loop transformations or

temporary storage reductions that are not easily expressed in

existing representations.

Dataflow graphs integrated with the polyhedral model have

been applied to regular applications including PDE solvers [4],

and dense linear algebra [5], but to our knowledge these have

not yet been applied to irregular or sparse applications.

The polyhedral dataflow graphs (PDFG) extended in this

work are an intermediate representation that expresses both the

execution schedule and dataflow requirement of an application

section. Graph variants are produced by applying successive

transformations to the graph. Optimized C code is emitted

by the generator. This tool can be incorporated into other

toolchains by constructing a frontend to create graph speci-

fications. The tool can be used via a command line compiler

interface, a Python API, or an online version in the form

of a Jupyter notebook. The contributions of this work are

summarized below.

• An implementation of a compiler internal representation

based on macro-dataflow graphs [4] that represents both

execution schedule and dataflow requirements of a com-

putation.

• A specification language (eDSL) to generate the IR.

• Graph operations that encompass polyhedral or AST code

transformations.

• Code generation for optimized loop nests, memory allo-

cations, and data mappings.

II. BACKGROUND

A polyhedral dataflow graph (PDFG) represents both the

execution schedule and the dataflow requirements. The space

required by the schedule is a component of the graph. A PDFG

consists of the following components G = (S,D, T,E), where

S is the set of statement nodes, D the data nodes, T the

transformation nodes, and E the directed edges connecting

the nodes. The statement nodes and data nodes are largely

based on the graphs developed by Davis et al. [4]. Statement

nodes, inverted triangles in the graph, represent ordered sets of

statements, and encapsulate the iteration domain, statements,

global schedule location within as a scattering function, and

the data mappings that reference the data spaces read and

written during statement execution.

Data nodes, depicted as rectangles, abstract storage spaces

and consist of the type, range of values, the domain of indices

that access it, and the size. The latter can be inferred from the

domain of the statement node that writes the data. The space

described in the graph corresponds to local space requirements.

The memory allocation and associated mapping are created

during code generation.

The representation includes support for sparse data struc-

tures important in many applications, including scientific com-

498

2019 28th International Conference on Parallel Architectures and Compilation Techniques (PACT)

978-1-7281-3613-4/19/$31.00 ©2019 IEEE
DOI 10.1109/PACT.2019.00064

puting, graph analysis, and machine learning. The code for

these applications often contains multiple levels of indirection,

resulting in irregular memory access patterns, e.g., for index

arrays such as A[col[i]]). These patterns can cause poor

performance due to reduced data locality or limited prefetch-

ing. Loop boundaries can also be dependent on data that are

unknown until runtime, making it difficult for compilers to

determine which optimizations to perform.

Uninterpreted functions can represent data dependent loop

bounds or other constraints that are unknown at compile

time, such as index arrays in sparse structures. Support for

these functions is provided by provided by the SPF [6] and

Omega+ [7] code generator. They are realized as explicit

functions that satisfy the associated constraints at runtime. The

computation that requires the explicit function is known as an

executor, while the inspector produces the data.

III. POLYHEDRAL+DATAFLOW LANGUAGE

The polyhedral+dataflow language (PDFL) expresses both

regular (structured), or irregular (sparse) computations such as

those in scientific or other numerical applications, including

stencils in PDE solvers, or sparse linear and multilinear

algebra kernels. A domain is bounded by a set of constraints.

Each space can describe either an iteration or data space.

Iteration spaces are associated with statements that define the

computations performed at each point.

The underlying data structure for the IR is the polyhe-

dral+dataflow graph. The domains of data and statement

nodes are defined as integer sets. Input nodes are fixed-size

and immutable, while output nodes are written, but not re-

sized. The compiler has complete control over intermediate,

temporary storage allocation. Initial sizes are inferred from

the data access patterns, extracted from the right and left hand

sides of assignment statements.

A statement node also has read and write data mappings

defined to represent the data locations read from and written

to during execution. Statements are defined as expressions

of functions, constants, and literals. Each statement node

represents a single loop nest. Transformation nodes contain

relations that are applied to iteration or data spaces.

A. Graph Operations

Iteration and data domains can be transformed by graph

operations such as node fusion, splitting, reordering, tiling, or

unrolling. The liveness analysis algorithm will reduce storage

on an entire graph. The scheduling algorithm produces a global

schedule by traversing the graph.

1) Split, Fuse, and Tile: A statement node can be split
partitions the domain on a given iterator by a split factor,

f. The polyhedral+dataflow graphs also support the fusion of

statement nodes (loop nests). Tiling can be applied to improve

both temporal and data locality of a loop nest.

2) Rescheduling: Rescheduling refers to moving a state-

ment node earlier or later in the execution. This can be useful

when preparing to fuse nodes by moving them adjacent to one

another in the schedule.

B. Memory Allocation

The memory allocation algorithm traverses the graph in

reverse order, i.e., bottom to top, right to left. Temporary data

spaces are stored in a reference table. An entry is marked as

inactive if no longer being read from or written to at the current

execution stage. If an existing, inactive space of adequate

size is not found, a smaller inactive space will be resized.

If no inactive spaces are available, a new active space will be

allocated.

IV. EXPERIMENTAL EVALUATION

This IR was evaluated against implementations of the Mini-

FluxDiv CFD benchmark from [4], sparse matrix-vector multi-

plication (SpMV) inspector/executor kernels from [8], and the

Khatri-Rao product (MTTKRP) kernel [9]. The generated code

either outperformed or matched existing implementations.

V. CONCLUSION

The polyhedral+dataflow language and intermediate repre-

sentation introduced here combines execution schedule trans-

formations with dataflow optimizations. The language can be

derived from a high-level programming language or other

intermediate representation. Support for sparse data structures

allows the optimizations to be applied to non-affine or regular

codes, including PDE solvers, stencils, or sparse linear algebra

kernels such as SpMV or MTTKRP.

ACKNOWLEDGMENT

This material is based upon work supported by the National

Science Foundation under Grant No. 1563818 and by the U.S.

Department of Energy.

REFERENCES

[1] M. M. Strout, F. Luporini, C. D. Krieger, C. Bertolli, G.-T. Bercea,
C. Olschanowsky, J. Ramanujam, and P. H. Kelly, “Generalizing run-
time tiling with the loop chain abstraction,” in Parallel and Distributed
Processing Symposium, 2014 IEEE 28th International. IEEE, 2014, pp.
1136–1145.

[2] I. GitHub, “Multi-level intermediate representation compiler infrastruc-
ture,” https://github.com/tensorflow/mlir, 2019.

[3] R. Baghdadi, J. Ray, M. B. Romdhane, E. Del Sozzo, A. Akkas, Y. Zhang,
P. Suriana, S. Kamil, and S. Amarasinghe, “Tiramisu: A polyhedral
compiler for expressing fast and portable code,” in Proceedings of the
2019 IEEE/ACM International Symposium on Code Generation and
Optimization. IEEE Press, 2019, pp. 193–205.

[4] E. C. Davis, M. M. Strout, and C. Olschanowsky, “Transforming loop
chains via macro dataflow graphs,” in Proceedings of the 2018 Interna-
tional Symposium on Code Generation and Optimization. ACM, 2018,
pp. 265–277.

[5] A. Sbı̂rlea, J. Shirako, L.-N. Pouchet, and V. Sarkar, “Polyhedral opti-
mizations for a data-flow graph language,” in International Workshop on
Languages and Compilers for Parallel Computing. Springer, 2015, pp.
57–72.

[6] M. M. Strout, A. LaMielle, L. Carter, J. Ferrante, B. Kreaseck, and
C. Olschanowsky, “An approach for code generation in the sparse
polyhedral framework,” Parallel Computing, vol. 53, pp. 32–57, 2016.

[7] C. Chen, “Polyhedra scanning revisited,” ACM SIGPLAN Notices, vol. 47,
no. 6, pp. 499–508, 2012.

[8] A. Venkat, M. Hall, and M. Strout, “Loop and data transformations for
sparse matrix code,” in ACM SIGPLAN Notices, vol. 50, no. 6. ACM,
2015, pp. 521–532.

[9] F. Kjolstad, S. Kamil, S. Chou, D. Lugato, and S. Amarasinghe, “The
tensor algebra compiler,” Proceedings of the ACM on Programming
Languages, vol. 1, no. OOPSLA, p. 77, 2017.

499

