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Abstract—In this paper, we propose a distributed, unordered,
label-correcting distance-1 Grundy (vertex) coloring algorithm,
namely, Distributed Control (DC) coloring algorithm. Our algo-
rithm eliminates the need for vertex-centric barriers and global
synchronization for color refinement, relying only on atomic
operations and local termination detection to update vertex color.
DC proceeds optimistically, correcting the colors asynchronously
as the algorithm progresses and depends on local ordering
of tasks to minimize the execution of sub-optimal work. We
implement our DC coloring algorithm and the well-known Jones-
Plassmann algorithm and compare their performance with 4
different types of standard RMAT graphs and real-world graphs.
We show that the elimination of waiting time of global and
vertex-centric barriers and investing this time for local ordering
leads to improved scaling for graphs with prominent power-law
characteristics and densely interconnected local subgraphs.

I. INTRODUCTION

An interesting problem in graph theory is graph coloring

which partitions a set of entities into independent subsets. This

problem arises in a wide range of contemporary applications,

such as global climate modeling, power flows in electric

grids, generating parallel code for GPU computation. Other

applications of graph coloring include scheduling, sparse-matrix

computation, resource allocation, pattern matching, anomaly

detection etc. Designing scalable algorithms to color large-scale

graphs with skewed degree distribution (“power-law” graphs)

is challenging, since such uneven structure can introduce

workload imbalance. In many cases, partitioning graphs to

tackle workload imbalance is not useful as good separators

may not exist [1], [2].

A (distance-1) vertex-coloring of a graph G finds an

assignment of colors to every vertex v in a vertex set V
such that no two adjacent vertices have the same color. The

graph-coloring problem asks to find a vertex-coloring which

uses as few colors as possible. If each vertex chooses the

minimum available color, the resultant coloring is called Grundy
coloring. The problem of finding an optimal coloring of a

graph is NP-complete. However, over the course of time,

many heuristic parallel greedy algorithms, based on Luby’s [3]

iterative maximal independent set computation, have been

devised that perform well in practice. The most prominent

of these algorithms is due to Jones and Plassmann [4].

To make a trade-off between execution time and col-

oring quality, greedy coloring algorithms apply differ-

ent vertex ordering criteria when assigning priorities to

vertices so as to decide which vertex to color first.

In doing so, an implicit predecessor-successor relation-

ship between a vertex and its neighbors is formed.

…

…

…

…

Fig. 1: Vertex-centric barriers.

This can be visualized

as a directed acyclic
graph (DAG), termed

as priority DAG [5],

with edges emanat-

ing from the predeces-

sor(s) to the succes-

sor(s). Once the im-

plicit DAG is created,

most algorithms pro-

ceed in steps and tra-

verse the DAG in a

DAG-synchronous fashion: each vertex in a sub-DAG waits until

all its predecessors are colored and then color itself with an

available color not taken by any of its predecessors. At the level

of a single vertex, this resembles Bulk-synchronous-parallel

(BSP) execution model, where an algorithm iterates through

computation, communication, and synchronization steps.

In greedy coloring algorithms, waiting on a predecessor

gives rise to vertex-centric barrier/synchronization (Fig. 1).

Vertex-centric barriers induce similar ramification as global

synchronization barriers in BSP approach, where the whole

system must wait for a straggler before moving to the next

step. A vertex with a large number of predecessors (straggler)

impedes other vertices in the same level from advancing

(straggler effect). Although this may not demonstrate itself

as a problem in a shared-memory implementation, straggler

effect can seriously limit performance of an algorithm in a

distributed setting. To avoid such problems, a framework for

designing synchronization-avoiding graph algorithms have been

proposed in [6].

Previously, a shared-memory algorithm has been pro-

posed [7] that relaxes the constraint of waiting on the predeces-

sors. This algorithm iterates through two steps till convergence.

In the first step, based on the local information available during

the current iteration, a vertex obtains a color even though all its

predecessors have not obtained colors (speculation step). After

a synchronization barrier, in the second step, the algorithm

iterates through all the vertices to fix colors when necessary

(refinement step). Although this approach relaxes the constraint

of waiting on all the predecessors to obtain a color, it fails
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to completely eliminate the need for synchronization. In this

paper, we show that, instead of splitting vertex-coloring into

two steps of speculation and refinement, we can further relax

the criteria and don’t need to impose any barriers in between

coloring and refinement steps.
Based on this observation, we propose a new label-correcting,

unordered, distributed algorithm for graph coloring, namely

Distributed Control (DC) coloring algorithm. An unordered

algorithm such as DC does not require a particular execution

order and allows independent computations to execute con-

currently. Because dependencies are not checked beforehand,

computation is performed optimistically, and the results com-

puted previously may need to be corrected (label correction).
These label-correcting mechanisms have the advantage of

avoiding the straggler effect. Most importantly, in our algorithm,

vertex color updates happen based on atomic operations and

local termination detection. There is no wasted time involved

in waiting on a vertex-centric or global barrier before updating

a vertex color. Hence, our algorithm benefits from optimistic
parallelism [8] by making progress completely asynchronously.

However, if sub-optimal results are calculated in intermediate

steps and require updates too often due to speculation, then

unordered graph algorithms can perform poorly. To circumvent

this problem, the algorithm employs local ordering of tasks

with thread-local priority queues. Additionally, we implement

application-level message caching and message reduction to

handle the propagation of redundant messages from non-

monotonic vertex color update function (any color within a

range can become available). The combination of these two

techniques assists the algorithm in tackling work explosion

and minimizes unnecessary updates. We implement our vertex-

coloring algorithm in the AM++ [9] asynchronous many-task

(AMT) runtime since it supports fine-grained communication

and computation, based on active messages. We demonstrate

that our algorithm is specially suitable for graphs with dominat-

ing power-law degree distribution characteristics and for graphs

which need to be executed in large distributed environment.

Most of the vertices in such graphs have low degrees but

few other vertices, termed as hubs, have very high degrees.

These high-degree vertices can hamper scalability. Additionally,

graphs that have strong power-law distributions also contain

densely interconnected subgraphs. Our proposed algorithm

demonstrates better scalability with such graphs by exposing

latent parallelism. We show that our DC coloring algorithm

performs better than the well-known Jones-Plassmann algorithm

in AM++ in such cases.
This paper makes the following contributions:

• We introduce an unordered, label-correcting, distributed

Grundy coloring algorithm, namely Distributed Control,
which avoids the need for global and vertex-centric

barriers and utilizes the benefits of optimistic (speculative)

parallelism.

• We conduct experiments with DC and Jones-Plassmann

algorithms with synthetic and real-world graphs that have

different degree distributions and clustering coefficients.

We conclude that DC based coloring algorithm is suitable

for graphs with dominating power-law characteristics and

densely interconnected subgraphs. We also report coloring

qualities of our implemented algorithms.

• We compare the performance of our vertex-coloring algo-

rithms in AM++ with another implementation in the well-

known graph application framework, PowerGraph [10],

and report better performance of DC at larger scale.

II. BACKGROUND

In this section we discuss the baseline Jones-Plassmann

algorithm for coloring. Both Jones-Plassmann and our Dis-

tributed Control coloring algorithm find a Grundy coloring

of a graph G. A vertex v is called a Grundy vertex if v is

colored with the smallest color not taken by any neighbor.

A Grundy coloring of G is one in which every vertex is a

Grundy vertex. A vertex v is called properly colored if for all

i ∈ neighbor(v), color(i) �= color(v). Grundy coloring is a

proper coloring of a graph. The minimum number of colors

(color classes or independent subsets) needed to properly color

a graph G is called the chromatic number of G, χ(G) and

is an NP-hard problem. Grundy coloring always results in k
colors where χ(G) ≤ k ≤ (Δ+1) for graph G with maximum

degree of Δ. Our algorithms find a Grundy coloring and use at

most (Δ + 1) colors. Empirical results (Sec. V) show that the

maximum no. of colors needed is significantly smaller than Δ.

Different vertex ordering heuristics [11] can be employed to

decide which vertex to color first in Jones-Plassmann algorithm

and our Distributed Control coloring (Sec. III). For example,

the first-fit heuristic [12] colors vertices in the order they

appear in the input graph representation. The random ordering

heuristic [4] colors vertices in a uniformly random order. The

incidence-degree ordering heuristic [13] iteratively colors an

uncolored vertex with the largest number of colored neighbors.

The saturation-degree ordering heuristic [14] iteratively colors

an uncolored vertex whose colored neighbors use the largest

number of distinct colors. For both Jones-Plassmann and

our Distributed Control coloring( Sec. III) algorithms, we

use random ordering heuristic to assign order to vertices for

coloring. The resultant ordering is used to decide which vertex

to color first. Imposing an ordering, in essence, creates a

predecessor-successor relationship between vertices. In the

following discussion, we refer to vertices with no predecessor

as roots.

A. Jones-Plassmann Coloring Algorithm

Jones-Plassmann (JP) algorithm works as follows: each

vertex maintains a list of colors taken by the predecessors

to keep track of how many predecessors have been colored

so far. The algorithm starts by assigning color 0 to the roots

and sending out the information to all their successors. When

a vertex v finishes obtaining all predecessors’ colors, it starts

searching for an available color. When it finds an available

minimal color value, it assigns the color to itself. If all the colors

in the range 0, 1, 2, · · · , predecessorCount [v]−1 are taken, the

vertex assign predecessorCount [v] as its color. Once colored,

the vertex sends its color information to all its successors.
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Fig. 2: Overview of the algorithm. The graph is distributed

over nodes and processed by threads. Threads receive color

updates through active messages, store them in thread-local

priority queues, process them, and then send new updates out

through a thread-local cache. Every vertex is associated with a

count of pending updates for that vertex, its current color, last

color update sent, and an array to keep track of predecessor

colors. All of the vertex information is shared between threads

and updated concurrently.

Distributed Jones-Plassman implements synchronization

on vertices with a counter per vertex. As the predecessor

information is received, the per-vertex counter is incremented.

Whenever the counter value is equal to the predecessor count

for a vertex, the termination of the vertex is triggered, and

the color for the vertex is calculated. The termination of the

algorithm is triggered by global termination detection.
We have chosen Jones-Plassmann Coloring algorithm as

our baseline algorithm because it has been proven to be

efficient in distributed setting [15], both in terms of execution

time and optimality of the result. This algorithm is based on

asynchronous push mechanism, where vertices push their states

to the successors.

III. DISTRIBUTED CONTROL COLORING ALGORITHM

In this section, we present our Distributed Control (DC)

vertex-coloring algorithm. First we give a brief overview of

the algorithm. Next, we divide our discussion by the kind of

issues we address, and we divide the algorithm into fragments

relevant to addressing such issues.
Overview of the main idea: optimistic execution

with work-optimization. Our objective is to design a

synchronization-avoiding distributed graph coloring algorithm

by eliminating vertex-centric barriers and global synchro-

nization. To do so, the algorithm proceeds with coloring

vertices speculatively, and it fixes sub-optimal colors as it

Algorithm 1: Distributed Control coloring algorithm

In : Graph G = 〈V,E〉,
∀ v ∈ V : owner [v] = rank that owns v

1 procedure Main()
2 initialize()
3 active message epoch
4 parallel foreach v ∈ V do
5 if owner[v] = this rank then
6 Visit-root(v)

7 handleQueue()

8 procedure Visit-root(Vertex r)
9 if predecessorCount [r] = 0 then

10 color [r]← 0
11 oldColor ← INVALID COLOR
12 distance[r]← 0
13 parallel foreach neighbor v of r do
14 send Visit(v, oldColor , color [r], distance[r])

to owner(v)
15 activeCount++

16 message handler Visit(Vertex v, Color oldColor , Color newcolor ,
Distance d)

17 tempDistance ← d+ 1
18 taskRemainingInLocalColorQs[v]++
19 colorQ [tid].push(v, oldColor ,newColor , tempDistance)

Procedure 1: initialize

1 foreach thread tid do
2 Allocate memory for colorQ [tid];
3 Allocate memory for cacheQ[tid];

4 foreach v ∈ V do
5 taskRemainingInLocalColorQs[v]← 0;

6 foreach v ∈ V do
7 if predecessorCount [v] > 0 then
8 Allocate memory for predecessorColors[v] based on

predecessorCount [v];

9 foreach v ∈ V do
10 color [v]← INVALID COLOR;

11 foreach v ∈ V do
12 Allocate memory for lastColorSent [v] ;

progresses and better color information from the predecessors

becomes available. The basic process, illustrated in Fig. 2,

is to optimistically pick the color for a vertex based on the

partial information available about its predecessors, which

is maintained in an array of predecessor color counters for

every vertex. Once a new color is picked, the color change

is propagated to all successors, and the process repeats until

quiescence. Since colors are fixed when suboptimal updates

occur, our algorithm is a label-correcting coloring algorithm.

Speculative coloring removes synchronization, but it can lead

to suboptimal work where most color updates end up being

erased by subsequent fixes. To avoid such work explosion,

we introduce mechanisms that favor profitable work: sender-

side caching of color updates, receiver-side prioritization

of incoming color updates, and local per-vertex termination

detection.
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Per-Vertex termination detection. Our algorithm maintains

a per-vertex termination counter (pending updates counter in

Fig. 2 and taskRemainingInLocalColorQs). For each vertex,

this counter keeps track of how many predecessor color updates

have been received so far and are waiting to be processed

locally. Since local work is cheaper than remote updates, a

vertex will not send any color updates to its successors until

the termination counter reaches the value of 0, indicating that

no more local work is available.

Execution-time message ordering via priority queues. As

discussed in Sec. I, a greedy coloring algorithm imposes

ordering on vertices based on different heuristics such as

vertex id, degree etc. to decide which vertex to color first (thus

creating predecessor-successor relationships among vertices).

This ordering creates a priority DAG with edges emanating

from the predecessors to the successors. Because Distributed

Control traverses the DAG optimistically (in contrast to Jones-

Plassmann) and vertices can be processed in arbitrary order,

sub-optimal color updates can trigger work explosion. To

minimize such redundant updates, we assign priorities to

received predecessor messages. We observe that vertices that

are relatively close to the roots in the DAG (distance metric)

and that have relatively small color values (color metric) should

be processed first. The distance metric prioritizes work that

is closest to DAG roots and thus most likely to be final, and

the color metric favors colors that are more likely to be final

colors in Grundy coloring (smaller color wins).

DC vertex-coloring (Proc. 1) maintains two types of priority

queues per thread tid on each rank: colorQ and cacheQ
(Lns. 2–3 in Proc. 1). The per-thread colorQs orders received

messages by the distance and the color metrics. The other

priority queue, cacheQ, is used to order outgoing messages.

We will discuss message caching and reduction later in this

section.

Algorithm

The main structure of the algorithm is shown in Alg. 1.

The main procedure consists of an initialization step followed

by an active message epoch in which initial messages are

sent and then handled in the handleQueue() procedure that

processes thread-local update queues (described later). The

initial messages are sent from roots of the DAG by the

Visit-root() procedure, which first checks if a vertex is a

root, and if it is it initializes the color to 0 and sends an update

to the root’s neighbors. The messages are received by the Visit
message handler, and it forwards the incoming color updates to

thread-local queues that are then processed in handleQueue().
This processing results in color updates and in new messages

sent to the Visit handler. These updates continue until there

is no more work to be done and the active message epoch

terminates. Next, we describe the details of each of these steps.

Initialization. At the beginning, the algorithm

initializes the per-vertex termination counters,

taskRemainingInLocalColorQs[v] (Ln. 5 in Proc. 1).

As discussed earlier, this counter plays the vital role in

the algorithm to achieve optimistic parallelism. For a

particular vertex v, the taskRemainingInLocalColorQs[v]
counter keeps track of how many messages are waiting

to be processed in the colorQ priority queues. Whenever

taskRemainingInLocalColorQs[v] reaches a value of zero, it

triggers an asynchronous color update for v. Each vertex v
with non-zero predecessor count maintains a list of colors,

predecessorColors[v], that have been taken by its predecessors

(Ln. 8 in Proc. 1). When a vertex optimistically acquires a

color, it does so by searching through this list to find the

minimum color not taken by any predecessor.

Visiting Roots. Alg. 1 starts (Ln. 6) by assigning a

color value of zero to all the roots and propagating the

color information to the roots’ successors asynchronously

(Lns. 10–14 in Alg. 1). Each neighbor vertex v, on receiving

the message containing its predecessor’s color information,

executes a message handler V isit (Line 16 in Alg. 1). The

handler inserts the received predecessor information in the

colorQ priority queue (Ln. 19). Before insertion, we also

increment the corresponding local termination detector for v,

taskRemainingInLocalColorQs[v], by one (Ln. 18 in Alg. 1).

Procedure 2: handleQueue

1 localIter ← threshold ;
2 while true do
3 if cacheQ [tid ] not empty and

(cacheQ [tid ].size < threshold ) then
4 v, predOldCol , predNewCol ← cacheQ [tid ].pop() ;
5 tryReductionAndSend(v, predOldCol ,

predNewCol);

6 else
7 localIter --;

8 if localIter = 0 then
9 v, predOldCol , predNewCol ← cacheQ [tid ].pop() ;

10 tryReductionAndSend(v, predOldCol ,
predNewCol);

11 localIter ← threshold ;

12 if colorQ [tid] not empty then
13 v, predOldCol , predNewCol ← colorQ [tid ].pop() ;
14 taskRemainingInLocalColorQs[v]--;
15 colorVertex (v, predOldCol , predNewCol) ;
16 finishCount++;

Procedure 3: colorVertex
In : Vertex v, Color predOldColor , Color predNewColor

1 if predOldColor < predecessorCount [v] then
2 predecessorColors[v][predOldColor ]-- ;

3 if predNewColor < predecessorCount [v] then
4 predecessorColors[v][predNewColor ]++ ;

5 if taskRemainingInLocalColorQs[v] = 0 then
6 newColor ← findMinAvailableColor(v);
7 while true do
8 oldColor ← color [v];
9 if atomicCompareAndSwap(color [v], oldColor,

newColor) then
10 cacheQ[tid ].push(v, oldColor, newColor);
11 break

Processing elements from the priority queues. To process

the received predecessor color updates pushed in the colorQ,
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each thread on each rank executes handleQueue (Proc. 2)

until termination is reached (Ln. 7 in Alg. 1). Since our

algorithm is an unordered algorithm, it proceeds optimistically

as much as possible. But in doing so, the algorithm runs

into the risk of executing excessive sub-optimal work. To

circumvent this problem, the runtime, at this point, needs

to decide which task to execute first. Hence, we choose

the best possible locally-available candidate for processing

(Ln. 13 in Proc. 2), based on the distance and color metrics

we discussed earlier, from the colorQ priority queue. In this

way, our algorithm also eliminates some sub-optimal work.

Once a vertex v is popped from the priority queue, the

taskRemainingInLocalColorQs[v] is decremented (Ln. 14 in

Proc. 2) and the algorithm executes colorV ertex (Proc. 3).

Coloring Procedure. (Proc. 3) Each message from a

predecessor of a vertex v, inserted into the colorQ, contains two

pieces of information: predecessor’s old color and the new color.

After popping a message from the queue, the relevant color

counters for v containing v’s predecessor’s color information,

predecessorColors[v] are decremented (Ln. 2) and incremented

(Ln. 4 in Proc. 3) for the predecessor’s old color and new

color respectively. Next, a check is performed to see whether

the taskRemainingInLocalColorQs[v] has reached a value of

zero (Ln. 5), which can trigger a search-and-update for a new

color value for v (Ln. 9).

Finding minimum available color. (Proc. 4) Finding the

minimum color starts by saving the the current color of vertex v
and setting the availableColor to predecessorCount (Ln. 3).

Next a search is performed in predcolor[v] to find a minimum

color not taken by any predecessor. If such color is found, the

vertex color is set to new minimum available color.

Procedure 4: findMinAvailableColor
In : Vertex v

1 oldColor ← color [v];
2 if atomicCompareAndSwap(color [v], oldColor,

predecessorCount[v]) then
3 availableColor ← predecessorCount[v];
4 for (i = 0; i < predecessorCount[v]; i++) do
5 if predecessorColors[v][i] == 0 then
6 availableColor ← i;
7 break

8 return availableColor

9 return oldColor;

Message Caching. In order to reduce the propagation of sub-

optimal work, we cache messages destined for the successors

before sending them (Ln. 10 in Proc. 3). For this purpose,

we have implemented a customized reduction cache with

thread local priority queues, cacheQ (cache in Fig. 2). At the

beginning of the handleQueue function (Lns. 3–5 in Proc. 2),

before processing any element from the colorQs, the algorithm

attempts to send messages to the successors that have been

cached in the cacheQs. When the color information of a vertex

is popped from the cacheQ (Ln. 4 in Proc. 2), a check is

performed to see whether the vertex is already updated with a

better color or whether the color has not been changed since

last update (Ln. 2 in Proc. 5). If both of the conditions fail, the

Procedure 5: tryReductionAndSend

In : Vertex v, Color oldColor, Color newColor
1 lastColorSentV ← lastColorSent[v] ;
2 if lastColorSentV == color [v] then
3 return;

4 while true do
5 if atomicCompareAndSwap(lastColorSent[v],

lastColorSentV, newColor) then
6 break
7 else
8 lastColorSentV ← lastColorSent[v] ;

9 parallel foreach neighbor w of v do
10 if id [w] > id [v] then
11 send

Visit(w, lastColorSentV, color [v], distance[v])
to owner(w);

12 activeCount++;

current vertex color is recorded as the last color sent (Ln. 5 in

Proc. 5) and the updated color information is propagated to its

successors (Ln. 11 in Proc. 5).

Note that there is no global synchronization barrier or vertex-

centric barrier in our algorithm.

Termination. Termination detection is a part of the un-

derlying runtime. Since updates are propagated along the

edges of the DAG, at some point no changes are received

from the upstream in the DAG, that guarantees termination

in conjunction with the termination detection algorithm in

the runtime. The runtime termination detection algorithm is

based on Sinha-kale-Ramkumar algorithm [16]. Two counters

are maintained locally on each compute node: activeCount
and finishCount. Each time a vertex sends updates to its

successors, the local activeCount is incremented (Ln. 15 in

Alg. 1 or Ln. 12 in Proc. 5). When a received message from

the predecessor is processed from a thread-local priority queue,

the local finishCount is incremented by one (Ln. 16 in

Proc. 2). Non-blocking global reduction (all-reduce) on these

counters accumulates the counts and ensures that the algorithm

terminates when their difference is observed to be equal to

zero for two consecutive times. The non-blocking reductions

are joined only by nodes that have no local tasks (thus they

occur rarely).

Note that these counters serve different purpose from

taskRemainingInLocalColorQs[v]. The latter is the local

counter associated with a vertex that triggers a color search

as it reaches a value of zero, indicating that no message from

predecessor is left to process at a particular instant of time

in the thread-local priority queues on the current rank for the

current vertex.

Leveraging Approximate Vertex Ordering heuristics as
priorities. We have also conducted experiments with incidence-

degree (ID) ordering (choosing a vertex with largest number

of colored neighbors) and saturation-degree (SD) ordering

(choosing a vertex whose colored neighbors need the largest

number of distinct colors). In distributed setting, applying these
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ordering heuristics in their original forms are overly restrictive.

Instead, we apply local approximations of these heuristics

to prioritize incoming messages in DC. When applying ID

heuristic, we leverage per-vertex termination counter to track

how many predecessors have been colored for each vertex

and use this information to prioritize messages in such a way

that the target vertex with larger per-vertex termination counter

value will be given priority while processing. With SD heuristic,

whenever a message with the old and the new color information

of a predecessor is processed, the corresponding color counters

are checked: a check is performed to see whether the ‘old’

color is becoming available (by transitioning to value 0) or

whether the ‘new’ color is taken for the first time by any

neighbor (by transitioning from 0 to 1) respectively. Keeping

track of these changes for each vertex with a counter provides

us with an approximation of how many distinct colors have

been taken by the neighbors of each vertex. This counter can

be used to prioritize incoming messages to be processed. When

applying ID and SD heuristic separately, we do not employ

distance-based priority discussed earlier.

IV. CORRECTNESS

In this section, we prove the correctness and the termination

guarantee of Distributed Control coloring algorithm.

A. Correctness

Lemma 1. Distributed Control coloring algorithm eventually
converges.

Proof. Convergence of DC can be proved by structural induc-

tion on the levels of the DAG traversed during the algorithm

execution. In the base step, roots are on level 0 and since

roots have no predecessors, all the root vertices will settle

immediately with color 0. Now as an inductive hypothesis, let

us assume that all the vertices in the DAG up to level l − 1
have settled with final colors. Consider the inductive step. All

the vertices on level l of the DAG will receive final colors of

their predecessors at level l−1. Since messages only propagate

from predecessors to successors, each vertex will eventually

receive all final colors of its predecessor(s) and will settle. As

messages propagate in one direction along the edges of the

DAG, no cycle forms and vertices at level l will also settle

with a final color. Thus DC will eventually converge.

Lemma 2. At the convergence step, each vertex (except roots)
processes one final message from a predecessor containing its
old color and new color.

Proof. Since roots obtain a color of 0 at the beginning of

DC, they only propagate that new color information to their

successors. Successors of roots, on receipt of such messages

only increment the color counter corresponding to new color

(0) (there won’t be a matching decrement counter operation

for leaving the old color for roots). The predecessors of all

other vertices generate a sequence of updates, each message

containing the old color as well as the new color. Even if these

messages arrive at the successors out-of-order, every decrement

to a counter that corresponds to leaving an old color by the

predecessor will be matched with an increment of the new

color counter at the receiver (successor) end (Lns. 2–4 in Proc.

3). At the receiver vertex v, if the predecessor old color value

or the new color value is greater than predecessorCount[v],
the value is dropped (since there is no need for keeping track of

colors greater than predecessorCount[v]). However, if the re-

ceived value is within the range of 0 and predecessorCount[v],
the appropriate counter is adjusted. Convergence of a vertex

happens when the last update from the last predecessor is

received. At convergence, a vertex has received updates from

all its predecessors and all the counter increments have been

accounted for by the corresponding decrements except for

one.

Corollary 1. Processing the last message on convergence will
set the local termination detection counter of a vertex to zero,
resulting in a final color search.

Proof. Processing the last update for a vertex from a thread-

local priority queue will set the local per-vertex termination

counter to zero, thus triggering a color search (Lns. 5–6 in

Proc. 3).

Theorem 1. Distributed control coloring algorithm converges
with correct (Grundy) coloring.

Proof. To prove the correctness, we show that the final search

(as in Proc. 4) for each vertex will ensure the vertex color is

correct. Before each search starts (including the final search),

the current vertex v’s color is saved and then temporarily

set to predecessorCount[v]. The final search proceeds by

scanning through the predecessor color counters to find the

minimum one not taken by any the predecessors. After the

search is finished, a color update operation is attempted with

the new-found minimum color. Since the color was set to

predecessorCount[v] before starting the search, the final

search ensures that minimum available color will be stored as

the final color of a vertex.

V. EXPERIMENTAL RESULTS

A. Experimental Setup

1) Dataset: We evaluate the performance of Distributed

Control and Jones-Plassmann vertex coloring algorithms with

synthetic RMAT graphs and real-world graph inputs.

Characteristics of RMAT Graphs. To generate synthetic

graphs, we employ the RMAT graph generator [17]. In this

paper, we experiment with 4 types of RMAT graphs (Table I):

Graph500 [18], Erdős-Rényi (RMAT-ER), RMAT- ˜G (Good),

and RMAT-B (Bad). These graphs differ in degree distribution

of vertices and in the density of local subgraphs. A detailed

description of the RMAT graph generator and different RMAT

graph characteristics can be found in [19]. Both RMAT- ˜G and

RMAT-B contain relatively dense “subcommunities” (dense

local subgraphs). The degree distribution of RMAT-ER follows

a normal distribution and contains only one local maximum.

However, the degree distributions of Graph500, RMAT-B and

RMAT- ˜G are similar and contain several local maxima. The

degree distribution characteristics and the local subcommunity
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Graph type a b c d

Graph500 0.57 0.19 0.19 0.05
RMAT-ER 0.25 0.25 0.25 0.25

RMAT- ˜G 0.45 0.25 0.15 0.15
RMAT-B 0.55 0.15 0.15 0.15

TABLE I: Parameters for RMAT generator

Graph type graph |V | |E| davg dmax D̃

Social network
Twitter 44M 2.9B 37 750k 36

Friendster 65M 3.6B 55 5k 32
Webgraph sk2005 50M 3.8B 38 8M 17

Road network europe osm 50M 1B 2 13 ∼ 7000

TABLE II: Real-world input graph characteristics. Total number of
vertices (|V |) and edges (|E|) along with the average degree (davg),
maximum degree (dmax) and diameter (D̃) for each type of graph
input is tabulated here.

structures differentiate these 3 types of RMAT graphs from

RMAT-ER. A measure of centrality, local clustering coefficient,

which measures how close the neighbors are in forming a clique,

also varies significantly for these 3 types of graphs. RMAT-B

contains dense local subgraphs. Same property also holds for

RMAT- ˜G. Taking all these properties into consideration will

help us understand the performance results later in this section.

In the constructed synthetic graphs, each vertex of the RMAT

graphs has an average degree of 16 (directed). We remove

duplicate edges and self-loops from the generated graph. In

the plots for our scaling experiments, X axes have a one-to-

one correspondence and indicate the scale of the input graph

and the corresponding number of compute nodes employed in

each experiment. A graph of scale x denotes a graph with 2x

vertices. Each vertex in RMAT graph has an average degree

of 16 (directed), for a total of 2 ∗ 16 ∗ 2x edges, considering

undirected edges.

Real-world Datasets. For large scale experiments in AM++,

Table II summarizes the characteristics of the real-world graph

datasets we have experimented with. Twitter and Friendster

datasets are generated by crawling two online social networks

and are obtained from Laboratory of Web Algorithmics [20]

and Stanford Large Network Dataset Collection (SNAP) [21] re-

spectively. Sk2005 is generated by crawling the (.sk) domain for

Slovakian researchers in 2005 using UbiCrawler. europe osm

dataset represents European road network extracted from Open

Street Map. These two datasets were downloaded from the

University of Florida Sparse Matrix Collection [22]. We also

compare the performance of our algorithm with PowerGraph

on real-world dataset (Table III) collected from [21].

2) Configuration:

a) Hardware: We have conducted our experiments on a

512-node Cray XC30 system. Each compute node on the XC30

system consists of two Intel Xeon E5 12-core x86 64 2.3 GHz

CPUs with hyperthreading enabled (up to 48 hardware threads

per node) and of 64 GB of DDR3 RAM. All XC30 compute

nodes are connected through the Cray Aries interconnect.

b) Compiler Options: We have compiled our code with

gcc 7.2.0 and with optimization level ‘-O3’. Additionally, single

node experiments were performed with networking turned on.

c) Graph Distribution: The graph is distributed across

compute nodes in a disributed compressed sparse row (CSR)

data structure where each node stores a local CSR represen-

tation of the local portion of vertices assigned to it (1-D

distribution). The vertices are distributed block-cyclically.

B. Scalability Results with RMAT Graphs
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Fig. 4: Average barrier overhead
of Jones-Plassmann algorithm.

1) Weak Scaling Results:
For weak scaling experi-

ments, we double the num-

ber of compute nodes as

we double the number of

vertices. Figure 3 shows the

weak scaling results with

different RMAT graphs. As

can be seen from the fig-

ure, with RMAT- ˜G (Fig. 3b),

Graph500 (Fig. 3c), and

RMAT-B (Fig. 3d) graph inputs, Distributed Control coloring

algorithm is 2x-3.5x times faster at scale in comparison to

Jones-Plassmann algorithm. Although, with RMAT-ER graph

input, Distributed Control does not perform well with smaller

node count, with larger node count, DC performs comparably

with Jones-Plassmann algorithm. The color qualities have

also been tabulated in each case. With increasing power-

law characteristics (Table I), the number of colors required

also increases. However, both JP and DC coloring algorithms

achieve the same coloring quality. The requirement for more

colors with the increase of power-law characteristics can

be attributed to the dense local subgraphs (subcommunities).

Larger parameter values for a and d, in comparison to b and c
values, generate subcommunities within the graph structures.

The vertices within these local subgraphs are highly connected

and forms almost cliques. The larger and wider range of

values for clustering coefficient of RMAT- ˜G and RMAT-B [19]

graphs also validate the existence of dense subcommunities.

With a pre-execution ordering heuristic for vertex-coloring,

each vertex in such a dense local subgraph has to wait for

its predecessors before obtaining a color. As a result, with

a larger number of dense local subgraphs, parallelization in

Jones-Plassmann becomes limited. On the other hand, DC
can proceed optimistically, without waiting on a vertex-centric

or global barrier. Such execution behavior helps DC achieve

better performance for Graph500, RMAT- ˜G and RMAT-B graph

inputs at scale. With RMAT-ER graph, however, DC can suffer

from performance bottleneck if too many sub-optimal updates

are performed. This is evident from the workload characteristics

of DC with RMAT-ER, shown in Fig. 7. DC, in this case, is

unable to successfully filter out sub-optimal work and suffers

from extra work execution. In particular, with smaller compute

node count, DC suffers from performance bottleneck due to the

overhead encountered by execution time ordering and frequent

conflicts that arise from optimistic color update. Frequent
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Scale 22 23 24 25 26 27 28 29 30 31
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(b) RMAT- ˜G
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AM++ 347 434 530 636 780 955 1159 1413 1714 2074
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(c) Graph500

10

100

1000

24 48 96 192
384

768
1536

3072
6144

12288

22 23 24 25 26 27 28 29 30 31

E
xe
c.
tim

e
(s
)

# Compute cores

Graph scale

Scale 22 23 24 25 26 27 28 29 30 31

AM++ 169 192 223 256 295 342 399 454 526 612

PowerGraph 207 242 280 330 395 383 617

(d) RMAT-B

Jones-Plassmann DC PowerGraph DCnc_nd

Fig. 3: Weak Scaling results with different RMAT graphs on Cray
XC30 system. Power-law characteristics of the input graphs increases
from top to bottom. Color qualities in each case are tabulated under
each plot. Algorithms in AM++ achieve the same color qualities.
Missing datapoints are due to out-of-memory.

color update makes DC a compute-intensive algorithm, rather

than a communication-bound algorithm. However, the situation

reverses at scale and DC catches up with Jones-Plassmann at

scale 30. We will discuss more about workload characteristics

of the two algorithms in Sec. V-E.

2) Overhead of Vertex-centric Barriers: We measure the

overhead of vertex-centric barriers in Jones-Plassmann algo-

rithm as follows: for each vertex, we record the time when

the first message from a predecessor is received. Next, we

record the time of the receipt of last predecessor update. The

difference between these two quantities gives a measure of

how much time each vertex wait on a barrier. We compute

the average of such time with different RMAT inputs and

scales and report the result in Fig. 4. RMAT-ER encounters the

smallest barrier overhead that remains constant as the scale of

the graph increases. In contrast, other graph inputs have larger

barrier overheads at larger scale and present DC with better

opportunity to perform by speculation.

3) Effect of Caching: We also show scaling results of

DC with caching and priority heuristic disabled (DCnc nd)

in Fig. 3. As can be seen from the figure, even at small

scale, DCnc nd does not perform well due to work explosion

resulting from aggressive speculation. At or beyond 384

compute cores, the amount of network traffic generated by

DCnc nd causes node failures due to memory exhaustion.

4) Strong Scaling Results: For strong scaling experiments,

we double the number of compute nodes and keep the graph

size constant. Figure 5 reports strong scaling performance

of Distributed Control and Jones-Plassmann algorithms with

various RMAT graphs. We also report the color count in

each case. As can be seen from Figs. 5b to 5d, at or beyond

384 compute cores, DC executes faster than Jones-Plassmann.

DC also achieves comparable performance with RMAT-ER

graph when run on larger number of compute nodes. As we

increase the number of node counts, Jones-Plassmann algorithm

struggles to scale, since vertex-centric barrier becomes an issue

and communication overhead across large number of compute

nodes starts affecting its performance. DC, on the other hand,

enjoys the opportunity of optimistic parallelism with larger

resource count. With enough processing units at its disposal,

DC can support continuous color updates and saturates the

computing resources with work. In this way, even though DC
has to execute more work compared to JP (Sec. V-E), investing

the time obtained by eliminating vertex-centric barrier, results

in better performance.

C. Experiments With Real-World Datasets

We evaluate coloring algorithms on AM++ with four

larger real-world datasets: Friendster, Twitter, sk2005 and

europe osm. These datasets represent social network, follower

network, webcrawl graphs and road networks respectively. With

Friendster (Fig. 6a) and sk-2005 input (Fig. 6c), DC has better

scalability compared to JP. In both cases, increasing the number

of compute nodes penalizes JP with communication cost as

well as vertex-centric barriers. Note that sk2005 requires a

large number of colors compared to other input graphs. sk2005
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Fig. 5: Strong Scaling results with RMAT synthetic graphs, with degree distribution skew increasing from left to right. RMAT-B has the
most skewed degree distribution that provide DC with better opportunity for speculative execution with increased computing resources.
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Graphtype graph |V | |E| D̃ cf Scoloring pg colorcount

Communication
networks

wiki-Talk 2.4M 5M 9 0.0526 1.93 79
email-EuAll 265k 420k 14 0.0671 4.15 30

Social networks soc-LiveJ. 4.8M 69M 16 0.2742 1.87 324
com-orkut 3M 117M 9 0.1666 0.83 115

com-lj 4M 34M 17 0.28 1.3 333
com-youtube 1.1M 2.9M 20 0.0808 2.04 38

com-dblp 317k 1M 21 0.6324 3.43 113
com-amazon 334k 925k 44 0.3967 1.68 9

Purchase network amazon0601 403k 3.3M 21 0.4177 1.4 12

Road networks roadNet-CA 1.9M 5.5M 849 0.0464 22 4
roadNet-TX 1.3M 3.8M 1054 0.0470 24 4
roadNet-PA 1M 3M 786 0.0465 19 4

Citation graphs cit-Patents 3.7M 16.5M 22 0.0757 1.2 14

Web graphs Web-Google 875k 5.1M 21 0.5143 1.5 43
Web-BerkStan 685k 7.6M 514 0.5967 6.3 201
Web-Stanford 281k 2.3M 674 0.5976 2.1 63

TABLE III: Speedup results of DC over PowerGraph (Scoloring pg)
with real-world input graphs. Total number of vertices (|V |) and edges
(|E|) along with the diameter (D̃), average clustering coefficient (cf )
for each type of graph input is tabulated here.

.

represents a collaboration network of Slovakian researchers

with densely connected (hence larger color count). Web-

crawl graphs (such as sk2005) have two important topological

characteristics: they have low diameters (“small world”) and

their degree distribution follow power-law (“scale-free”). Road

network graphs such as europe osm, on the other hand, has

bounded degree distribution, a smaller average and maximum

degree count (cf. Table II) but very high diameter. Since

there is not much scope for optimistic parallelism due to low

degree-count, DC has slower execution time than JP in this

case(Fig. 6d). With Twitter input, DC achieves comparable

performance with 1536 cores (Fig. 6b). The particular Twitter

dataset we have experimented with is generated from the

follower network. In this social network graph, followers are

not connected to each other and hence do not create dense

local subgraphs. This is in contrast to the topological structure

we observe in RMAT-B, RMAT- ˜G and Graph500 inputs, which

have multiple dense locally connected subgraphs.

D. Comparison to The PowerGraph Framework

We compare the performance of our implementations in

AM++ with a similar greedy distributed vertex-coloring al-

gorithm (called simple coloring) in PowerGraph [10], a well-

known distributed graph processing framework. This helps us to

evaluate the efficiency and coloring quality of our algorithms.

We performed our experiments with the publicly-available

version 2.2 of PowerGraph [23]. PowerGraph processes vertex-

centric programs in three phases: Gather (gather results from

neighbors), Apply (compute new updates), and Scatter (GAS)
(propagate updates to the neighbors). In the synchronous
execution mode of PowerGraph, each of these micro-steps is

separated by a barrier, where all vertices gather and scatter at the

same time. The asynchronous mode of PowerGraph executes

GAS phases without the barrier synchronization. However,

before each GAS iteration can proceed, active vertices need

to acquire locks on their neighbors to prevent two neighbors

from choosing the same value simultaneously. Acquiring a
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lock on a high-degree active vertex can limit the scalability

of the asynchronous algorithm in PowerGraph for power-law

graphs. If the PowerGraph coloring algorithm used a vertex

ordering such as the one in DC and JP, it would be a pull-

based version of these algorithms. However, always locking the

whole neighborhood of a vertex for a pull step irrespectively of

the source of the triggering change generates a large overhead

when compared to a push-based algorithm such as DC.

We ran simple coloring algorithm with the asynchronous

graph processing mode of the PowerGraph framework. With the

synchronous execution mode, PowerGraph coloring algorithm

fails to converge [24].

1) RMAT weak scaling: Figure 3 shows the weak scaling

results of our implementations and of the simple coloring

algorithm in PowerGraph. From Fig. 3, we can see that

our implementation of Jones-Plassmann performs better at

higher scale with RMAT-ER compared to the PowerGraph

implementation. As we increase the problem size, vertex-

centric barrier becomes a bottleneck in JP for graphs with

skewed degree distribution. Asynchronous execution engine of

PowerGraph outperform JP in such cases. Except for RMAT-

ER input, DC outperforms other two implementations in all

cases at higher scale. Also, PowerGraph can not run beyond

3072 cores due to the limitation of the framework. We also

tabulated the coloring quality of these implementations in Fig. 3.

Both JP and DC achieve the same color quality. Compared to

PowerGraph, the coloring quality of the AM++ algorithms are

better. The slower performance of the coloring algorithm in

PowerGraph with power-law graphs can be attributed to the

restricted parallelism imposed by the vertex locking mechanism

needed for data consistency and updates. We also tried to

run two other vertex-coloring algorithms in PowerGraph with

different ordering heuristics: saturation-ordered and degree-

ordered coloring. Unfortunately these two algorithms fail to

complete execution in a reasonable time.

2) RMAT strong scaling: Figure 5 shows strong scaling

of PowerGraph coloring algorithm with scale-26 graph. With

Graph500 and RMAT-ER, PowerGraph performs worse than JP

and DC with increased no. of cores. In many cases, PowerGraph

fails with larger cores.

3) Real-world datasets: Table III tabulates speedup of DC

over PowerGraph with real-world datasets collected from [21].

Except com-orkut dataset, DC outperforms PowerGraph in all

cases. Road network graphs require fewest number of colors,

yet PowerGraph requires every active vertex update to acquire

a lock on all its neighbors. For this reason, in such cases, DC

performs almost 20 times better compared to PowerGraph due

to no requirement of vertex-centric locking.

E. Workload Characteristics

Figure 7 shows the breakdown of different types of work

executed by each vertex-coloring algorithm. We classify

workload performed by each algorithm in 3 categories: useful,

useless, and rejected work. Useful works are the aggregate

count of tasks that contain the final predecessor color values

and result in successful color updates. Both Jones-Plassmann
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Fig. 7: Workload statistics (512 compute nodes, scale 31 graph).

Ordering No. colors Ordering time (s) Coloring time (s) Color ratio

Random 500 0.21 11.68 1.06
Largest first 388 0.2 10.91 1.36

Incidence degree 365 30.49 11.47 1.452
Smallest last 366 32.21 11.36 1.448

TABLE IV: Color quality, sequential ordering time, and coloring
time of a Scale 24 Graph500 graph in ColPack [25]. The color ratio
column reports ratio of no. of colors obtained by our algorithm to the
sequential version with a particular ordering. The ordering is tabulated
from the least restrictive ordering to the most restrictive one.

and Distributed Control execute the same amount of such

work over the course of execution. Useful work yields final

vertex colors. The other two types of tasks are specific to the

DC coloring algorithm. In DC, whenever a better color value

becomes available, it forces an invalidation of the current color

and ultimately triggers a correction of the current vertex color

value. These updates happen when DC processes workitems

from the priority queues and tries to update a vertex color with a

newly available color. Once updated, the new color information

is sent to all the successors. However, instead of sending these

updates immediately, we cache these messages for some time.

Useless work arises when a color update becomes stale in the

application-level message cache while waiting to be sent to the

successors. Rejected work goes over the network but on arrival

gets rejected due to containing outdated update. As can be seen

in Fig. 7, DC performs more work compared to JP. However,

only rejected work results in network messages. Compared to

other inputs, RMAT-ER results in the largest amount of this

type of work, hence DC has worst performance with RMAT-ER

input. Nonetheless, the elimination of vertex-centric barriers in

DC results in significant performance benefit on graphs with

densely connected subcommunities and strong power-law.

F. Coloring Quality

In Table IV, we compare the color quality of our algorithm

(with random ordering heuristic for pre-execution order) to

those in a well-known coloring software package ColPack [25].

ColPack provides sequential and parallel versions of algorithms

for a range of graph coloring problems. As can be seen from

Table IV, in the worst case, our algorithm uses 1.45 times

more colors than the sequential version with incidence-degree

ordering. However, in sequential setting, even with small scale

24 graph, it takes 30.49s to obtain the incidence degree order.

Smallest last, the most restrictive ordering among the ordering

schemes, takes about 32.21s to order the vertices. On the other

hand, random ordering does not require any ordering time, and

it uses few extra colors. Imposing other orderings in distributed
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JP DC DC SD DC ID

155.24 75.66 65.39 63.30

TABLE V: Execution time (in seconds) of DC algorithms

(DC ID: incidence degree heuristic, DC SD: saturation degree

heuristic) and the JP algorithm with Graph500 scale-28 graph

on 64 compute nodes.

Fig. 8: From left-to-right: Distribution of color bins for RMAT-ER,

RMAT- ˜G, RMAT-B, and Graph500 (color numbers on the x-axis and
color counts on the y-axis). The plot combines scales 25-30, indicated
by shades of gray.

setting is more involved. Finally, random ordering is necessary

for the performance guarantees in DAG-based algorithms [5].

G. Impact Of Approximate Ordering Heuristics on DC As
Priority Metrics

As discussed in Sec. III, we experiment with approximate

ID and SD heuristics for prioritizing incoming messages for

target vertices. We present our results in Table V. DC with the

ID heuristic outperforms other algorithms on the test input. It is

important to note that these heuristics only affect performance

and not the total no of colors since the total number of colors

is decided by the pre-ordering of vertices in the DAG (the

heuristics are used during execution to avoid wasted work).

H. Skewness of Sizes of Color Classes

In Fig. 8, we show the sizes of different color classes

(independent subsets) for 4 types of RMAT graphs. Sizes

of color classes can assist to choose between JP and DC. If the

sizes of the color classes are such that most of the vertices are

concentrated in the lower-numbered color bins (for example in

RMAT-B, RMAT- ˜G and Graph500 in Fig. 8), it can be a good

predictor of better performance of DC over JP with such inputs.

This is because, due to the speculative nature of DC, it tends

to choose first the minimum available color in a search and

propagates such speculated color choice as soon as possible.

The larger the lower color bins are, right predictions will be

made earlier in the computation of DC. Moreover, amount of

rejected work is highest (Fig. 7) with graph that has the most

equal color distribution (RMAT-ER).

VI. RELATED WORK

Greedy Ordering Heuristics. The first greedy coloring

algorithm was proposed by [26]. Different vertex ordering

heuristics for Jones-Plassmann algorithm have been proposed

and evaluated in [11].

Empirically Evaluated Shared-Memory Algorithms. A

two-step distance-1 coloring algorithm was proposed in [7].

They evaluated the algorithm on shared memory system

with small-size inputs. Authors in [19] studied the interplay

between architectures and algorithms in the context of vertex-

coloring algorithms. They evaluated the algorithms on synthetic

RMAT graphs. The approach proposed by Deveci et al. [27]

introduced a set of refinements and optimizations over the

two-stage (assignment and correction) coloring procedure by

Gebremedhin and Manne for many-core architectures and

iterative graph coloring algorithms. In contrast, our distributed

algorithm eliminates the need to separate the conflict detection

phase from the assignment phase with optimistic execution,

thus eliminating the bottlenecks associated with synchronization

that separates these stages.

Theoretical Distributed Algorithms. Based on the message

passing model, many theoretical algorithms have been proposed

for distributed graph coloring problem [28], [29], [30], [31],

[32]. In this model, message communication happens within

a set of synchronized steps. For example, [29] present a

deterministic (Δ + 1)-coloring distributed algorithm with

running time of O(Δ) + 1
2 log∗ n. We refer to [33], [34]

for further discussion.

Empirically Evaluated Distributed-Memory
Algorithms. [35] proposed a framework for parallelizing

greedy coloring algorithm for static graphs. The framework

partitions a graph among several processors and speculatively
colors the vertices greedily and resolves conflicts in a set of

synchronized supersteps. However, they experimented with

small-size graphs. [36] reported performance of graph coloring

algorithm based on Luby’s parallel maximal independent

set algorithm [3] on a Pregel-like system. However, their

implementation is not scalable (for example sk2005 took

about 26 minutes on 90 nodes). Both of the previous

approaches are based on synchronous supersteps. [15]

evaluated Jones-Plassmann algorithm in distributed settings

for static and dynamic graphs. Our optimistic parallelism

and label-correction approach is related to progressive reads

semantics in [37], however no consideration was given about

prioritizing work.

VII. CONCLUSION

In this paper, we have presented a label-correcting, com-

pletely asynchronous vertex-coloring algorithm that is based

on optimistic parallelization. The algorithm eliminates vertex-

centric barriers and global synchronization altogether and relies

only on atomic operations to update vertex colors. The time

obtained by elimination of such barriers is invested in ordering

tasks to minimize the effect of executing sub-optimal work. We

have demonstrated the potential of our algorithm with power-

law graphs containing densely connected subcommunities –

both in terms of scalability and performance.
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