
Forgive-TM: Supporting Lazy Conflict Detection In
Eager Hardware Transactional Memory

Sunjae Park
Georgia Institute of Technology

sunjae.park@gatech.edu

Christopher J. Hughes
Intel

christopher.j.hughes@intel.com

Milos Prvulovic
Georgia Institute of Technology

milos@cc.gatech.edu

Abstract—Commercial hardware transactional memory (TM)
systems commonly use coherence messages to detect data conflicts.
When a core inside a transaction receives a coherence request
for data, it uses this information to determine whether there
was a data conflict. Inherent in this behavior is the fact that
data conflicts are detected eagerly, i.e., as soon as possible, and
even while both sides of the conflict are speculative. Although
it has been shown that lazy conflict detection can lead to better
performance, this approach precludes lazy detection.

In this paper, we describe a mechanism that allows conven-
tional hardware to support lazy conflict detection, while still
keeping the coherence protocol intact. Under Forgive-TM, spec-
ulative writes are done immediately to a special buffer, without
first obtaining global write permission. The write permission is
acquired later, when the transaction is about to commit. In
other words, it “acts first, and asks forgiveness later.” This
effectively allows conflict detection to be done lazily. Using this
scheme, ForgiveTM is able to provide 19% overall performance
improvement in STAMP.

Index Terms—Parallel processing, Multithreading

I. INTRODUCTION

The number of cores in modern processors is increasing.
For multithreaded applications to benefit from them, they
must effectively use multiple cores even in situations that
require concurrency control. Transactional memory (TM),
which allows multiple threads to optimistically access shared
data concurrently, has been introduced as a way of improving
performance scaling beyond that provided by the traditional
approach based on mutex locks, which pessimistically serializes
such accesses.

Hardware TM (HTM) provides support for TM in the
hardware. Recently there has been renewed interest in HTM
as several hardware vendors have implemented it in their
processors [1]–[4]. However, unlike many of the designs
proposed by the research community, the capabilities provided
by these conventional HTMs are comparatively limited.

One major difference between commercial and research
approaches is in how data conflicts are detected. A data conflict
occurs when two or more concurrent transactions access the
same data, and at least one of them is a write. HTMs detect
conflicts either eagerly or lazily. With eager detection, the
conflict between a pair of accesses is detected when the second
access in the pair occurs. With lazy detection, a conflict is
detected when one of the conflicting transactions attempts to
commit. Either way, the conflict must be resolved, e.g., by
aborting one or more conflicting transactions.

There is strong evidence that lazy conflict detection tends
to yield better performance [5]. One of the reasons for this
is futile transaction aborts, where an aborted transaction can
restart and abort the aborter [6]. In eager conflict detection,
speculative accesses are exposed to other threads as soon as they
occur, thus creating a “window of vulnerability” during which
a conflict with other threads may be detected (and acted upon),
perhaps futilely. In contrast, lazy conflict detection occurs not
long before a transaction commits, thus creating a very brief
window of vulnerability.

This is illustrated in Figure 1, which shows the timeline of a
transaction that writes a shared variable A, with eager and then
with lazy conflict detection. In each timeline, the operations
are shown above the line and, to provide perspective, example
time stamps are shown below the line.

With eager detection (Figure 1a), the window of vulnerability
begins as soon as the access occurs at cycle 20, and it ends
at cycle 100 when the transaction commits, yielding an 80-
cycle window of vulnerability. In contrast, with lazy detection
(Figure 1b), the access also occurs at time 20, but its potential
conflicts are not considered until later when, in cycle 100, the
transaction starts preparing to commit. Thus the window of
vulnerability begins only at cycle 100, and ends soon afterwards,
when the transaction actually commits in cycle 105, yielding
a 5-cycle window of vulnerability.

Although lazy conflict detection can significantly reduce the
window of vulnerability, and thus the number of futile transac-
tion aborts and other conflict-resolution actions, commercial
HTMs mainly use eager conflict detection.

This is because they are designed to take advantage of
the existing coherence protocol [7]. Specifically, a conflict is

TnxBegin Wr(A) Commit

time=0 20 100

(a) Eager Write

TnxBegin LzWr(A) Commit

20 105

CmPr

100time=0

(b) Lazy Write

Fig. 1: Window of Vulnerability

192

2019 28th International Conference on Parallel Architectures and Compilation Techniques (PACT)

978-1-7281-3613-4/19/$31.00 ©2019 IEEE
DOI 10.1109/PACT.2019.00023

detected when a GetS coherence request, caused by a load
on another core, reaches a cache that has the same block in
a transactionally-written (modified) state, or when a GetM
request (from a store operation on another core) reaches a
cache that has the same block in a transactionally-accessed
(written or read) state. Since GetS and GetM messages are
sent as soon as the access on another core occurs, conflict
detection that relies only on these existing coherence messages
has been eager.

In comparison, past proposals for lazy conflict detection have
required additional coherence message types. Some proposals
buffer writes locally and broadcast write sets at commit [8],
[9]. This requires messages to first acquire commit permission,
and then messages to broadcast the transaction’s write set.
Other proposals forgo the write set broadcast, but still retain
the commit arbitration message [9]–[11], or do away with
the commit arbitration, but instead add explicit abort request
messages [5], [12], [13].

Unfortunately, additional coherence message types or coher-
ence states complicate the design [7], [14]. Every additional
message type and event results in an explosion in the state
space [15]. In addition, because state transition requests are not
atomic, high performance systems require coherence protocols
with many more transient states [16], which make the problem
even worse. As an example, a MOESI protocol, which is
described with 5 states, is implemented in the Gem5 simulator
with over 60 states (both stable and transient) [17], [18].

As a result, even commercially released processors can have
bugs in their coherence protocol implementation [17], [19].
Formally verifying non-trivial coherence protocols for modern
processors becomes intractable, failing after exceeding even
200GB of memory [20]. Randomized testing can help identify
bugs in the design [21], but does not provide complete coverage.
In-situ testing may help [17], but may not be commercially
acceptable. The community therefore has recently pushed for
simpler protocols [22], [23].

This motivation to deploy simple coherence protocols exists,
even without TM. The bar is high for complicating coherence,
which is arguably a big reason that lazy conflict detection
has not been commercially deployed. Thus, we explore the
question: can we provide effective lazy conflict detection
without modifying the coherence protocol? To that end, we
propose Forgive-TM. Forgive-TM provides a form of lazy
conflict detection without needing additional message types
such as commit arbitration request messages, write set broadcast
messages, or abort request messages.

It does so building on top of an existing best-effort HTM. A
transactional store operation is split into two parts: (1) a local,
speculative, write, and (2) obtaining global write permission for
the cache line. Forgive-TM tracks which local writes have not
yet obtained write permission. At the end of the transaction, the
transaction starts a new phase, called the Commit-Prep phase
where it (belatedly) sends a GetM request to acquire global
write permission. However, there is no need to coordinate the
commit with the other processors, since the original coherence
states and the original best-effort HTM hardware already

provide notification (detection) if a conflicting access occurs
at the same time. Once all the necessary write permissions are
acquired, the transaction initiates the same Commit process
as the original HTM design.

Forgive-TM does not affect cache coherence because the
coherence requests and state transitions are done without any
changes; the only changes are in the timing of a core sending
conventional coherence requests. This delaying of coherence
permission requests is still correct from the transaction’s point
of view, because the operations done by a transaction must be
observed to be atomic [24]. Since dirty data from transactions
is never made globally visible until the transaction commits,
there is no externally visible difference in a transaction’s
behavior other than the precise timing of when it requests
write permission, and possibly re-ordering of requests.

The rest of the paper is organized as follows: Section II
explains in more detail how conflict detection works, and
compares eager conflict detection with lazy conflict detection.
Section V looks at prior work on this topic, and discusses
how these proposals differ from ours. Section III introduces
Forgive-TM, which allows conflicts to be detected lazily while
keeping most of the baseline architecture intact. Section IV
discuss our results, and we wrap up in Section VI.

II. HTM CONFLICT DETECTION

While a transaction is running, it needs to make sure it does
not violate atomicity by leaking speculative data from itself
or other transactions before it commits. Under requester-wins
conventional HTMs, the data conflicts are detected through
coherence messages [1]–[4].

In a conventional commercial HTM implementation, when
a transaction speculatively writes to a cache line, it sends a
GetM coherence request message, to obtain the most up-to-date
contents of the line and write permission for that line from the
directory, or other coherence mechanism [16], [24]. Later, the
same core may receive a coherence message destined for that
line (i.e. GetS or GetM). This means that another thread is
accessing the same data before the first transaction committed
and, to ensure transaction atomicity, that first transaction is
forced to abort.

Likewise, if a transaction speculatively reads a cache line,
it initially sends a GetS request, to obtain an up-to-date copy
of the line, possibly in read-only (i.e., shared) state. Later, if it
receives a GetM, which means that another thread is writing
to the same line, the transaction is forced to abort to avoid
violating atomicity.

Figure 2a depicts what happens as an example. There are
two transactions, and the left-hand transaction first issues a
speculative read (¬). Later, when the righthand transaction
issues a speculative write (­), its core sends a GetM message
(®), which is later received by the first core. This notifies the
lefthand transaction that it conflicted with another core, which
then aborts itself (¯).

As can be seen, the transaction is notified immediately of a
potential data conflict, i.e. conflict detection is done eagerly.
The advantage of this mechanism is that it needs no support

193

TxBegin

① Rd(A)
② Wr(A)

④ Abort

TxBegin

TxCmit

③ GetM

(a) Eager Detection

TxBegin

➊ Rd(A) ➋ Wr(A)

TxBegin

TnxCmit

TxCmit
➌ Notify

(b) Lazy Detection

Fig. 2: Conflict Detection

from the coherence protocol: from the protocol’s point of view,
the core has executed ordinary reads and writes.

In contrast, there are TM systems that do lazy conflict
detection instead. Under lazy detection, data conflicts are
checked for only at the end of a transaction, when the
transaction is ready to commit. If a transaction has a consistent
set of inputs, and can obtain write permission for all output
locations, the TM system can commit the transaction by making
all speculative writes globally visible atomically.

Figure 2b depicts transactions with the same shared memory
accesses as Figure 2a, but with lazy detection. As before, we
have two transactions, and each issues speculative reads and
writes (¶, ·). Note that at this point, neither transaction notices
a potential conflict because the righthand transaction buffers
its write locally.

Later, the righthand transaction is ready to commit. The
transaction starts the commit phase and notifies the lefthand
transaction that it will be writing to A, which may trigger a data
conflict (¸). However, by this time, the lefthand transaction
has already committed, so there is no abort. The lefthand
transaction “happened” before the righthand transaction, and
both committed without any issue.

Lazy conflict detection potentially allows much better
performance compared to eager conflict detection for a number
of reasons [5]. As shown in the examples above, lazy conflict
detection delays the notification memory accesses that may
lead to potential conflicts, and allows transaction ordering
that can lead to better scalability. In addition, the window
of vulnerability, shown in Figure 1 is reduced, avoiding
unnecessary conflict aborts. Last, eager conflict detection
can lead to futile aborts and livelocks [6], further impacting
performance.

Broadly, there are three styles that have been proposed for
implementing lazy conflict detection. First is the TCC family
of HTMs [25]–[29]. These HTMs buffer all writes locally
until commit time, not telling other cores (e.g., via coherence
actions) that the writes have happened speculatively. When a
transaction needs to commit, commit permission is requested.
This is typically done via a dedicated central agent or bus that
commercial HTMs do not include, and with new coherence/on-
die messages. Once this has been granted, the write set is
broadcast. Other transactions compare their read set with this

and abort if there is a conflict, since they previously read now-
stale data. Different members of this HTM family use different
mechanisms for commit permission arbitration and write set
broadcasting.

The second is the EazyHTM family [5], [12], [13]. These
modify the coherence protocol to include message types which
are used to construct local conflict sets. In other words, potential
conflicts may be detected eagerly, but are not immediately acted
on. On commit, conflicting transactions are sent explicit abort
messages. More advanced implementations attempt to reduce
the frequency of such messages.

The third category builds on LogTM [9]–[11] and “lazifies” it.
Instead of issuing transactional writes immediately (and storing
the original version of the data in an undo log), these HTMs
initially buffer the write internally. At commit time, transactions
arbitrate for commit permission using an explicit commit
request so that the commiting transaction has exclusive access.
Once commit permission is acquired, transactions do a rapid
broadcast of lazily written data with a special message type
that indicates that the data is part of a committing transaction.
This allows the commiting transaction to “win” any conflicts
with other sharers. The other sharers, upon losing the data
conflict, are forced to wait or get aborted.

Coherence protocols are already difficult to design even
without the burden of HTM. As mentioned earlier, a real
implementation of a coherence protocol may have many
intermediate/transitory states, making correct implementation
and verification difficult. Thus, changes to these designs must
pass a very high bar.

Unfortunately, prior proposals that implement lazy conflict
detection can lead to significant changes in the coherence
protocol. Table I summaries the past proposals and the
coherence protocol changes required.

TABLE I: Changes Required for Lazy Conflict Detection

CommitReq WriteSet ConfPolicy AbortReq
TCC Yes Yes No No

LazyLogTM Yes No Yes No
EazyHTM No No No Yes
ForgiveTM No No No No

TCC-style of HTMs need a mechanism to arbitrate for com-
mit permission, and a mechanism for sending the transaction’s
write set to other cores that it may have a data conflict with.
Both of these are additional coherence message types that need
to be validated, increasing validation costs. In addition, these
additional message types can be more complicated to validate
than conventional message types. Conventional coherence
messages work on individual cache lines: e.g. a given cache
line is owned by a single core. In comparison, these message
types work with sets of cache lines (the write set).

Lazified LogTM proposals build on an already elaborate
base of LogTM, which introduces special “sticky” coherence
states and NACK messages, which are specific to TM and are
an additional burden to designers of the coherence protocol.
They also support sophisticated conflict resolution policies,
which determine which transaction “wins” a data conflict and

194

is allowed to continue. Depending on the outcome, different
response messages must be sent. A correctly implemented
coherence protocol must properly validate all of these cases.
In addition, these proposals use commit arbitration, which also
affects conflict resolution outcomes.

EazyHTM style of HTMs also require changes. First, there
are transactional request messages. These message types are
similar to the conventional message types (like GetS), but the
messages also indicate that the sender is inside of a transaction.
At the end of a transaction, the processor sends an explicit
abort message (another new coherence message type) to its
peers. Lastly, the processors also keep track of additional
transactional sets such as the killer set. The killer set indicates
which processors have active transactions that may potentially
conflict with the current processor’s transaction. Cores now
need to track sets of lines that other cores have accessed, and
this carries a significant cost. The protocol now needs to be
aware of transactions, and the associated sets of addresses.

As an alternative to previous approaches, we propose
Forgive-TM, which allows mostly-lazy conflict detection on
conventional HTMs, without changing the existing coherence
layer.

III. FORGIVE-TM

In comparison to the prior work on lazy conflict detection,
Forgive-TM is a mechanism that allows support for delaying
data conflict detection without modifications to the coherence
protocol. The changes are limited to the existing TM hardware,
which lies within the core itself. This allows hardware vendors
to harness the performance advantage of lazy conflict detection
with only incremental hardware changes.

Forgive-TM’s approach is to “act first, ask forgiveness later 1.”
It performs a speculative write even if the core only has read
permission for the line, and write permission is acquired only
later, when the transaction is about to commit. This is allowed
because, as long as all read and write operations from a
transaction collectively “appear” to happen instantaneously,
the operations can be rearranged [24]. This does not mean
conflict detection is not done at all, and transactions that read
from or write to shared data are notified of any other writers
and will still be aborted.

In detail, Forgive-TM divides speculative writes into two
categories: writes done eagerly and writes done lazily. The
hardware chooses to perform some speculative writes eagerly,
and others lazily. If the write is to be done eagerly, it will be
done in the conventional manner. The processor first checks
for write permission, acquires it if needed, and updates the
local private cache. Because acquiring write permission entails
sending a coherence message (GetM messages), this notifies
the other cores of any potential conflict eagerly.

If the write is to be done lazily, the processor initially checks
for read permission only, not write permission. If the read
permission is not available, it requests it by sending a GetS

1also known as “it’s easier to ask forgiveness than it is to get permission” –
Grace Hopper

request. This ensures the transaction will be notified of any
later writes to the line; in that case, it will abort. However, the
write permission is not acquired yet.

Once a core has read permission for a line, the address of the
line is added to a set, the LazySet, and the write is performed
at the local private cache. The line is now dirty in the private
cache, but invisible to other threads. Additional speculative
reads and writes to the line by the transaction will retrieve or
store data from/into the private cache, without triggering any
coherence actions.

At commit time, the hardware begins the commit operation.
Commits are divided into two phases. The first phase is
the Commit-Prep phase. During this phase, the hardware
steps through each entry of the LazySet and acquires write
permission for each of them (by sending a GetM request). In
other words, the lazy write is now converted to an eager one.
Any other transactions that have speculatively accessed the
line are aborted (by receiving the GetM message). From the
committing transaction’s point of view, although the write into
the cache and the obtaining of write permission were done
in a different order, the end result is still the same: the core
speculatively updated data with the correct write permissions.

Delaying obtaining write permission for a line until commit
time makes the conflict detection lazy. Other transactions would
previously have seen the request for permission earlier, i.e.,
eagerly, and now see it at commit time instead. Otherwise,
other transactions are not affected.

The second phase is the Commit phase. This phase reuses
the baseline best-effort HTM commit mechanism, by clearing
the transactional bit from all speculative data, making all
speculatively written data visible to other threads.

Note that Forgive-TM does not require commit arbitration
like some other lazy HTM proposals do. In those proposals,
once a transaction starts the commit phase, the phase must
not be interrupted. If two committing transactions were to
have a data conflict, this would lead to an atomicity violation.
Therefore, a special message is sent to its peers to request
for commit permission, to hold off other transactions from
committing.

In comparison, Forgive-TM simply reuses the existing mech-
anisms of best-effort HTMs. If a transaction in the Commit-
Prep phase gets notified of a data conflict, the transaction
can simply abort since the transaction is not yet complete. If
the transaction in the Commit phase gets notified, the core
completes the transactional bit clearing and then provides the
newly updated data to the requester.

Hardware may choose to convert a lazily written line to
an eager one at any time before the transaction is committed.
This means that a write can be done lazily at first, but later
released as an eager write, e.g. to make room for another lazy
write; if we keep a finite-size LazySet, we may do this on a
LazySet eviction.

While Forgive-TM enables some writes to be handled lazily,
it very intentionally treats most eagerly, for two reasons. First,
not all writes benefit from being handled lazily [9], e.g., writes
to private data. Second, lazily done writes can impact commit

195

Processor

HTM Engine
Abort Hardware

Scoring Mechanism

LazySet

Private Cache
Data Tnx DtyLzy

LazySet
Address

Address

Address

MinEntryIdx

MinEntryScore

Address

Scoring Mechanism
Address Scores

Address

Address

Aborts

Aborts

Fig. 3: Architecture

latency [6]. These writes do not need to be done lazily, while
others will see benefit. In addition, we may only have room for
a small LazySet, and need to prioritize which lines should
be in that set. Forgive-TM includes a scoring mechanism
that determines which writes to do eagerly and which to do
lazily (details explained later in Section III-C).

A. Hardware Overview

Figure 3 shows the hardware overview of our proposal.
The items in white are common with baseline commercial
HTMs. Each processor has HTM hardware that manages the
transaction state and checks for any data conflicts. The private
caches contain the Data and Dirty bits for each cache line,
and additionally have Tnx bit, which indicates whether the
cache line was accessed speculatively or not. A speculatively
read line has only the Tnx bit set, whereas a speculatively
written line has both Tnx bit and Dirty bits set.

The items in gray are new. First, each cache line is augmented
with a Lazy bit. This bit indicates whether the line has been
written to lazily or not.

Second is the LazySet, which contains a set of addresses
that were written to lazily. It also contains the score of the
address. At the start of the transaction, this set is empty. As the
transaction issues writes, the set fills up. Each time a new entry
is added to the set, its score is computed using the Scoring
Mechanism and the MinEntryIdx and MinEntryScore
is updated. Later, when the transaction is complete the Commit-
Prep phase pulls entries from the LazySet one by one and
issues GetM requests.

Next is the Scoring Mechanism. Because the
LazySet is of limited size, each cache line has a score
associated with it, to arbitrate which lines should be in the
LazySet. The score attempts to approximate the probability
that the line will be involved in a data conflict. In Forgive-TM,
we use the number of aborts caused by a data address as the
score. We discuss how scoring is done in detail, along with
possible alternatives.

B. LazySet Maintenance

The LazySet is a structure that stores a set of addresses
(of cache lines) which were lazily written to. Tracking this set

serves two purposes. First, from it we can determine whether an
address was previously written in a lazy manner. Second, using
it, we can quickly determine which addresses the Commit-Prep
phase needs to handle.

During transaction execution, every time a write operation is
about to be done, the Lazy bit is checked. If set, the address
was already written to lazily, and the cache line is already part
of the speculative memory state (the private L1 cache in our
case). All subsequent writes to this cache line are done lazily.

If not set, but the line’s Dirty and Tnx bits are set, the
line was written eagerly, and subsequent writes to this line are
done eagerly as well.

In both of the above cases, the transaction had already written
the line. However, the line might not be in the private cache,
or might have only been read so far. In this case, we need to
check if the LazySet has space. As long as the LazySet
has space available, all writes are done lazily. The destination
address of the operation is added to the set, and the score of the
operation is computed using the Scoring Mechanism, and
updates the MinEntryIdx and MinEntryScore if needed.

Once the LazySet is full, any newly written lines must
compete for space. The score of the new write operation is
computed, and if it is higher than the smallest entry already
in the LazySet, the old entry is evicted from the set, and
replaced with the new address. The old entry is converted into
an eager write, by sending a GetM request for the address.
The new write is done lazily.

On the other hand, if the score of the new write is smaller
(or equal to) the smallest entry, then the new write operation
is not added to the LazySet, and is instead done eagerly.

Although both the private cache and the LazySet can
experience evictions, the end result is different. If a cache line
is evicted from the private cache and the line was speculative
and dirty, the transaction needs to be aborted. This is because
if the line is evicted, there is no way to recover the speculative
data. This is the case for lines written to eagerly or lazily.

C. Scoring Mechanism

Writes exhibit several different behaviors [9]. Some writes
are for managing the call stack, for pushing and popping
function local variables. Other writes are to private data. Finally,
some writes are to shared data, and it is these writes that an
HTM system should treat specially.

In addition, specifically for HTMs that detect and handle
conflicts lazily, the number of writes can directly impact the
commit latency. Each lazy write results in more operations that
need to be handled during the commit phase [6], [9].

As a result, Forgive-TM limits the size of the lazy set and
includes a mechanism to rank cache lines and do lazy writes
on only a subset of them. Each cache line that is written is
given a score. The score is a proxy of the likelihood that doing
the write eagerly will result in data conflicts. Lazy writes may
still trigger data conflicts, but doing writes lazily reduces the
window of vulnerability, as shown in Figure 1.

In Forgive-TM, we use the number of aborts triggered by that
address as the score. Each time the local transaction is aborted,

196

Write

No

Cache
Miss?

Yes Write Miss

lazy bit
set?

dirty bit
set?

No

Yes

No

Write Miss

tnx bit
set?

Yes

Writeback
Line

Update
Line

Yes

No

Write Miss

Update
Line

(a) Writes

Write Miss

Send
getM

Update
Line

No

<= previous
min?

Yes

LazySet
Full?

Yes

Add to
LazySet

Send
getS

No

Snd getM
prev_min

Update
Line

Evict
prev_m

Compute
Score

(b) Write Misses

Commit-Prep

No

LazySet
empty?

Yes

Send
getM

Commit

Evict
entry

(c) Commit-Prep

Fig. 4: Operation Flowcharts

the counter for the abort-triggering address is incremented. We
note that our scores are only “hints”, i.e. a “wrong” score
reduces the chances of avoiding an abort, but does not impact
correctness. This allows us to use a limited-size table.

We note there are other ways to compute scores of these
operations, and Section IV examines some of the alternatives.

D. Operation Flowcharts

In this section, we describe in detail how certain operations
are handled. First, Figure 4a depicts a flowchart of how Forgive-
TM handles writes. The items in white are common with
conventional HTMs, whereas the ones in gray are new to
Forgive-TM. Dark gray items are specific to the lazy write
path, whereas light gray items can be for either eager writes
or lazy writes.

When a transaction executes a speculative store, the processor
first checks if the cache line already exists in the cache. If
the line does not exist, the processor starts the write miss
procedure, which is shown in more detail in Figure 4b.

If the line does exist, the processor then checks the lazy bit.
If the bit is set, this means the line was previously written to
lazily. In this case, the current store operation simply updates
the cache line data (lazily) and completes.

If the bit is not set, we check to see if we have write
permission. If we do not, the write miss procedure is taken.

On the other hand, if the bit is set, then we further check if
the transactional bit is set. If the bit is clear, this indicates the
data contents of this line are not speculative, and this is the
only copy of the data in the system. Therefore, the data needs
to be written back before the write miss procedure is handled.

If the transactional bit is also set, then we simply update the
line. This case is where the line was already eagerly written,
so we just write it again.

Figure 4b is a flowchart of how write misses are handled
under Forgive-TM. When the processor needs to acquire the
cache line and/or coherence permissions for speculative writes,
it goes through the process shown here. First, the LazySet
is checked to see if space is available. If the LazySet is not
full, the write can be done lazily. The ScoringMechanism
computes the score for this write, and hardware adds the address
and the score to the LazySet. The processor then sends a
request for read permission, a GetS request, if needed, and
updates the data contents of the line.

On the other hand, if the LazySet is full, then we might
need to evict an existing entry. The newly computed score of
this write operation is compared against the current minimum
entry (prev_min) within the lazy set. If the score is greater
than the previous min, the previous min is converted into
an eager write, by requesting write permission via a getM
message. Once this is complete, prev_min is evicted from
the LazySet and the new address is added.

If the new score is not greater than the score of prev_min,
the write operation is done as usual, by sending a getM request
and updating the cache line contents.

Figure 4c shows what is done in the Commit-Prep phase.
Recall that at the end of a transaction, Forgive-TM inserts an
additional phase, the Commit-Prep phase, to ensure that all
lazily written lines are accounted for. Each entry within the
lazy set requests write permission. This happens while still
inside the transaction, before the official commit phase. Once
all of the addresses are properly converted into eager writes,
the regular commit starts.

197

TxBegin

① Rd(A) ➁ Wr(A)

TxBegin

④ TxCmit ➄ CmtPrp

 ③ GetS

⑥ GetM

⑦ TxCmit
(a) Writing Lazily

④ Rd(A)

① Wr(A)

TxBegin

➁ CmtPrp

① GetS

③ GetM

TxCmit

➄ GetS
⑥ TxAbrt

(b) Transaction Abort

Fig. 5: Examples in Forgive-TM

E. Examples

In this section, we go through a few examples and show
how various operations work under our proposal.

First, Figure 5a depicts an example of how writes can be
done lazily. As in Figure 2, we have one transaction that does
a read (¬) and one that does a write (­). This time however,
the core issues a GetS request (®) instead of a GetM request.
In other words, the core is requesting read permission only,
not write permission (yet). At the same time, the address A is
added to the LazySet.

Later, the transaction on the left hand side is ready to commit
(¯). Because from the transaction’s point of view, there was
no write to address A, the transaction is free to commit. In
effect, the transaction has “happened before” the right-hand
transaction.

The right-hand transaction is then ready to commit, and
the TM hardware starts the Commit-Prep phase (°). The TM
hardware steps through each entry in the lazy set and issues
GetM requests to each (±).

Once each line is properly accounted for, the TM hardware
starts the regular commit operations (²). From the thread’s
point of view, the transaction is complete, with read and write
permissions as needed for all speculatively accessed lines. In
other words, the transaction’s state is as if all write operations
were done eagerly, and there were no conflicts. Therefore, the
commit operation remains unchanged.

Figure 5b shows an example of a transaction failing to
commit. Initially, the transaction proceeds as normal, by doing
a lazy write and sending a GetS request (¬). Later, the
transaction starts the Commit-Prep phase (­), where the
HTM hardware steps through each entry in the lazy set and
requests write permission for each line (®). However before
the core acquires write permission for all lines, another core
requests read permission for the same line (¯). This will cause
the other core to send a GetS request (°). The first transaction,
before it was able to commit, receives this coherence message
and aborts as a result (±).

F. Discussion

Transactional store operations have a window of vulnerability,
during which another thread can trigger a data conflict abort.
As shown in Figure 1, eager conflict detection exposes a larger

TnxBegin LzWr(A) Commit

20 105

CmPr

100

LzEv(A)

50time=0

Fig. 6: Overflowed Lazy Write

window of vulnerability compared to lazy conflict detection.
By doing many writes lazily, Forgive-TM reduces the window
of vulnerability for many of these store operations, improving
program scalability.

However, not all stores are exclusively eager or lazy. Forgive-
TM may do some writes initially lazily, but later convert them
into an eager write. This happens because the lazy set has a
limited size. Even for these types of writes, the window of
vulnerability will be smaller than if it were written to eagerly
as soon as it occurred.

This scenario is depicted in Figure 6. Although the write
was initially done lazily, at cycle 20, the address was evicted
from the lazy set at cycle 50. In this case, the window of
vulnerability is 55 cycles, from the eviction from the lazy set,
until the commit. This is smaller compared to the example
in Figure 1a, which has a vulnerability window of 80 cycles.
Although 55 cycles is larger than a fully lazy write’s window
of 5 cycles, as in Figure 1b, this is still an improvement. We
will look at how the window of vulnerability changes later in
Section IV.

Forgive-TM builds on a baseline HTM system that is similar
to Intel’s TSX [1]. Transactional reads load data into the L1 and
L2 cache, and mark the L1 block as transactional. Transactional
eager writes takes advantage of the writeback nature of the
L1 cache and update the L1 cache only. Forgive-TM builds
on this by implementing lazy writes by updating the private,
transactional storage without acquiring write permissions (only
read permissions). The cache that contains the original data is
left alone, for both eager and lazy writes. Although Forgive-
TM does not require a writeback L1, it should not be difficult
to implement Forgive-TM on a writethrough-based HTM
system (e.g., Power [3] or BlueGene/Q [30]).

The baseline TSX implementation provides strong isola-
tion [31]. Forgive-TM provides the same strong isolation, and
non-transactional operations will view the entire transaction
as a single unit. However, as discussed by Dalessandro and
Scott [32], guarantees provided by transactional memory are
orthogonal to the memory consistency model, and as such
strong isolation does not provide transactional sequential
consistency.

IV. EVALUATION AND RESULTS

To evaluate the effectiveness of Forgive-TM, we modified an
architecture simulator to support hardware transactions similar
to Intel’s TSX [33], [34]. The simulated architecture is an 8 core,
4-way out-of-order processor with private L1 and L2 caches.
The 32KB L1 cache acts as a private cache for speculative
data, while the 128KB L2 cache stores the original data. The
cores are connected to each other using a shared bus, and the

198

 yada intr lab gnm ssca2 kmn+ kmn vcn+ vcn MEAN
0

1

2

3

4

5

6

7

8

9
Baseline
ForgiveTM

P
a

ra
lle

l S
p

e
e

d
u

p

Fig. 7: Overall Results

L3 cache (8MB) is shared. The scoring table is 64 entries, and
the lazy set is 16 entries.

For applications, we use the STAMP benchmarks, with
updates to more closely match the draft C++ transactional
memory support [35], [36]. Bayes was excluded since the
runtime is not deterministic. Heap allocation calls were
converted to use per-thread pools to reduce data conflicts on
these items. Since HTM does not ensure forward progress,
each thread keeps a private counter of the number of times
it’s attempted a transaction. On conflict aborts we retry and
increment the counter. However, if the counter is already too
large (we use a threshold of 12 attempts), we fall back to
turning a transaction into a critical section by acquiring a
global mutex lock (which aborts outstanding transactions and
prevents any from starting) [37]. All experiments were run
with recommended simulator input.

A. Analysis

The overall performance improvement can be seen in
Figure 7. Forgive-TM achieves 33% performance improvement
in yada, 49% in genome, and over 2.1x improvement in intruder.
There is limited improvement with kmeans, labyrinth, ssca2,
and vacation since there is a limited number of conflict aborts in
these benchmarks in the first place. Overall, Forgive-TM gives
a geometric mean speedup of 19% across the benchmarks.

It appears that we achieve superlinear speedup with vaca-
tion, even with the baseline sytem. In vacation, the threads
manipulate a shared red-black tree. Depending on the order
of operations, this can lead to a different tree organization
and different tree height. If aborts are infrequent enough (as
shown here), we sometimes observe performance greater than
the number of threads would seem to allow.

Figure 8 looks at the distribution of the types of aborts.
Eager/Eager aborts are data conflict aborts between eagerly
accessed (and detected) read and write operations. Eager/Lazy
aborts are between an eager access and a lazy access. This most
often happens when a lazy write conflicts with an eager write
(because the lazy write acts like an eager read), or vice-versa.
Commit aborts occur when a transaction with lazy writes is in
the Commit-Prep phase and converts a lazy write to an eager
one; this may trigger a conflict with eager or lazy accesses
in concurrent transactions. The baseline scheme will has no
Eager/Lazy or Commit aborts. Fallback aborts occur when

the fallback path is activated. This commonly occurs when
a transaction is aborted 12 times due to a conflict abort (for
capacity aborts the fallback path is taken immediately).

We show the number of aborts of each type, normalized to
the total number of aborts for the baseline HTM. Lazy conflict
detection can significantly reduce the number of aborts, in
some cases up to 1/5, and by an average of 39%. Most of the
remaining data conflict aborts have been converted to lazy ones,
triggered at pre-commit time. In all but genome and yada, all
of the eager conflict aborts were converted to Commit aborts.

Figure 9 shows how the window of vulnerability is affected
by introducing lazy writes. Recall that each speculative
write results in a window of increased vulnerability for the
transaction, because the additional entry in the transaction’s
write set can cause the transaction to be aborted if any other
thread reads (or writes) the line. We quantify the window of
vulnerability for speculative stores by normalizing its length
to the length of the transaction. Thus, a 1.0 indicates that
the duration of the entire transaction is the line’s window of
vulnerability, whereas 0.0 indicates that there is no window.

We compute a weighted average of all written lines to get
the overall window of vulnerability for a given transaction.
The weights are computed using the number of times the
address was responsible for an abort. The idea is that the more
“troublesome” a data address is, the more important it is to
consider its window of vulnerability. 2

We then compute a weighted average of all successful
transactions’ windows to get a single vulnerability metric for
each run. The weights in this case are the duration (in cycles)
of each transaction. The rationale here is that the longer the
transaction is, the more important it is to have a small window
of vulnerability.

For all benchmarks, Forgive-TM greatly reduces the window
of vulnerability. On average, the window is 77% smaller for
Forgive-TM than for the baseline HTM (1/7). This helps explain
the large drop in aborts in most benchmarks in Figure 7.

One concern with lazy writes is that waiting until commit
time to do the write operations can extend the length of the
commit operation itself [9]. Because the coherence operations
are delayed, this means we have less work to hide the latency
of that operation.

We examine this overhead in Figure 10. We compute the
overhead of the Commit-Prep phase by computing the ratio
of time in Commit-Prep versus the transaction body. In
most cases the overhead of Commit-Prep is limited. Kmeans
(both versions) and ssca2 do have a larger percentage than the
others, though. This is because the transaction sizes in these
benchmarks are very short.

Note however, that unlike TCC-style HTMs where commit
arbitration can result in serialization of transaction commits,
Forgive-TM relies on the conflict detection of the existing
HTM hardware and thus can commit multiple transactions in

2We considered using the maximum window across all lines for each
transaction as that transaction’s window; however, we found that misleading
since it overestimates the importance of “uninteresting” stores, such as those
to the stack.

199

Fig. 8: Abort Types

vcn

vcn+

kmn

kmn+

ssca2

gnm

lab

intr

yada

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

ForgiveTM

Baseline

Weighted Average Window Of Vulnerability

Fig. 9: Overall Window of Vulnerability

yada intr lab gnm ssca2 kmn+ kmn vcn+ vcn
%

20%

40%

60%

80%

100%

C
m

m
tP

re
p

 O
ve

rh
e

a
d

Fig. 10: Overhead of Commit-Prep

parallel. A side effect of our mechanism is that a transaction
may encounter a data conflict during the Commit-Prep phase
and be aborted. However, this was rare in our experiments.

In Figure 11, we investigate in more detail how lazy conflict
detection improves performance over the baseline configuration.
We look at the histogram of the number of conflict aborts due
to eager writes for two benchmarks. We sort all lines according
to their conflict aborts in the baseline HTM and show data for
the top 50.

There are two things that can be noticed here. First, under
the baseline configuration, there is significant skew in the
number of aborts each address causes. In comparison, under
Forgive-TM, the distribution of such aborts is much flatter.

0

50

100

150

200

250

Baseline
Forgive-TM

Data Addresses

#
 A

b
o

rt
s

(a) # Eager Aborts in Yada

0

10

20

30

40

50

60

70

80

90

Baseline
Forgive-TM

Data Addresses

#
 A

b
o

rt
s

(b) # Eager Aborts in Genome

Fig. 11: # Eager Aborts Triggered by Each Address

While some aborts are transformed from eager to lazy ones, as
can be seen in Figure 8, the total number of aborts are reduced
as well so this is not the entire explanation. Second, it also
shows that the scoring mechanism does a good job in selecting
only the addresses that can be problematic. After experiencing
a few aborts, the system quickly learns which addresses are
problematic and preemptively shifts them over to the lazy set.
If the lazy set was less effective, this would result in addresses
getting evicted and potentially triggering more eager aborts.

B. Scoring Mechanism Sensitivity Studies

We now perform sensitivity studies on two aspects of the
lazy set: the size of the lazy set, and the scoring mechanism.
Not all writes are equal, and some writes are more “conflict-
prone” than others [9]. Therefore, Forgive-TM computes a
score for each write and only does writes lazily to those that
are most likely to lead to a future conflict.

First, in Figure 12a, we look at how the size of the lazy set
affects overall performance. The larger the lazy set, the more
writes that can be done lazily. The scoring policy used here is
the Addr policy, which will be explained later.

We consistently see higher performance with a larger
maximum lazy set size. Although a large lazy set can result in

200

Addr (04) Addr (08) Addr (16) * Addr (32) Addr (64)
4

4.5

5

5.5

6
P

a
ra

lle
l S

p
e

e
d

u
p

(a) Using Different LazySet Sizes

Age (4) Inst (4) Addr (4) InstAddr (4)
4

4.5

5

5.5

6

P
a

ra
lle

l S
p

e
e

d
u

p

(b) Using Different Scoring Policies

Fig. 12: LazySet Management and Performance

a longer Commit-Prep phase overhead, the aborts avoided by
doing lazy writes can more than overcome the Commit-Prep
overhead.

In Figure 12b we compare several scoring policies. Once
the lazy set is full, there needs to be some mechanism to
discriminate writes. For this experiment, we use a 4-entry lazy
set, to emphasize the difference between policies.

The Age policy prefers older writes over younger writes
within a transaction. Under this policy, hardware adds all writes
to the lazy set until the set is full, and never evicts anything
from the lazy set. This policy is the simplest, and acts as a
baseline policy to any scoring scheme.

The Inst policy keeps track of the number of aborts each
write instruction eventually triggers, and uses that number as
its score. The idea is that instructions involved in many data
conflict aborts are likely to trigger them again. When the first
speculative write for a transaction happens for a given line,
the PC of the write instruction is saved in an instruction score
table, along with the address that was written. Later, when a
coherence request results in a data conflict abort, the address is
matched in the instruction score table, and the corresponding
PC’s score is incremented.

We separate store instructions into just two classes: those
that have been involved in aborts and those that have not.
We tried schemes that kept a continuum of scores, but they
worked no better. The key benefit comes from differentiating
“troublesome” stores from other stores.

The Addr is the default Forgive-TM policy, described in
Section III-C and evaluated earlier. Each core individually
keeps track of the number of aborts triggered by each cache
line. The idea is that a data address that triggers a lot of aborts,
is “hot,” and will continue to be popular.

Last, the InstAddr policy uses the sum of the scores from
Inst and Addr. This policy tries to take the best of both the
instruction-based scoring policy and the address-based scoring

Base Age (4) Inst (4) Addr (4) IA (4)
0

1

2

3

4

5

6

0

0.05

0.1

0.15

0.2

0.25

0.3
Speedup VulnWindow

P
a

ra
lle

l S
p

e
e

d
u

p

V
u

ln
 W

in
d

o
w

(a) Intruder

Base Age (4) Inst (4) Addr (4) IA (4)
0

2

4

6

8

10

0

0.2

0.4

0.6

0.8
Speedup VulnWindow

P
a

ra
lle

l S
p

e
e

d
u

p

V
u

ln
 W

in
d

o
w

(b) Vacation

Fig. 13: Per-policy Window of Vulnerability Trends

policy. When combining scores, the binary score from the Inst
policy is treated as either a 0 or a 2.

As can be seen in Figure 12b, scoring policies does have
an affect on overall performance. Instead of just issuing all
writes lazily until the lazy set is full (Age), having some sort
of knowledge on the likelihood of future conflicts improves
performance by 10%, and up to 1.8x in intruder. Between the
three other policies (Inst, Addr, InstAddr), the performance
results are similar, although for some policies work better for
some benchmarks than others. Because maintaining instruction-
based scores requires additional complexity since we need to
track which instruction triggered the first write to each cache
line, to assign blame to an instruction on an abort, Forgive-TM
implements the simpler policy, the Addr policy.

We drill a bit deeper into the impact of the scoring policy.
Figure 13 looks at the average window of vulnerability
for two selected benchmarks, intruder and vacation, under
different scoring policies. Recall from Figure 9 the window of
vulnerability for a given benchmark is computed by taking the
(weighted) average window of each transaction, which itself is
the weighted average of each write operations’ window. We
show the parallel speedup and weighted average window of
vulnerability for baseline, and Forgive-TM using Age, Inst,
Addr, InstAddr (IA) policies.

The baseline policy has the largest window of vulnerability.
Under Forgive-TM, a subset of the write operations are
converted into lazy writes, which reduces the size of the window.
Since fewer write addresses are exposed to potential conflict,
the number of conflict aborts tend to decrease, improving
performance.

For intruder, the baseline has a large window of vulnerability,
making it quite sensitive to data conflict aborts. Although
converting eager writes to lazy writes will reduce the window,
the size of the lazy set is limited. Instead of wasting space in

201

the lazy set, it becomes important to be more selective. As the
policy makes better decisions, the performance increases.

In comparison, under vacation there is almost no perfor-
mance sensitivity to the treatment of stores. The window of
vulnerability is small even for the baseline, and the parallel
speedup for the baseline is already excellent. Thus, while
Forgive-TM is doing what it’s intended to do, shrinking the
window of vulnerability, there is little room for performance
improvement.

V. RELATED WORK

TCC [8] was one of the first proposals for lazy transactions.
it works by issuing writes locally without notifying the other
cores. Later, when the transaction is complete, the core sends
a commit request on a shared bus. The commit phase works
by broadcasting the transaction’s write set on the bus, aborting
any conflicting transactions in the process.

Following TCC, there have been various extensions with
the goal of improving the performance of the commit phase.
Scalable TCC [26] and BulkSC [27] take a similar approach to
TCC, but overcome the requirement of a shared bus by adding
a commit arbiter. ScalableBulk [28] and BulkCommit [29]
divide the commit phase into smaller pieces, called chunks so
that multiple commits can be done in parallel.

Instead of adding an explicit commit phase, EazyHTM [5]
adds transaction abort request messages to the coherence
protocol instead. While executing a transaction, a core sends
special TM specific requests to notify other cores that its
transaction is currently working on a given address. This allows
transactions to build a set of conflicting transactions so, when
a transaction is ready to commit, it can send abort requests
to all transactions that it knows have performed conflicting
memory accesses.

PI-TM [12] extends EazyHTM by adding bits called pi
bits to the private cache. EazyHTM has a disadvantage
when recovering from a transaction abort: which part of the
speculative data had actually conflicted with another core is
not known, therefore abort recovery can be complicated. pi
bits can accelerate this phase.

LV* [13] also tracks sets of conflicting transactions at each
core. During execution, transactions snoop coherence messages
to keep track of with which other transactions it conflicts (a
killer map). At commit, a commit message is broadcast to abort
conflicting transactions, whereas at abort, an abort message is
broadcast to clear its killer map entry in the other cores.

SI-TM [38] is a more ambitious proposal that provides
snapshot isolation in hardware TM, instead of the usual opacity
guarantee that other systems provide [24]. Snapshot isolation
is a weaker correctness guarantee and therefore can allow
additional scalability. In addition to snapshot isolation, SI-TM
also provides lazy conflict detection, through multiversioned
memory and transaction timestamps. However, supporting such
a system requires extensive changes, including changes to the
memory controller.

Like Forgive-TM, there have also been proposals to take
an existing HTM and add lazy conflict detection capabilities.

However, these proposals use LogTM as their baseline HTM.
Transactional Store Buffers [10], [11], similar to Forgive-
TM, do not immediately do a coherence state change when
issuing a lazy write. However, at commit time, transactions
start commit arbitration to make sure the winning transaction
can commit exclusively. In addition, taking advantage of the
fact that LogTM can provide sophisticated conflict resolution
schemes, cores with the commit token will have their coherence
messages flagged to always win conflicts with other sharers
(i.e. committers NACK other cores).

SEL-TM [9] is similar in that it builds on top of LogTM.
However, instead of a first-come-first-serve scheme (using
an Age based scheme in our terminology), SEL-TM uses a
sophisticated scoring mechanism to prioritize conflict prone
addresses. However, the scoring mechanism is guided in part
by the ability to NACK conflicting requests and survive them,
which do not exist in current best-effort HTMs.

There have also been proposals that allow a mix of both
eager and lazy transactions.

FlexTM [39] detects conflicts eagerly and keeps track of
which transactions conflict with which in hardware. However,
although detection is done eagerly, management can be done
lazily. A software routine, instead of a hardware one, is called
to determine what to do with the conflict, including explicitly
aborting other transactions at commit time.

DynTM [40] takes a similar approach to FlexTM. Lazy
transactions detect conflicts eagerly, but the conflicts are
managed lazily by sending explicit AbortTx requests at
commit time. Hardware may instead choose to run a transaction
eagerly, where it automatically aborts or stalls conflicting
transactions.

Speculation-Based Conflict Resolution [41] also detects
conflicts eagerly but handles them lazily. Unlike other schemes,
however, transactions with write-after-read conflicts are ordered.
When conflicting transactions attempt to commit, the commit
is done in the write order, and aborts are avoided.

VI. CONCLUSION

Conventional hardware transactional memory systems ea-
gerly detect conflicts between transactions by taking advantage
of the existing coherence protocol. Coherence requests are used
as notifications for possible conflicts with the transaction’s read
and write sets.

Lazy conflict detection can provide better scalability, but
previously proposed implementations require changes to parts
of the processor that commercial vendors are reluctant to touch.
Forgive-TM allows conventional HTM systems to use lazy
conflict detection, while still keeping the coherence protocol
unmodified. It does so by delaying the coherence requests for
write permission. When the transaction reaches the commit
instruction, the HTM system now sends the write permission
request messages. This simple reordering of operations allows
Forgive-TM to provide better scalability for multithreaded
applications.

202

REFERENCES

[1] Intel Corporation, “Intel® architecture instruction set extensions pro-
gramming reference,” 2012.

[2] C. Jacobi, T. Slegel, and D. Greiner, “Transactional memory architecture
and implementation for ibm system z,” in Intl. Symp. on Microarchitecture
(MICRO), ser. MICRO 45, Dec 2012, pp. 25–36.

[3] H. W. Cain, M. M. Michael, B. Frey, C. May, D. Williams, and H. Le,
“Robust architectural support for transactional memory in the power
architecture,” in Intl. Symp. on Computer Architecture, ser. ISCA ’13,
2013, pp. 225–236.

[4] N. Stephens, “New technologies in the arm architecture,”
https://connect.linaro.org/resources/bkk19/new-technologies-in-the-
arm-architecture/; accessed 15-Mar-2019.

[5] S. Tomić, C. Perfumo, C. Kulkarni, A. Armejach, A. Cristal,
O. Unsal, T. Harris, and M. Valero, “Eazyhtm: Eager-lazy hardware
transactional memory,” in Proceedings of the 42Nd Annual IEEE/ACM
International Symposium on Microarchitecture, ser. MICRO 42. New
York, NY, USA: ACM, 2009, pp. 145–155. [Online]. Available:
http://doi.acm.org/10.1145/1669112.1669132

[6] J. Bobba, K. E. Moore, H. Volos, L. Yen, M. D. Hill, M. M. Swift,
and D. A. Wood, “Performance pathologies in hardware transactional
memory,” SIGARCH Comput. Archit. News, vol. 35, no. 2, pp. 81–91, Jun.
2007. [Online]. Available: http://doi.acm.org/10.1145/1273440.1250674

[7] S. Park, M. Prvulovic, and C. J. Hughes, “Pleasetm: Enabling transaction
conflict management in requester-wins hardware transactional memory,”
in 2016 IEEE International Symposium on High Performance Computer
Architecture (HPCA), March 2016, pp. 285–296.

[8] L. Hammond, V. Wong, M. Chen, B. D. Carlstrom, J. D. Davis,
B. Hertzberg, M. K. Prabhu, H. Wijaya, C. Kozyrakis, and
K. Olukotun, “Transactional memory coherence and consistency,”
in Proceedings of the 31st Annual International Symposium on
Computer Architecture, ser. ISCA ’04. Washington, DC, USA:
IEEE Computer Society, 2004, pp. 102–. [Online]. Available:
http://dl.acm.org/citation.cfm?id=998680.1006711

[9] L. Zhao, W. Choi, and J. Draper, “Sel-tm: Selective eager-lazy manage-
ment for improved concurrency in transactional memory,” in 2012 IEEE
26th International Parallel and Distributed Processing Symposium, May
2012, pp. 95–106.

[10] R. Titos-Gil, A. Negi, M. E. Acacio, J. M. Garcı́a, and P. Stenstrom,
“Eager beats lazy: Improving store management in eager hardware
transactional memory,” IEEE Transactions on Parallel and Distributed
Systems, vol. 24, no. 11, pp. 2192–2201, Nov 2013.

[11] A. Negi, R. Titos-Gil, M. E. Acacio, J. M. Garcia, and P. Stenstrom, “Ea-
ger meets lazy: The impact of write-buffering on hardware transactional
memory,” in 2011 International Conference on Parallel Processing, Sept
2011, pp. 73–82.

[12] ——, “Pi-tm: Pessimistic invalidation for scalable lazy hardware transac-
tional memory,” in IEEE International Symposium on High-Performance
Comp Architecture, Feb 2012, pp. 1–12.

[13] A. Negi, M. M. Waliullah, and P. Stenstrom, “Lv*: A class of
lazy versioning htms for low-cost integration of transactional memory
systems,” in Proceedings of the Second International Forum on
Next-Generation Multicore/Manycore Technologies, ser. IFMT ’10.
New York, NY, USA: ACM, 2010, pp. 5:1–5:10. [Online]. Available:
http://doi.acm.org/10.1145/1882453.1882460

[14] J. G. Beu, J. A. Poovey, E. R. Hein, and T. M. Conte, “High-speed
formal verification of heterogeneous coherence hierarchies,” in 2013
IEEE 19th International Symposium on High Performance Computer
Architecture (HPCA), Feb 2013, pp. 566–577.

[15] D. Abts, S. Scott, and D. J. Lilja, “So many states, so little time: verifying
memory coherence in the cray x1,” in Proceedings International Parallel
and Distributed Processing Symposium, April 2003, pp. 10 pp.–.

[16] D. J. Sorin, M. D. Hill, and D. A. Wood, “A primer on memory
consistency and cache coherence,” Synthesis Lectures on Computer
Architecture, vol. 6, no. 3, pp. 1–212, 2011. [Online]. Available:
https://doi.org/10.2200/S00346ED1V01Y201104CAC016

[17] A. DeOrio, A. Bauserman, and V. Bertacco, “Post-silicon verification for
cache coherence,” in 2008 IEEE International Conference on Computer
Design, Oct 2008, pp. 348–355.

[18] “MOESI CMP directory,” http://gem5.org/MOESI CMP directory.
[19] S. Wasson, “Errata prompts intel to disable tsx in haswell, early broadwell

cpus,” http://techreport.com/news/26911/errata-prompts-intel-to-disable-
tsx-in-haswell-early-broadwell-cpus; accessed 15-Nov-2015.

[20] O. Matthews and D. J. Sorin, “Architecting hierarchical coherence
protocols for push-button parametric verification,” in Proceedings of the
50th Annual IEEE/ACM International Symposium on Microarchitecture,
ser. MICRO-50 ’17. New York, NY, USA: ACM, 2017, pp. 477–489.
[Online]. Available: http://doi.acm.org/10.1145/3123939.3123971

[21] I. Wagner and V. Bertacco, “Mcjammer: Adaptive verification
for multi-core designs,” in Proceedings of the Conference on
Design, Automation and Test in Europe, ser. DATE ’08. New
York, NY, USA: ACM, 2008, pp. 670–675. [Online]. Available:
http://doi.acm.org/10.1145/1403375.1403539

[22] A. Ros and S. Kaxiras, “Complexity-effective multicore coherence,”
in 2012 21st International Conference on Parallel Architectures and
Compilation Techniques (PACT), Sep. 2012, pp. 241–251.

[23] M. Zhang, J. D. Bingham, J. Erickson, and D. J. Sorin, “Pvcoherence:
Designing flat coherence protocols for scalable verification,” in 2014
IEEE 20th International Symposium on High Performance Computer
Architecture (HPCA), Feb 2014, pp. 392–403.

[24] T. Harris, J. Larus, and R. Rajwar, “Transactional memory,
2nd edition,” Synthesis Lectures on Computer Architecture,
vol. 5, no. 1, pp. 1–263, 2010. [Online]. Available:
https://doi.org/10.2200/S00272ED1V01Y201006CAC011

[25] L. Ceze, J. Tuck, J. Torrellas, and C. Cascaval, “Bulk disambiguation
of speculative threads in multiprocessors,” in Intl. Symp. on Computer
Architecture, ser. ISCA ’06, 2006, pp. 227–238.

[26] H. Chafi, J. Casper, B. D. Carlstrom, A. McDonald, C. C. Minh, W. Baek,
C. Kozyrakis, and K. Olukotun, “A scalable, non-blocking approach to
transactional memory,” in 2007 IEEE 13th International Symposium on
High Performance Computer Architecture, Feb 2007, pp. 97–108.

[27] L. Ceze, J. Tuck, P. Montesinos, and J. Torrellas, “Bulksc: Bulk
enforcement of sequential consistency,” in Proceedings of the 34th
Annual International Symposium on Computer Architecture, ser. ISCA
’07. New York, NY, USA: ACM, 2007, pp. 278–289. [Online].
Available: http://doi.acm.org/10.1145/1250662.1250697

[28] X. Qian, W. Ahn, and J. Torrellas, “Scalablebulk: Scalable cache
coherence for atomic blocks in a lazy environment,” in Proceedings
of the 2010 43rd Annual IEEE/ACM International Symposium
on Microarchitecture, ser. MICRO ’43. Washington, DC, USA:
IEEE Computer Society, 2010, pp. 447–458. [Online]. Available:
https://doi.org/10.1109/MICRO.2010.29

[29] X. Qian, J. Torrellas, B. Sahelices, and D. Qian, “Bulkcommit:
Scalable and fast commit of atomic blocks in a lazy multiprocessor
environment,” in Proceedings of the 46th Annual IEEE/ACM
International Symposium on Microarchitecture, ser. MICRO-46. New
York, NY, USA: ACM, 2013, pp. 371–382. [Online]. Available:
http://doi.acm.org/10.1145/2540708.2540740

[30] M. Ohmacht, A. Wang, T. Gooding, B. Nathanson, I. Nair, G. Janssen,
M. Schaal, and B. Steinmacher-Burow, “Ibm blue gene/q memory
subsystem with speculative execution and transactional memory,” IBM
Journal of Research and Development, vol. 57, no. 1/2, pp. 7:1–7:12,
Jan 2013.

[31] N. Chong, T. Sorensen, and J. Wickerson, “The semantics of
transactions and weak memory in x86, power, arm, and c++,” in
Proceedings of the 39th ACM SIGPLAN Conference on Programming
Language Design and Implementation, ser. PLDI 2018. New
York, NY, USA: ACM, 2018, pp. 211–225. [Online]. Available:
http://doi.acm.org/10.1145/3192366.3192373

[32] L. Dalessandro and M. L. Scott, “Strong isolation is a weak idea,” in
TRANSACT: 4th ACM SIGPLAN Workshop on Transactional Computing,
2009.

[33] J. Renau, B. Fraguela, J. Tuck, W. Liu, M. Prvulovic, L. Ceze, S. Sarangi,
P. Sack, K. Strauss, and P. Montesinos, “SESC simulator,” January 2005,
http://sesc.sourceforge.net.

[34] J. Poe, C.-B. Cho, and T. Li, “Using analytical models to efficiently
explore hardware transactional memory and multi-core co-design,”
Computer Architecture and High Performance Computing, Symposium
on, vol. 0, pp. 159–166, 2008.

[35] C. C. Minh, J. Chung, C. Kozyrakis, and K. Olukotun, “STAMP: Stanford
Transactional Applications for MultiProcessing,” in IEEE International
Symposium on Workload Characterization, 2008, pp. 35–46.

[36] W. Ruan, Y. Liu, and M. Spear, “Stamp need not be considered
harmful,” in TRANSACT: 9th ACM SIGPLAN Workshop on Transactional
Computing, 2014.

[37] Intel Corporation, “Intel® 64 and ia-32 architectures optimization
reference manual,” 2014.

203

[38] H. Litz, D. Cheriton, A. Firoozshahian, O. Azizi, and J. P. Stevenson,
“Si-tm: Reducing transactional memory abort rates through snapshot
isolation,” in Proceedings of the 19th International Conference on
Architectural Support for Programming Languages and Operating
Systems, ser. ASPLOS ’14. New York, NY, USA: ACM, 2014, pp. 383–
398. [Online]. Available: http://doi.acm.org/10.1145/2541940.2541952

[39] A. Shriraman, S. Dwarkadas, and M. L. Scott, “Flexible decoupled
transactional memory support,” in 2008 International Symposium on
Computer Architecture, June 2008, pp. 139–150.

[40] M. Lupon, G. Magklis, and A. Gonzalez, “A dynamically adaptable
hardware transactional memory,” in Proceedings of the 2010 43rd
Annual IEEE/ACM International Symposium on Microarchitecture, ser.
MICRO ’43. Washington, DC, USA: IEEE Computer Society, 2010,
pp. 27–38. [Online]. Available: https://doi.org/10.1109/MICRO.2010.23

[41] R. Titos, M. E. Acacio, and J. M. Garcia, “Speculation-based conflict
resolution in hardware transactional memory,” in 2009 IEEE International
Symposium on Parallel Distributed Processing, May 2009, pp. 1–12.

204

