
GIRAF: General purpose In-storage Resistive Associative Framework

Leonid Yavits, Roman Kaplan and Ran Ginosar
Faculty of Electrical Engineering 

Technion, Israel Institute of Technology
leonid.yavits@nububbles.com, romankap@gmail.com, ran@ee.technion.ac.il

I. INTRODUCTION
The premise of data centric, or near-data processing is 

reducing the memory access time by cutting the physical 
distance and increasing the bandwidth between processing units
and memory. Since its inception, data centric processing mainly 
meant processing-in-memory (PIM). To process datasets larger 
than memory footprint, processing moves further down the 
memory hierarchy, achieving processing-in-storage.

In this paper, we propose a new General purpose In-data
Resistive Associative Framework (GIRAF). We present the
GIRAF architecture and its processing paradigm. GIRAF 
simultaneously functions as a data storage and a massively 
parallel fine-grain associative SIMD processor. GIRAF is 
based on Resistive Content Addressable Memory (RCAM).
The processing is performed inside the storage arrays. There is 
no data transfer outside the storage arrays through a bandwidth 
limited interface to either a host CPU or a dedicated near-data
processing unit. In GIRAF, every memory bit is directly 
connected to processing transistors, enabling ultra-high peak
bandwidth and computation throughput while reducing the 
energy consumption, mainly attributed to reduction in data 
transfer.

II. GIRAF ARCHITECTURE
GIRAF employs resistive memory, organized in RCAM 

modules. Resistive memory stores information by modulating 
the resistance of nanoscale storage elements (memristors).
Memristors are two-terminal devices, where the resistance of 
the device is changed by the electrical current or voltage. The 
resistance of the memristor is bounded by a minimum 
resistance ܴைே (low resistive state, logic ‘1’) and a maximum 
resistance ܴைிி (high resistive state, logic ‘0’).

RCAM is a scalable and highly dense alternative to CMOS
CAM. Our GIRAF architecture uses a resistive crossbar and 
additional peripheral circuitry (Figure 1) to support associative 
storage and processing. RCAM module, presented in Figure 1,
is the heart of GIRAF architecture. It comprises a RRAM
crossbar, in which each memory line is also a baseline 
processing unit (PU), and peripheral circuitry. The latter 
includes key and mask registers, TAG logic, and optional daisy-
chain interconnect. The basic RCAM cell is created by virtually 
pairing two RRAM cells (memristors), holding complementary 
values ܴ and തܴ.

The key register (Figure 1a) contains a key data word to be 
written or compared against. The mask register defines the 
active fields for write, compare and read operations, enabling 

bit selectivity. The TAGmarks the rows that are matched by the 
compare operation and are to be affected by the successive
parallel write.  A daisy-chain like bitwise interconnect allows 
PUs to intercommunicate, all PUs in parallel. 

RCAM compare operation is performed as follows. The
Match/Word line is precharged and the key is set on Bit (key-
not on Bit-not) lines. In the columns that are ignored during 
comparison, the Bit and Bit-not lines are asserted ‘1’. If all 
unmasked bits in a row match the key (i.e., when Bit line ‘1’ is
applied to an ܴைே memristor and Bit-not line ‘0’ is applied to 
an ܴைிி memristor, or vice versa), the Match/Word line 
remains high, and ‘1’ is sampled into the corresponding tag bit.
If at least one bit mismatches, the Match/Word line discharges 
through an ܴைே memristor and ‘0’ is sampled into the tag.

Write operation is performed in two phases. First, the ܸ ≥ ைܸே voltage (where ைܸே is a threshold voltage required to 
switch to the "on" state) is asserted to applicable Bit lines (to 
write ‘1’s) and Bit-not lines (to write ‘0’s). Second, the ܸ ≤ைܸிி voltage (where ைܸிி is a threshold voltage to switch to the 
"off" state) is asserted to Bit-not lines (to complement the ‘1’s) 
and Bit lines (to complement ‘0’s). The write affects only the 
tagged rows.

III. ASSOCIATIVE PROCESSING
Associative processor (AP) is a non-von-Neumann in-

memory computer [2][3]. AP is based on CAM, which allows 
comparing the entire dataset to a search pattern (key), tagging 

Figure 1: RCAM Module: (a) Resistive Crossbar and (b) Peripheral 
Circuitry.

476

2019 28th International Conference on Parallel Architectures and Compilation Techniques (PACT)

978-1-7281-3613-4/19/$31.00 ©2019 IEEE
DOI 10.1109/PACT.2019.00053



the matching row, and writing another pattern to all tagged 
rows. AP performs no computations in conventional sense. 
Most arithmetic and logic operations can be structured as series 
of Boolean functions, which are implemented by the AP as 
follows. 

The dataset is stored in CAM, typically one data element per 
CAM row (constituting a PU). AP controller sequentially 
matches all possible input combinations of a function
arguments against the entire CAM content. The matching CAM 
rows are tagged, and the corresponding function values 
(precalculated and embedded in AP microcode), are written 
into the designated output fields of the tagged rows. 

For an ݉-bit argument ݔ) ݔ ∈ dataset), any Boolean 
function ܾ(ݔ) has at most 2௠ possible values (“at most”
because of “don’t cares”). Therefore, a brute-force approach
would incur up to ܱ(2௠) cycles, regardless of the dataset size. 

More efficiently, arithmetic operations can be performed in 
GIRAF in a word-parallel, bit-serial manner, reducing time 
complexity from ܱ(2௠) to ܱ(݉). For instance, vector addition 
may be performed as follows [3]. Suppose that two ݉-bit
RCAM columns hold vectors A and B; the sum S=A+B is 
written onto another ݉-bit column S. A one-bit column C holds 
the carry bit. The operation is carried out as ݉ single-bit
additions:ܿ[: :]ݏ | [ ]௜ = ܽ[: ]௜ + ܾ[: ]௜ + ܿ[: ] ,        ݅ = 0, … , ݉ − 1 
where ݅ is the bit index, ‘:’ means all elements of the vector, and 
c and s are, respectively, the carry and sum bits. The single-bit
addition is carried out in a series of steps. In each step, one entry 
of the full adder truth table is matched against the contents of 
the ܽ[: ]௜, ܾ[: ]௜, ܿ[: ] bit columns and the matching rows (PUs) 
are tagged; the logic result (two-bit output of the truth table is 
written into the ܿ[: ] and :]௜ݏ ] bits of all tagged rows. During 
that operation, all but three input bit columns and two output bit 
columns of RCAM are masked out in each step. Overall, eight 
steps of one compare and one write operation are performed to 
complete a single-bit addition over all RCAM rows (i.e. over 
all vector elements), regardless of the vectors A and B lengths.

A fixed-point ݉ bit addition and subtraction take ܱ(݉)
cycles. Fixed point multiplication and division in GIRAF
require ܱ(݉ଶ) cycles. Single precision floating point 
multiplication takes 4,400 cycles [4], regardless of the dataset 
size. 

IV. EVALUATION
GIRAF is a processing-in-storage architecture, capable of 

internally maintaining the entire dataset. The alternative is a 
computer architecture (either data centric or CPU centric) 
where the dataset does not fit in internal memory, therefore 
requiring an external storage. Such external storage could either 
be a SSD, a NVDIMM based storage or a dedicated storage 
appliance. The bandwidth of such external storage is typically 
limited (10GB/s for a storage appliance to 24GB/s for a 
NVDIMM storage). The performance of such architecture is 
defined by the roofline model [1] as follows:݂ݎ݁ܲ ݈ܾ݁ܽ݊݅ܽݐݐܣ = min (ܲ݁ܽ݇ ܲ݁ܫܣ   ,݂ݎ × (ܹܤ ݁݃ܽݎ݋ݐܵ ݇ܽ݁ܲ

where ݂ݎ݁ܲ ݇ܽ݁ܲ is the peak theoretical performance of the 
computer architecture, ܫܣ is arithmetic (or operational) 
intensity of a workload [5], and ܲ݁ܽ݇ ܹܵܤ ݁݃ܽݎ݋ݐ is the peak 
external storage bandwidth (as demonstrated in Figure 2). In 
data intensive applications, characterized by low ܫܣ, the 
attainable performance of an architecture is typically limited by 
its peak storage bandwidth. We present GIRAF performance 
figure relative to the attainable performance of said baseline 
architecture, assuming more aggressive NVDIMM storage 
scenario.

The peak potential of GIRAF (with 4TB of storage in this 
example) is illustrated using the roofline model in Figure 2. It 
shows the roofline model of GIRAF against the backdrop of 
Intel’s KNL [1], to which we add an external storage appliance 
access. Since GIRAF requires no external storage access, its 
attainable performance is defined by its peak internal 
bandwidth and its peak performance.

The peak internal bandwidth is achieved for instance during
a transfer of an entire bit column to the TAG register. Another 
example is the broadcast of a single data item to the entire 
storage. The peak performance is calculated using a single 
precision floating point multiply-accumulate operation, 
performed in parallel on the entire dataset (assuming the dataset 
matches the GIRAF size, i.e. 1T 32bit data elements).  

REFERENCES
[1] Doerfler, Douglas, et al. "Applying the roofline performance model to the intel xeon 

phi knights landing processor." International Conference on High Performance 
Computing. Springer International Publishing, 2016.

[2] Yavits, L., Kvatinsky, S., Morad, A., & Ginosar, R. (2015). Resistive associative 
processor. IEEE Computer Architecture Letters, 14(2), 148-151.

[3] Yavits, Leonid, Amir Morad, and Ran Ginosar. "Computer architecture with 
associative processor replacing last-level cache and SIMD accelerator." IEEE 
Transactions on Computers 64.2 (2015): 368-381.

[4] Yavits, Leonid, Amir Morad, and Ran Ginosar. "Sparse matrix multiplication on an 
associative processor." IEEE Transactions on Parallel and Distributed 
Systems 26.11 (2015): 3175-3183.

[5] Yavits L, Morad, A., & Ginosar, R. "The effect of communication and 
synchronization on Amdahl’s law in multicore systems". Parallel Computing, vol. 
40, no. 1, pp. 1-16, 2014.

Figure 2: Roofline model based on [1], amended by BW chart of an external 
storage appliance and a model for 4TB GIRAF.

477


