
POSTER: Automatic Parallelization Targeting
Asynchronous Task-Based Runtimes

Charles Jin
Reservoir Labs

New York, NY

jin@reservoir.com

Muthu Baskaran
Reservoir Labs

New York, NY

baskaran@reservoir.com

Benoit Meister
Reservoir Labs

New York, NY

meister@reservoir.com

Abstract—In a post-Moore world, asynchronous task-based
parallelism has become a popular paradigm for parallel pro-
gramming. Auto-parallelizing compilers are also an active area
of research, promising improved developer productivity and
application performance. This work seeks to unify these efforts by
delivering an end-to-end path for auto-parallelization through a
generic runtime layer for asynchronous task-based systems. First,
we extend R-Stream, an auto-parallelizing polyhedral compiler,
to express task-based parallelism and data management for a
broader class of task-based runtimes. We additionally introduce
a generic runtime layer for asynchronous task-based parallelism,
which provides an abstract target for the compiler backend.
We implement this generic runtime layer using OpenMP for
shared memory systems and Legion for distributed memory
systems. Starting from sequential source, we obtain geometric
mean speedups of 23.0× (OpenMP) and 9.5× (Legion) on a wide
range of applications, from deep learning to scientific kernels.

Index Terms—compiler, mapping, asynchronous task-based
runtimes.

I. INTRODUCTION

Asynchronous task-based execution has gained support as

a solution to the challenges of programming future exascale

systems. Computations are decomposed into tasks, which

are asynchronously submitted for execution to the runtime
system. The runtime dynamically schedules the tasks subject to

dependences, offering load balancing, locality, and scalability.

At the same time, designing and building efficient paral-

lel applications poses a significant challenge to developers,

requiring not only application expertise but also familiarity

with a specific parallel framework. One area of active research

is leveraging the compiler, either through implicit parallelism

(e.g., OpenMP pragmas) or full auto-parallelization.

This work addresses this landscape by presenting an end-to-

end framework for automatic parallelization to asynchronous

task-based runtimes via polyhedral analysis:

• We modify an existing mapping path in R-Stream [1],

a polyhedral optimizing compiler, to extract task-based

parallelism and data management for a generic runtime;

• We design a new generic task-based runtime layer that

corresponds to the polyhedral code generation;

• We provide two implementations of the generic runtime

layer using OpenMP tasks [2] and Legion [3].

This material is based in part upon work supported by the U.S. Department
of Energy, Office of Science, Office of Advanced Scientific Computing
Research under Awards Number DE-SC0018480 and DE-SC0019522.

Using benchmarks including scientific and deep learning

kernels, we find the automatically generated OpenMP task

code yields a geometric mean speedup of 23.0× over sequen-

tial code, versus 21.0× for hand-optimized do-all OpenMP

and 9.5× for our prototype distributed memory Legion target.

II. GENERIC TASK-BASED RUNTIME LAYER

The runtime layer is designed to capture the common

paradigms of task-based parallelism and data management and

act as an abstract code generation target for a polyhedral com-

piler workflow (described in the next section). The following

is a high-level description of the runtime components.

Tasks are tiled units of computation. Each task is parame-

terized by a task type identifier (taskTypeId), which is a

lightweight handle to the task function, and a task identifier

(taskId), which is passed to the task at runtime, allowing it

to determine its share of computation.

Datablocks are tiles of data. A datablock is identified by

a datablock identifier (dbTypeId) and a list of datablock

coordinates (coords). The specification of the size of a

datablock is delayed until it is fetched during execution, to

(1) support tiling of irregular spaces (e.g., triangular matri-

ces) and (2) avoid overallocation of unused coordinates. The

dbTypeId and coords allow datablocks to be passed by

reference without moving the underlying data, which can be

expensive on distributed memory systems.

We consider two classes of dependences:

• Data Dependence. When a new instance of a task

is created, the runtime is passed references to all its

necessary datablocks by the parent.

• Control Dependence. The runtime is also passed the

number of predecessors of the child task.

Upon completion, a task “auto-decrements” (autodec) the

count of its successor tasks; the runtime does not schedule a

task for execution until its predecessor count has reached zero

and the enumerated datablocks are coherent and available.

The use of autodec allows for the creation of a self-
unfolding task DAG, whereby the frontier nodes (tasks) and

edges (dependences) are dynamically created by the encoun-

tering tasks. This (1) avoids the overhead of creating and

analyzing the entire static task DAG at startup, but also (2)

reduces the need for dynamic dependence analysis, making

the runtime layer extremely lightweight.

464

2019 28th International Conference on Parallel Architectures and Compilation Techniques (PACT)

978-1-7281-3613-4/19/$31.00 ©2019 IEEE
DOI 10.1109/PACT.2019.00047

TABLE I
BENCHMARK RESULTS†

sequential OpenMP OpenMP Legion
do-all task

SpMV 0.0608 0.0243 0.0277 0.7285
GoogLeNet 6.8911 0.5023 0.5914 2.3966
ResNet-50 v2 137.1970 4.0172 2.5630 8.3584
SW4 17.8179 0.1109 0.1027 2.9793
Kripke 1.9067 0.1708 0.1565 0.8043
HOMME 5.0319 0.3045 0.2427 0.3805

†64 threads. Execution time, in seconds.

III. POLYHEDRAL FLOW

Building upon prior work by Baskaran et al. [4], we modify

an existing mapping path in R-Stream for OCR [5] to produce

generic task-based parallelism and data management. This

work is thus a successful proof-of-concept for targeting a wide

range of task-based runtimes using a polyhedral compiler flow.

Starting from sequential source, R-Stream first performs

standard raising and dependence analysis to convert se-

quential code into a polyhedral representation. Scheduling
transforms this representation to expose parallelism and im-

prove locality. Next, heuristic tiling of the resulting loop nests

increases the granularity of parallelism while balancing data

reuse, cache sizes, and runtime overhead. The tiling heuristic

also selects data blocks sizes to balance control dependences

against datablock management overhead. Auxiliary informa-

tion extracted from the dependence polyhedra during this

phase includes liveness and access requirements for each data

tile, which can be passed as hints to the target runtime. Finally,

dependence generation identifies successors for task tiles.

Code generation is performed via standard polyhedral

scanning, except that tile boundaries delineate tasks. Scanning

the data dependence polyhedra gives the data enumeration

functions. Control dependences are inferred in both directions.

Projecting the polyhedron for a task type along the directions

of dependence yields a loop that invokes autodec for each

successor, which can be inserted as an epilogue in the task

function. Similarly, projecting the polyhedron against the

directions of dependence gives the count function.

The final step in code generation is specialized by target

to account for runtime differences. For instance, the Legion

target requires all tasks to be spawned in the main task to avoid

spurious dependences. The count function is also not generated

as the Legion runtime directly manages control dependences.

IV. RESULTS

We present performance results in Table I for a variety of

common workloads, loosely categorized into embarrassingly

parallel (SpMV), deep learning (GoogLeNet, ResNet), and

scientific kernels (SW4, Kripke, HOMME). We also provide

timings for sequential and hand-optimized OpenMP do-all

versions. Experiments were run on an 8-core (16 threads) quad

socket Intel Xeon (Ivy Bridge) server with 64 threads. Code

was compiled with GCC 7.3 (OpenMP 4.5). Threads were

bound to sockets to reduce NUMA overhead.

The automatically generated code for the OpenMP task

variant was on par with the performance of the hand-mapped

OpenMP codes, even though the do-all versions benefited

from richer API support for affinity and locality hints at the

OpenMP runtime level. The task variant performed especially

well for the scientific kernels with irregular dependences [6].

Results confirm that the generic runtime is lightweight.
The experimental Legion target, though able to deliver

absolute speedups, still has much room for improvement. In

particularly, targeting the Legion runtime mapper interface,

which can be tuned for specific architectures and applications,

will enable better coordination with the underlying Legion

runtime system and improve locality and affinity. However,

it is important to mention the Legion target already delivers

significant gains in terms of maintainability and portability:

starting from an average 96 lines of sequential source, we are

able to generate code in a higher-level API for both shared

(380 lines) and distributed memory systems (2315 lines).

V. CONCLUSIONS

We present an end-to-end path for auto-parallelization to

asynchronous task-based runtimes. Our approach leverages

R-Stream, a polyhedral optimizing compiler, to extract task-

based parallelism and data management; a new generic task-

based runtime layer serves as an abstract target for the com-

piler backend. We provide implementations for the generic

runtime in OpenMP and Legion, successfully demonstrating a

polyhedral compiler approach to targeting task-based runtimes

for both shared and distributed memory systems. The gen-

erated OpenMP code outperforms hand-optimized OpenMP

by 12.0%, particularly on irregular scientific codes. The ex-

perimental Legion target is less optimized but demonstrates

automatically generating thousands of lines of scaffolding for

distributed memory from tens of lines of sequential source. Fu-

ture work includes refinement of the polyhedral flow for task-

based parallelism, improved heuristics for distributed memory

management, and additional implementations of the generic

layer using task-based programming systems.

REFERENCES

[1] B. Meister, N. Vasilache, D. Wohlford, M. M. Baskaran, A. Leung, and
R. Lethin, “R-Stream compiler,” in Encyclopedia of Parallel Computing,
D. A. Padua, Ed. Springer, 2011, pp. 1756–1765.

[2] OpenMP Architecture Review Board, “The OpenMP specification for
parallel programming,” 2015, http://www.openmp.org/.

[3] M. Bauer, S. Treichler, E. Slaughter, and A. Aiken, “Legion: Expressing
locality and independence with logical regions,” in Proceedings of the
International Conference for High Performance Computing, Networking
Storage and Analysis (SC’12), Salt Lake City, UT, USA, November 2012.

[4] M. Baskaran, B. Pradelle, B. Meister, A. Konstantinidis, and R. Lethin,
“Automatic code generation and data management for an asynchronous
task-based runtime,” in 2016 5th Workshop on Extreme-Scale Program-
ming Tools (ESPT), Nov 2016, pp. 34–41.

[5] T. Mattson, R. Cledat, V. Cave, V. Sarkar, Z. Budimlic, S. Chatterjee,
J. Fryman, I. Ganev, R. Knauerhase, M. Lee, B. Meister, B. Nickerson,
N. Pepperling, B. Seshasayee, S. Tarislar, J. Teller, and N. Vrvilo, “The
Open Community Runtime: A runtime system for extreme scale comput-
ing,” in 2016 IEEE High Performance Extreme Computing Conference
(HPEC), September 2016.

[6] C. Jin and M. Baskaran, “Analysis of explicit vs. implicit tasking in
OpenMP using Kripke,” in 4th Workshop on Extreme Scale Programming
Models and Middlewear (ESPM2), 11 2018, pp. 62–70.

465

