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I. INTRODUCTION

Visual simultaneous localisation and mapping (VSLAM)

is the process of simultaneously tracking the pose of a

moving visual sensor, e.g. a camera, while mapping the

observed scene. Its use in a variety of vision and robotics

applications has resulted in a wide range of formulations to

ensure accurate estimation for each target application. The

platforms in which VSLAM is increasingly deployed are

essentially battery-constrained, which requires optimising

power consumption with minimal impact on the estimation

accuracy. This is the main objective of this research.

Trading VSLAM performance objectives (e.g. frame rate,

accuracy and power use) has been studied at design time

by searching the parameters space to achieve the desired

trade-off [1][2]. At VSLAM runtime, however, trading these

objectives requires knowledge about the nature of sensor

motion and of the scene, all of which are unknown in

advance. Coupled with the fact that VSLAM formulations

interpret the scene in different ways, posing a portability

challenge for trade-off mechanisms.

We present a novel runtime adaptation model that relies

only on the change in sensor motion as a metric in a heuristic

for adapting two general and portable parameters, namely

DVFS in the hardware and (redundant) frame skipping

in the VSLAM formulation. The aim is to reduce power

consumption with minimal impact on the tracking accuracy

while maintaining a degree of portability across VSLAM

formulations and the devices they execute on. The adaptation

model is responsive to sudden changes in the sensor motion

which can lead to a major impact on the accuracy and robust-

ness of VSLAM. We evaluate the model on two prominent

keyframe-based formulations, namely ORB-SLAM [3] and

DSO [4].

II. RUNTIME ADAPTATIONS

The main goal of the adaptation model is to reduce power

consumption with minimal impact on VSLAM tracking

accuracy. To achieve this, the change in sensor motion

can be used as a metric for characterising the tracking

difficulty, assuming there is sufficient scene information. For

example, in the case of a sensor mounted on a quad-copter, a

sudden and large change in motion can lead to a significant

impact on the tracking accuracy due to lack of adequate

tracking information being observed by the sensor. Whereas

with slow and steady motion, there are opportunities to

save power with minimal impact on accuracy by taking

advantage of redundancy in the tracked information and

skipping frames. We define the sensor motion change D
at time t between two subsequent frames as:

Dt = Δ�
p Δp (1)

where Δp is the absolute difference between sensor pose at

time t and t− 1. To cope with unknown levels of variations

in the sensor motion D, we keep a record of its minimum

and maximum values, which are then used to normalise the

current change in motion Dt:

D′
t =

Dt −min(D)

max(D)−min(D)
(2)

The normalised value D′
t is then used to set the appro-

priate value of the adapted parameter X within a predefined

range (Xmin to Xmax) based on the correlation between the

parameter and the sensor motion:

Xp = Xmin + (Xmax −Xmin)D
′
t (3)

Xn = Xmax − (Xmax −Xmin)D
′
t (4)

Where Xp is used when the correlation is positive, while

Xn is used for negative correlation. Equation 3 is used for

DVFS adaptations (F) while equation 4 is used to determine

the number of redundant frames that may be skipped in a

row (S).

The model is light-weight and does not require major

changes to the VSLAM implementation. It also ensures

that when the change in sensor motion is at its peak

(Dt = max(D)), the adapted parameters are quickly set

to achieve high accuracy and robustness, while when the

change is at its minimum, the parameters are set to achieve

the highest power savings.

III. EXPERIMENTAL EVALUATION

We evaluate the adaptation model on the open-source real-

time monocular version of ORB-SLAM1 and DSO2 (for

which the real-time execution performance results (RT) are

used as the baseline for comparison) running on scenes from

1https://github.com/raulmur/ORB SLAM2
2https://github.com/JakobEngel/dso
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the EuRoC MAV [5] and ICL-NUIM [6] datasets. However,

we exclude scenes where any of the baselines do not perform

well in terms of tracking accuracy or robustness since the

goal is to evaluate the adaptations not the performance of the

baseline version. A total of 20 runs is performed with each

scene. For each run the estimated track is scaled and aligned

with the ground truth trajectory, then the Root Mean Square

Error (RMSE) from the ground truth is calculated. Low

variability in the 20 RMSE values implies high robustness.

Fig. 1 shows the effectiveness of the adaptation model on

a number of scenes from both datasets, where the adapted

parameters, (F) or (S), achieve similar RMSE values to the

baseline (RT) with power reduction, relative to the baseline,

up to 75% on ORB-SLAM and 64% on DSO.
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(a) Scenes: MH1, MH2, MH3, V101, V201, LR0.
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(b) Scenes: MH2, V201, LR1, LR2, OF3.

Figure 1. Violin plots of Power Reduction (top) with marginal impact
on accuracy (bottom) relative to each implementation baseline “RT” along
with the proposed runtime adaptation (x-axis).
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(a) Scenes: V102, V202, LR0.
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(b) Scenes: MH1, LR0, LR3.

Figure 2. Violin plots of Power Reduction (top) with impacted robustness
(bottom) relative to each implementation baseline “RT”.

Fig. 2, however, shows sequences where the use of the

adaptation model incurred an impact, mainly on the robust-

ness of the two VSLAM formulations. This impact can be

attributed to critical points encountered during the tracking

where the metric used is unable to identify and therefore

respond to [7]. Fig. 3 shows an example of the occurrence

of two critical points. This issue is more prevalent when

redundant frames are dynamically skipped (S) where the
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Figure 3. ORB-SLAM running on scene V202. Errors distribution for 20
runs recorded at 10 intervals over the run duration. Two critical points can
be seen where the robustness is highly impacted, at 10% for (RT+F+S), and
at 90% for (RT+S). ORB-SLAM recovers due to its loop closure ability.

change in sensor motion may not reflect the level of tracking

and scene difficulty. This motivates the search for improved

metrics for identifying specific types of motions or scene

complexities that give rise to such critical points.
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